51
|
Jacques DA, Guss JM, Svergun DI, Trewhella J. Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:620-6. [PMID: 22683784 DOI: 10.1107/s0907444912012073] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022]
Abstract
Small-angle scattering is becoming a mainstream technique for structural molecular biology. As such, it is important to establish guidelines for publication that will ensure that there is adequate reporting of the data and its treatment so that reviewers and readers can independently assess the quality of the data and the basis for any interpretations presented. This article presents a set of preliminary guidelines that emerged after consultation with the IUCr Commission on Small-Angle Scattering and other experts in the field and discusses the rationale for their application. At the 2011 Congress of the IUCr in Madrid, the Commission on Journals agreed to adopt these preliminary guidelines for the presentation of biomolecular structures from small-angle scattering data in IUCr publications. Here, these guidelines are outlined and the reasons for standardizing the way in which small-angle scattering data are presented.
Collapse
Affiliation(s)
- David A Jacques
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
52
|
Chen B, Zuo X, Wang YX, Dayie TK. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. Nucleic Acids Res 2012; 40:3117-30. [PMID: 22139931 PMCID: PMC3326309 DOI: 10.1093/nar/gkr1154] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.
Collapse
Affiliation(s)
- Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
53
|
Haller A, Soulière MF, Micura R. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 2011; 44:1339-48. [PMID: 21678902 DOI: 10.1021/ar200035g] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Riboswitches are gene regulation elements within RNA that recognize specific metabolites. They predominantly occur in the untranslated leader regions of bacterial messenger RNA (mRNA). Upon metabolite binding to the aptamer domain, a structural change in the adjoining downstream expression platform signals "on" or "off" for gene expression. Researchers have achieved much progress in characterizing ligand-bound riboswitch states at the molecular level; an impressive number of high-resolution structures of aptamer-ligand complexes is now available. These structures have significantly contributed toward our understanding of how riboswitches interact with their natural ligands and with structurally related analogues. In contrast, relatively little is known about the nature of the unbound (apo) form of riboswitches. Moreover, the details of how changes in the aptamer domain are transduced into conformational changes in the decision-making expression platform remain murky. In this Account, we report on recent efforts aimed at the characterization of free states, ligand recognition, and ligand-induced folding in riboswitches. Riboswitch action is best approached as a cotranscriptional process, which implies sequential folding and release of the aptamer prior to the signaling of the expression platform. Thus, a complex interplay of several factors has to be taken into account, such as speed of transcription, transcriptional pausing, kinetics and thermodynamics of RNA structure formation, and kinetics and thermodynamics of ligand binding. The response mechanism appears to be best described as a process in which ligand recognition critically dictates the folding pathway of the nascent mRNA during its expression; the resulting structures determine the interactions with the transcriptional or translational apparatus. We discuss experimental methods that offer insight into the dynamics of the free riboswitch state. These include probing experiments, such as in-line and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) techniques, small-angle X-ray scattering (SAXS) analysis, NMR spectroscopy, and fluorescence spectroscopy, including single-molecule fluorescence resonance energy transfer (smFRET) imaging. One of our research contributions is an approach, termed 2ApFold, that incorporates noninvasive 2-aminopurine modifications in riboswitches. The fluorescence response of these moieties is used to delineate the order of secondary-tertiary structure formation and rearrangements taking place during ligand-induced folding. This information can be used to explore the kinetics of ligand recognition and to analyze the degree of structure preorganization of the free riboswitch state. Furthermore, we discuss a recent smFRET study on the SAM-II riboswitch; this report underscores the importance of choosing strategic labeling patterns that leave maximal conformational freedom to the regulatory interaction. Finally, we comment on how riboswitch ligand recognition appeals to the concepts of conformational selection and induced fit, and on the question of whether riboswitches act under thermodynamic or kinetic control. This Account highlights the fact that a thorough understanding of RNA dynamics in vitro is required to shed light on cellular riboswitch mechanisms. Elucidating these mechanisms will contribute not only to ongoing efforts to target riboswitches with antibiotics but also to attempts to engineer artificial cell regulation systems.
