51
|
Sahadevan S, Hembach KM, Tantardini E, Pérez-Berlanga M, Hruska-Plochan M, Megat S, Weber J, Schwarz P, Dupuis L, Robinson MD, De Rossi P, Polymenidou M. Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nat Commun 2021; 12:3027. [PMID: 34021139 PMCID: PMC8140117 DOI: 10.1038/s41467-021-23188-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations disrupting the nuclear localization of the RNA-binding protein FUS characterize a subset of amyotrophic lateral sclerosis patients (ALS-FUS). FUS regulates nuclear RNAs, but its role at the synapse is poorly understood. Using super-resolution imaging we determined that the localization of FUS within synapses occurs predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosomes, we identified synaptic FUS RNA targets, encoding proteins associated with synapse organization and plasticity. Significant increase of synaptic FUS during early disease in a mouse model of ALS was accompanied by alterations in density and size of GABAergic synapses. mRNAs abnormally accumulated at the synapses of 6-month-old ALS-FUS mice were enriched for FUS targets and correlated with those depicting increased short-term mRNA stability via binding primarily on multiple exonic sites. Our study indicates that synaptic FUS accumulation in early disease leads to synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | | | - Salim Megat
- Inserm, University of Strasbourg, Strasbourg, France
| | - Julien Weber
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zürich, Switzerland
| | - Luc Dupuis
- Inserm, University of Strasbourg, Strasbourg, France
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
52
|
Mitschka S, Mayr C. Endogenous p53 expression in human and mouse is not regulated by its 3'UTR. eLife 2021; 10:65700. [PMID: 33955355 PMCID: PMC8137139 DOI: 10.7554/elife.65700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The TP53 gene encodes the tumor suppressor p53 which is functionally inactivated in many human cancers. Numerous studies suggested that 3′UTR-mediated p53 expression regulation plays a role in tumorigenesis and could be exploited for therapeutic purposes. However, these studies did not investigate post-transcriptional regulation of the native TP53 gene. Here, we used CRISPR/Cas9 to delete the human and mouse TP53/Trp53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. Using reporter assays, we confirmed the previously observed repressive effects of the isolated 3′UTR. However, addition of the TP53 coding region to the reporter had a dominant negative impact on expression as its repressive effect was stronger and abrogated the contribution of the 3′UTR. Our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
53
|
Genetic removal of p70 S6K1 corrects coding sequence length-dependent alterations in mRNA translation in fragile X syndrome mice. Proc Natl Acad Sci U S A 2021; 118:2001681118. [PMID: 33906942 DOI: 10.1073/pnas.2001681118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Loss of the fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS). FMRP is widely thought to repress protein synthesis, but its translational targets and modes of control remain in dispute. We previously showed that genetic removal of p70 S6 kinase 1 (S6K1) corrects altered protein synthesis as well as synaptic and behavioral phenotypes in FXS mice. In this study, we examined the gene specificity of altered messenger RNA (mRNA) translation in FXS and the mechanism of rescue with genetic reduction of S6K1 by carrying out ribosome profiling and RNA sequencing on cortical lysates from wild-type, FXS, S6K1 knockout, and double knockout mice. We observed reduced ribosome footprint (RF) abundance in the majority of differentially translated genes in the cortices of FXS mice. We used molecular assays to discover evidence that the reduction in RF abundance reflects an increased rate of ribosome translocation, which is captured as a decrease in the number of translating ribosomes at steady state and is normalized by inhibition of S6K1. We also found that genetic removal of S6K1 prevented a positive-to-negative gradation of alterations in translation efficiencies (RF/mRNA) with coding sequence length across mRNAs in FXS mouse cortices. Our findings reveal the identities of dysregulated mRNAs and a molecular mechanism by which reduction of S6K1 prevents altered translation in FXS.