Collapse
Affiliation(s)
- Andrea Haller
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | - Marie F. Soulière
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| |
Collapse
|
54
|
Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, Pique ME, Fang S, Mahaney BL, Weinfeld M, Schriemer DC, Lees-Miller SP, Tainer JA. XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 2011; 286:32638-50. [PMID: 21775435 PMCID: PMC3173232 DOI: 10.1074/jbc.m111.272641] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions. Crystal and solution structures plus mutations characterize alternating XRCC4 and XLF head domain interfaces forming parallel super-helical filaments. XLF Leu-115 ("Leu-lock") inserts into a hydrophobic pocket formed by XRCC4 Met-59, Met-61, Lys-65, Lys-99, Phe-106, and Leu-108 in synergy with pseudo-symmetric β-zipper hydrogen bonds to drive specificity. XLF C terminus and DNA enhance parallel filament formation. Super-helical XLF-XRCC4 filaments form a positively charged channel to bind DNA and align ends for efficient ligation. Collective results reveal how human XLF and XRCC4 interact to bind DNA, suggest consequences of patient mutations, and support a unified molecular mechanism for XLF-XRCC4 stimulation of DNA ligation.
Collapse
Affiliation(s)
- Michal Hammel
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Martial Rey
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yaping Yu
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rajam S. Mani
- the Department of Oncology, University of Alberta and the Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Scott Classen
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mona Liu
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Michael E. Pique
- the Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Shujuan Fang
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Brandi L. Mahaney
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Michael Weinfeld
- the Department of Oncology, University of Alberta and the Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - David C. Schriemer
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Susan P. Lees-Miller
- the Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John A. Tainer
- the Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, and
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
55
|
Rambo RP, Tainer JA. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 2011; 95:559-71. [PMID: 21509745 PMCID: PMC3103662 DOI: 10.1002/bip.21638] [Citation(s) in RCA: 414] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/05/2011] [Accepted: 04/10/2011] [Indexed: 01/06/2023]
Abstract
Unstructured proteins, RNA or DNA components provide functionally important flexibility that is key to many macromolecular assemblies throughout cell biology. As objective, quantitative experimental measures of flexibility and disorder in solution are limited, small angle scattering (SAS), and in particular small angle X-ray scattering (SAXS), provides a critical technology to assess macromolecular flexibility as well as shape and assembly. Here, we consider the Porod-Debye law as a powerful tool for detecting biopolymer flexibility in SAS experiments. We show that the Porod-Debye region fundamentally describes the nature of the scattering intensity decay by capturing the information needed for distinguishing between folded and flexible particles. Particularly for comparative SAS experiments, application of the law, as described here, can distinguish between discrete conformational changes and localized flexibility relevant to molecular recognition and interaction networks. This approach aids insightful analyses of fully and partly flexible macromolecules that is more robust and conclusive than traditional Kratky analyses. Furthermore, we demonstrate for prototypic SAXS data that the ability to calculate particle density by the Porod-Debye criteria, as shown here, provides an objective quality assurance parameter that may prove of general use for SAXS modeling and validation.
Collapse
Affiliation(s)
- Robert P. Rambo
- Life Sciences Division, Advanced LIght Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - John A. Tainer
- Life Sciences Division, Advanced LIght Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
56
|
Kazantsev AV, Rambo RP, Karimpour S, Santalucia J, Tainer JA, Pace NR. Solution structure of RNase P RNA. RNA (NEW YORK, N.Y.) 2011; 17:1159-71. [PMID: 21531920 PMCID: PMC3096047 DOI: 10.1261/rna.2563511] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/30/2011] [Indexed: 05/25/2023]
Abstract
The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of MCD Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
57
|
Grant TD, Luft JR, Wolfley JR, Tsuruta H, Martel A, Montelione GT, Snell EH. Small angle X-ray scattering as a complementary tool for high-throughput structural studies. Biopolymers 2011; 95:517-30. [PMID: 21462184 DOI: 10.1002/bip.21630] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/07/2022]
Abstract
Structural crystallography and nuclear magnetic resonance (NMR) spectroscopy are the predominant techniques for understanding the biological world on a molecular level. Crystallography is constrained by the ability to form a crystal that diffracts well and NMR is constrained to smaller proteins. Although powerful techniques, they leave many soluble, purified structurally uncharacterized protein samples. Small angle X-ray scattering (SAXS) is a solution technique that provides data on the size and multiple conformations of a sample, and can be used to reconstruct a low-resolution molecular envelope of a macromolecule. In this study, SAXS has been used in a high-throughput manner on a subset of 28 proteins, where structural information is available from crystallographic and/or NMR techniques. These crystallographic and NMR structures were used to validate the accuracy of molecular envelopes reconstructed from SAXS data on a statistical level, to compare and highlight complementary structural information that SAXS provides, and to leverage biological information derived by crystallographers and spectroscopists from their structures. All the ab initio molecular envelopes calculated from the SAXS data agree well with the available structural information. SAXS is a powerful albeit low-resolution technique that can provide additional structural information in a high-throughput and complementary manner to improve the functional interpretation of high-resolution structures.
Collapse
Affiliation(s)
- Thomas D Grant
- Hauptman-Woodward Medical Research Institute, 700 Ellicott St., Buffalo, NY 14203, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Leipply D, Draper DE. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA. Biochemistry 2011; 50:2790-9. [PMID: 21361309 DOI: 10.1021/bi101948k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are potentially several ways Mg2+ might promote formation of an RNA tertiary structure: by causing a general "collapse" of the unfolded ensemble to more compact conformations, by favoring a reorganization of structure within a domain to a form with specific tertiary contacts, and by enhancing cooperative linkages between different sets of tertiary contacts. To distinguish these different modes of action, we have studied Mg2+ interactions with the adenine riboswitch, in which a set of tertiary interactions that forms around a purine-binding pocket is thermodynamically linked to the tertiary "docking" of two hairpin loops in another part of the molecule. Each of four RNA forms with different extents of tertiary structure were characterized by small-angle X-ray scattering. The free energy of interconversion between different conformations in the absence of Mg2+ and the free energy of Mg2+ interaction with each form have been estimated, yielding a complete picture of the folding energy landscape as a function of Mg2+ concentration. At 1 mM Mg2+ (50 mM K+), the overall free energy of stabilization by Mg2+ is large, -9.8 kcal/mol, and about equally divided between its effect on RNA collapse to a partially folded structure and on organization of the binding pocket. A strong cooperative linkage between the two sets of tertiary contacts is intrinsic to the RNA. This quantitation of the effects of Mg2+ on an RNA with two distinct sets of tertiary interactions suggests ways that Mg2+ may work to stabilize larger and more complex RNA structures.
Collapse
Affiliation(s)
- Desirae Leipply
- Program in Molecular Biophysics and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
59
|
Dong YD, Boyd BJ. Applications of X-ray scattering in pharmaceutical science. Int J Pharm 2011; 417:101-11. [PMID: 21256941 DOI: 10.1016/j.ijpharm.2011.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/11/2011] [Accepted: 01/17/2011] [Indexed: 01/04/2023]
Abstract
The use of X-ray scattering techniques in pharmaceutical science is increasing, in part through increased collaborations with the materials science community, and through increased availability of instrumentation, particularly synchrotron sources. The ability to understand not only the biopharmaceutical outcome, but also arguably, more importantly, the structural aspects of drugs and drug delivery systems, is essential to progressing pharmaceutical science; this review serves as an introduction to the major techniques and the wide range of areas in which X-ray scattering may be applied in understanding and controlling structure in pharmaceutical systems.