Collapse
|
54
|
Hia F, Takeuchi O. The effects of codon bias and optimality on mRNA and protein regulation. Cell Mol Life Sci 2021; 78:1909-1928. [PMID: 33128106 PMCID: PMC11072601 DOI: 10.1007/s00018-020-03685-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
The central dogma of molecular biology entails that genetic information is transferred from nucleic acid to proteins. Notwithstanding retro-transcribing genetic elements, DNA is transcribed to RNA which in turn is translated into proteins. Recent advancements have shown that each stage is regulated to control protein abundances for a variety of essential physiological processes. In this regard, mRNA regulation is essential in fine-tuning or calibrating protein abundances. In this review, we would like to discuss one of several mRNA-intrinsic features of mRNA regulation that has been gaining traction of recent-codon bias and optimality. Specifically, we address the effects of codon bias with regard to codon optimality in several biological processes centred on translation, such as mRNA stability and protein folding among others. Finally, we examine how different organisms or cell types, through this system, are able to coordinate physiological pathways to respond to a variety of stress or growth conditions.
Collapse
Affiliation(s)
- Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
55
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
56
|
Domitrovic T, Moreira MH, Carneiro RL, Ribeiro-Alves M, Palhano FL. Natural variation of the cardiac transcriptome in humans. RNA Biol 2020; 18:1374-1381. [PMID: 33258390 DOI: 10.1080/15476286.2020.1857508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We investigated the gene-expression variation among humans by analysing previously published mRNA-seq and ribosome footprint profiling of heart left-ventricles from healthy donors. We ranked the genes according to their coefficient of variation values and found that the top 5% most variable genes had special features compared to the rest of the genome, such as lower mRNA levels and shorter half-lives coupled to increased translation efficiency. We observed that these genes are mostly involved with immune response and have a pleiotropic effect on disease phenotypes, indicating that asymptomatic conditions contribute to the gene expression diversity of healthy individuals.
Collapse
Affiliation(s)
- Tatiana Domitrovic
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana H Moreira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Rodolfo L Carneiro
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
57
|
Neelagandan N, Lamberti I, Carvalho HJF, Gobet C, Naef F. What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis. Open Biol 2020; 10:200292. [PMID: 33292102 PMCID: PMC7776565 DOI: 10.1098/rsob.200292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and tightly controlled cellular process. Translation elongation is a well-coordinated, multifactorial step in translation that undergoes dynamic regulation owing to cellular state and environmental determinants. Recent studies involving genome-wide approaches have uncovered some crucial aspects of translation elongation including the mRNA itself and the nascent polypeptide chain. Additionally, these studies have fuelled quantitative and mathematical modelling of translation elongation. In this review, we provide a comprehensive overview of the key determinants of translation elongation. We discuss consequences of ribosome stalling or collision, and how the cells regulate translation in case of such events. Next, we review theoretical approaches and widely used mathematical models that have become an essential ingredient to interpret complex molecular datasets and study translation dynamics quantitatively. Finally, we review recent advances in live-cell reporter and related analysis techniques, to monitor the translation dynamics of single cells and single-mRNA molecules in real time.
Collapse
Affiliation(s)
| | | | | | | | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
58
|
Abstract
The identification and characterization of rhythmically expressed mRNAs have been an active area of research over the past 20 years, as these mRNAs are believed to produce the daily rhythms in a wide range of biological processes. Circadian transcriptome studies have used mature mRNA as a primary readout and focused largely on rhythmic RNA synthesis as a regulatory mechanism underlying rhythmic mRNA expression. However, RNA synthesis, RNA degradation, or a combination of both must be rhythmic to drive rhythmic RNA profiles, and it is still unclear to what extent rhythmic synthesis leads to rhythmic RNA profiles. In addition, circadian RNA expression is also often tissue specific. Although a handful of genes cycle in all or most tissues, others are rhythmic only in certain tissues, even though the same core clock mechanism is believed to control the rhythmic RNA profiles in all tissues. This review focuses on the dynamics of rhythmic RNA synthesis and degradation and discusses how these steps collectively determine the rhythmicity, phase, and amplitude of RNA accumulation. In particular, we highlight a possible role of RNA degradation in driving tissue-specific RNA rhythms. By unifying findings from experimental and theoretical studies, we will provide a comprehensive overview of how rhythmic gene expression can be achieved and how each regulatory step contributes to tissue-specific circadian transcriptome output in mammals.