Collapse
Affiliation(s)
- Yao-Da Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | |
Collapse
|
60
|
Batey RT. Recognition of S-adenosylmethionine by riboswitches. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:299-311. [PMID: 21957011 DOI: 10.1002/wrna.63] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Riboswitches are regulatory elements commonly found in the 5' leader sequences of bacterial mRNAs that bind cellular metabolites to direct expression at either the transcriptional or translational level. The effectors of these RNAs are chemically diverse, including nucleobases and nucleosides, amino acids, cofactors, and second messenger molecules. Over the last few years, a number of structures have revealed the architectural means by which RNA creates binding pockets of high affinity and specificity for these compounds. For most effectors, there is a single class of associated riboswitches. However, eight individual classes of S-adenosylmethionine (SAM) and/or S-adenosylhomocysteine (SAH) responsive riboswitches that control various aspects of sulfur metabolism have been validated, revealing a diverse set of solutions to the recognition of these ubiquitous metabolites. This review focuses upon the structures of RNAs that bind SAM and SAH and how they discriminate between these compounds.
Collapse
Affiliation(s)
- Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
61
|
Hammel M, Yu Y, Fang S, Lees-Miller SP, Tainer JA. XLF regulates filament architecture of the XRCC4·ligase IV complex. Structure 2010; 18:1431-42. [PMID: 21070942 PMCID: PMC3008546 DOI: 10.1016/j.str.2010.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/30/2022]
Abstract
DNA ligase IV (LigIV) is critical for nonhomologous end joining (NHEJ), the major DNA double-strand break (DSB) repair pathway in human cells, and LigIV activity is regulated by XRCC4 and XLF (XRCC4-like factor) interactions. Here, we employ small angle X-ray scattering (SAXS) data to characterize three-dimensional arrangements in solution for full-length XRCC4, XRCC4 in complex with LigIV tandem BRCT domains and XLF, plus the XRCC4·XLF·BRCT2 complex. XRCC4 forms tetramers mediated through a head-to-head interface, and the XRCC4 C-terminal coiled-coil region folds back on itself to support this interaction. The interaction between XLF and XRCC4 is also mediated via head-to-head interactions. In the XLF·XRCC4·BRCT complex, alternating repeating units of XLF and XRCC4·BRCT place the BRCT domain on one side of the filament. Collective results identify XRCC4 and XLF filaments suitable to align DNA molecules and function to facilitate LigIV end joining required for DSB repair in vivo.
Collapse
Affiliation(s)
- Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yaping Yu
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John A. Tainer
- Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
62
|
Werner A. Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number. Nucleic Acids Res 2010; 39:e17. [PMID: 21068070 PMCID: PMC3035447 DOI: 10.1093/nar/gkq808] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ribonucleic acids are highly conserved essential parts of cellular life. RNA function is determined to a large extent by its hydrodynamic behaviour. The presented study proposes a strategy to predict the hydrodynamic behaviour of RNA single strands on the basis of the polymer size. By atom-level shell-modelling of high-resolution structures, hydrodynamic radius and diffusion coefficient of evolutionary conserved RNA single strands (ssRNA) were calculated. The diffusion coefficients D of 17–174 nucleotides (nt) containing ssRNA depended on the number of nucleotides N with D = 4.56 × 10−10 N−0.39 m2 s−1. The hydrodynamic radius RH depended on N with RH = 5.00 × 10−10N0.38 m. An average ratio of the radius of gyration and the hydrodynamic radius of 0.98 ± 0.08 was calculated in solution. The empirical law was tested by in solution measured hydrodynamic radii and radii of gyration and was found to be highly consistent with experimental data of evolutionary conserved ssRNA. Furthermore, the hydrodynamic behaviour of several evolutionary unevolved ribonucleic acids could be predicted. Based on atom-level shell-modelling of high-resolution structures and experimental hydrodynamic data, empirical models are proposed, which enable to predict the translational diffusion coefficient and molecular size of short RNA single strands solely on the basis of the polymer size.
Collapse
Affiliation(s)
- Arne Werner
- Experimental Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, SE-10691, Sweden.
| |
Collapse
|
63
|
Classen S, Rodic I, Holton J, Hura GL, Hammel M, Tainer JA. Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:774-81. [PMID: 20975223 PMCID: PMC2964114 DOI: 10.1107/s0909049510028566] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 08/04/2010] [Indexed: 05/24/2023]
Abstract
Biological small-angle X-ray scattering (SAXS) provides powerful complementary data for macromolecular crystallography (MX) by defining shape, conformation and assembly in solution. Although SAXS is in principle the highest throughput technique for structural biology, data collection is limited in practice by current data collection software. Here the adaption of beamline control software, historically developed for MX beamlines, for the efficient operation and high-throughput data collection at synchrotron SAXS beamlines is reported. The Blu-Ice GUI and Distributed Control System (DCS) developed in the Macromolecular Crystallography Group at the Stanford Synchrotron Radiation Laboratory has been optimized, extended and enhanced to suit the specific needs of the biological SAXS endstation at the SIBYLS beamline at the Advanced Light Source. The customizations reported here provide a potential route for other SAXS beamlines in need of robust and efficient beamline control software. As a great deal of effort and optimization has gone into crystallographic software, the adaption and extension of crystallographic software may prove to be a general strategy to provide advanced SAXS software for the synchrotron community. In this way effort can be put into optimizing features for SAXS rather than reproducing those that have already been successfully implemented for the crystallographic community.
Collapse
Affiliation(s)
- Scott Classen
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Chen H, Ricklin D, Hammel M, Garcia BL, McWhorter WJ, Sfyroera G, Wu YQ, Tzekou A, Li S, Geisbrecht BV, Woods VL, Lambris JD. Allosteric inhibition of complement function by a staphylococcal immune evasion protein. Proc Natl Acad Sci U S A 2010; 107:17621-6. [PMID: 20876141 PMCID: PMC2955122 DOI: 10.1073/pnas.1003750107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The complement system is a major target of immune evasion by Staphylococcus aureus. Although many evasion proteins have been described, little is known about their molecular mechanisms of action. Here we demonstrate that the extracellular fibrinogen-binding protein (Efb) from S. aureus acts as an allosteric inhibitor by inducing conformational changes in complement fragment C3b that propagate across several domains and influence functional regions far distant from the Efb binding site. Most notably, the inhibitor impaired the interaction of C3b with complement factor B and, consequently, formation of the active C3 convertase. As this enzyme complex is critical for both activation and amplification of the complement response, its allosteric inhibition likely represents a fundamental contribution to the overall immune evasion strategy of S. aureus.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Brandon L. Garcia
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110; and
| | - William J. McWhorter
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110; and
| | - Georgia Sfyroera
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - You-Qiang Wu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sheng Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Brian V. Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110; and
| | - Virgil L. Woods
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
65
|
Miyashita O, Gorba C, Tama F. Structure modeling from small angle X-ray scattering data with elastic network normal mode analysis. J Struct Biol 2010; 173:451-60. [PMID: 20850542 DOI: 10.1016/j.jsb.2010.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
Abstract
Computational algorithms to construct structural models from SAXS experimental data are reviewed. SAXS data provides a wealth of information to study the structure and dynamics of biological molecules, however it does not provide atomic details of structures. Thus combining the low-resolution data with already known X-ray structure is a common approach to study conformational transitions of biological molecules. This review provides a survey of SAXS modeling approaches. In addition, we will discuss theoretical backgrounds and performance of our approach, in which elastic network normal mode analysis is used to predict reasonable conformational transitions from known X-ray structures, and find alternative conformations that are consistent with SAXS data.