Collapse
Affiliation(s)
| | - Shihoko Kojima
- To whom all correspondence should be addressed: Shihoko Kojima, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA; .
| |
Collapse
|
59
|
Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol Cell 2020; 80:193-209. [PMID: 33010203 DOI: 10.1016/j.molcel.2020.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023]
Abstract
Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.
Collapse
Affiliation(s)
- Thijs Nieuwkoop
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Max Finger-Bou
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
60
|
Wu J, Subbaiah KCV, Xie LH, Jiang F, Khor ES, Mickelsen D, Myers JR, Tang WHW, Yao P. Glutamyl-Prolyl-tRNA Synthetase Regulates Proline-Rich Pro-Fibrotic Protein Synthesis During Cardiac Fibrosis. Circ Res 2020; 127:827-846. [PMID: 32611237 PMCID: PMC7484271 DOI: 10.1161/circresaha.119.315999] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/01/2020] [Indexed: 01/22/2023]
Abstract
RATIONALE Increased protein synthesis of profibrotic genes is a common feature in cardiac fibrosis and heart failure. Despite this observation, critical factors and molecular mechanisms for translational control of profibrotic genes during cardiac fibrosis remain unclear. OBJECTIVE To investigate the role of a bifunctional ARS (aminoacyl-tRNA synthetase), EPRS (glutamyl-prolyl-tRNA synthetase) in translational control of cardiac fibrosis. METHODS AND RESULTS Results from reanalyses of multiple publicly available data sets of human and mouse heart failure, demonstrated that EPRS acted as an integrated node among the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at mRNA and protein levels (≈1.5-2.5-fold increase) in failing hearts compared with nonfailing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of Eprs globally (Eprs+/-) using CRISPR-Cas9 technology or in a Postn-Cre-dependent manner (Eprsflox/+; PostnMCM/+) strongly reduces cardiac fibrosis (≈50% reduction) in isoproterenol-, transverse aortic constriction-, and myocardial infarction (MI)-induced heart failure mouse models. Inhibition of EPRS using a PRS (prolyl-tRNA synthetase)-specific inhibitor, halofuginone, significantly decreases translation efficiency (TE) of proline-rich collagens in cardiac fibroblasts as well as TGF-β (transforming growth factor-β)-activated myofibroblasts. Overexpression of EPRS increases collagen protein expression in primary cardiac fibroblasts under TGF-β stimulation. Using transcriptome-wide RNA-Seq and polysome profiling-Seq in halofuginone-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 (latent TGF-β-binding protein 2) and Sulf1 (sulfatase 1), which are translationally regulated by EPRS. SULF1 is highly enriched in human and mouse myofibroblasts. In the primary cardiac fibroblast culture system, siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition. Overexpression of SULF1 promotes TGF-β-induced myofibroblast activation and partially antagonizes anti-fibrotic effects of halofuginone treatment. CONCLUSIONS Our results indicate that EPRS preferentially controls translational activation of proline codon rich profibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Li Huitong Xie
- Graduate Program in Genetics, Development and Stem Cells, Department of Biomedical Genetics
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Deanne Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | | | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry
| |
Collapse
|
61
|
Dhindsa RS, Copeland BR, Mustoe AM, Goldstein DB. Natural Selection Shapes Codon Usage in the Human Genome. Am J Hum Genet 2020; 107:83-95. [PMID: 32516569 PMCID: PMC7332603 DOI: 10.1016/j.ajhg.2020.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023] Open
Abstract
Synonymous codon usage has been identified as a determinant of translational efficiency and mRNA stability in model organisms and human cell lines. However, whether natural selection shapes human codon content to optimize translation efficiency is unclear. Furthermore, aside from those that affect splicing, synonymous mutations are typically ignored as potential contributors to disease. Using genetic sequencing data from nearly 200,000 individuals, we uncover clear evidence that natural selection optimizes codon content in the human genome. In deriving intolerance metrics to quantify gene-level constraint on synonymous variation, we discover that dosage-sensitive genes, DNA-damage-response genes, and cell-cycle-regulated genes are particularly intolerant to synonymous variation. Notably, we illustrate that reductions in codon optimality in BRCA1 can attenuate its function. Our results reveal that synonymous mutations most likely play an underappreciated role in human variation.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Brett R Copeland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anthony M Mustoe
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
62
|
Tack DC, Su Z, Yu Y, Bevilacqua PC, Assmann SM. Tissue-specific changes in the RNA structurome mediate salinity response in Arabidopsis. RNA (NEW YORK, N.Y.) 2020; 26:492-511. [PMID: 31937672 PMCID: PMC7075263 DOI: 10.1261/rna.072850.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.
Collapse
Affiliation(s)
- David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Spectrum Health Office of Research, Grand Rapids, Michigan 49503, USA
| | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yunqing Yu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
63
|
Knight JRP, Garland G, Pöyry T, Mead E, Vlahov N, Sfakianos A, Grosso S, De-Lima-Hedayioglu F, Mallucci GR, von der Haar T, Smales CM, Sansom OJ, Willis AE. Control of translation elongation in health and disease. Dis Model Mech 2020; 13:dmm043208. [PMID: 32298235 PMCID: PMC7104864 DOI: 10.1242/dmm.043208] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of protein synthesis makes a major contribution to post-transcriptional control pathways. During disease, or under stress, cells initiate processes to reprogramme protein synthesis and thus orchestrate the appropriate cellular response. Recent data show that the elongation stage of protein synthesis is a key regulatory node for translational control in health and disease. There is a complex set of factors that individually affect the overall rate of elongation and, for the most part, these influence either transfer RNA (tRNA)- and eukaryotic elongation factor 1A (eEF1A)-dependent codon decoding, and/or elongation factor 2 (eEF2)-dependent ribosome translocation along the mRNA. Decoding speeds depend on the relative abundance of each tRNA, the cognate:near-cognate tRNA ratios and the degree of tRNA modification, whereas eEF2-dependent ribosome translocation is negatively regulated by phosphorylation on threonine-56 by eEF2 kinase. Additional factors that contribute to the control of the elongation rate include epigenetic modification of the mRNA, coding sequence variation and the expression of eIF5A, which stimulates peptide bond formation between proline residues. Importantly, dysregulation of elongation control is central to disease mechanisms in both tumorigenesis and neurodegeneration, making the individual key steps in this process attractive therapeutic targets. Here, we discuss the relative contribution of individual components of the translational apparatus (e.g. tRNAs, elongation factors and their modifiers) to the overall control of translation elongation and how their dysregulation contributes towards disease processes.
Collapse
Affiliation(s)
| | - Gavin Garland
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - Tuija Pöyry
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - Emma Mead
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Nikola Vlahov
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - Stefano Grosso
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | | | - Giovanna R Mallucci
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - C Mark Smales
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Owen J Sansom
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
64
|
Forrest ME, Pinkard O, Martin S, Sweet TJ, Hanson G, Coller J. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS One 2020; 15:e0228730. [PMID: 32053646 PMCID: PMC7018022 DOI: 10.1371/journal.pone.0228730] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Messenger RNA (mRNA) degradation plays a critical role in regulating transcript levels in the cell and is a major control point for modulating gene expression. In yeast and other model organisms, codon identity is a powerful determinant of transcript stability, contributing broadly to impact half-lives. General principles governing mRNA stability are poorly understood in mammalian systems. Importantly, however, the degradation machinery is highly conserved, thus it seems logical that mammalian transcript half-lives would also be strongly influenced by coding determinants. Herein we characterize the contribution of coding sequence towards mRNA decay in human and Chinese Hamster Ovary cells. In agreement with previous studies, we observed that synonymous codon usage impacts mRNA stability in mammalian cells. Surprisingly, however, we also observe that the amino acid content of a gene is an additional determinant correlating with transcript stability. The impact of codon and amino acid identity on mRNA decay appears to be associated with underlying tRNA and intracellular amino acid concentrations. Accordingly, genes of similar physiological function appear to coordinate their mRNA stabilities in part through codon and amino acid content. Together, these results raise the possibility that intracellular tRNA and amino acid levels interplay to mediate coupling between translational elongation and mRNA degradation rate in mammals.
Collapse
Affiliation(s)
- Megan E. Forrest
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Otis Pinkard
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sophie Martin
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas J. Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|