Collapse
Affiliation(s)
- Osamu Miyashita
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
66
|
Abstract
Exploiting the experimental information from small-angle X-ray solution scattering (SAXS) in conjunction with structure prediction algorithms can be advantageous in the case of ribonucleic acids (RNA), where global restraints on the 3D fold are often lacking. Traditional usage of SAXS data often starts by attempting to reconstruct the molecular shape ab initio, which is subsequently used to assess the quality of a model. Here, an alternative strategy is explored whereby the models from a very large decoy set are directly sorted according to their fit to the SAXS data. For rapid computation of SAXS patterns, the method developed here makes use of a coarse-grained representation of RNA. It also accounts for the explicit treatment of the contribution to the scattering of water molecules and ions surrounding the RNA. The method, called Fast-SAXS-RNA, is first calibrated using a tRNA (tRNA-val) and then tested on the P4-P6 fragment of group I intron (P4-P6). Fast-SAXS-RNA is then used as a filter for decoy models generated by the MC-Fold and MC-Sym pipeline, a suite of RNA 3D all-atom structure algorithms that encode and exploit RNA 3D architectural principles. The ability of Fast-SAXS-RNA to discriminate native folds is tested against three widely used RNA molecules in molecular modeling benchmarks: the tRNA, the P4-P6, and a synthetic hairpin suspected to assemble into a homodimer. For each molecule, a large pool of decoys are generated, scored, and ranked using Fast-SAXS-RNA. The method is able to identify low-rmsd models among top ranking structures, for both tRNA and P4-P6. For the hairpin, the approach correctly identifies the dimeric state as the solution structure over the monomeric state and alternative secondary structures. The method offers a powerful strategy for recognizing native RNA conformations as well as multimeric assemblies and alternative secondary structures, thus enabling high-throughput RNA structure determination using SAXS data.
Collapse
Affiliation(s)
| | | | | | - Benoît Roux
- To whom correspondence should be addressed: ;
| |
Collapse
|
67
|
Stoddard CD, Montange RK, Hennelly SP, Rambo RP, Sanbonmatsu KY, Batey RT. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 2010; 18:787-97. [PMID: 20637415 PMCID: PMC2917978 DOI: 10.1016/j.str.2010.04.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 12/30/2022]
Abstract
Riboswitches are highly structured elements residing in the 5' untranslated region of messenger RNAs that specifically bind cellular metabolites to alter gene expression. While there are many structures of ligand-bound riboswitches that reveal details of bimolecular recognition, their unliganded structures remain poorly characterized. Characterizing the molecular details of the unliganded state is crucial for understanding the riboswitch's mechanism of action because it is this state that actively interrogates the cellular environment and helps direct the regulatory outcome. To develop a detailed description of the ligand-free form of an S-adenosylmethionine binding riboswitch at the local and global levels, we have employed a series of biochemical, biophysical, and computational methods. Our data reveal that the ligand binding domain adopts an ensemble of states that minimizes the energy barrier between the free and bound states to establish an efficient decision making branchpoint in the regulatory process.
Collapse
Affiliation(s)
- Colby D Stoddard
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, CO 80309-0215, USA
| | - Rebecca K. Montange
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, CO 80309-0215, USA
| | - Scott P. Hennelly
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Robert P. Rambo
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Robert T. Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, CO 80309-0215, USA
| |
Collapse
|
68
|
Mertens HDT, Svergun DI. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 2010; 172:128-41. [PMID: 20558299 DOI: 10.1016/j.jsb.2010.06.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/27/2023]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method for the low-resolution structural characterization of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modeling, and allow one to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure validation and the quantitative analysis of flexible systems, and is highly complementary to the high resolution methods of X-ray crystallography and NMR. At present, SAXS analysis methods have reached an advanced state, allowing for automated and rapid characterization of protein solutions in terms of low-resolution models, quaternary structure and oligomeric composition. In this communication, main approaches to the characterization of proteins and protein complexes using SAXS are reviewed. The tools for the analysis of proteins in solution are presented, and the impact that these tools have made in modern structural biology is discussed.
Collapse
Affiliation(s)
- Haydyn D T Mertens
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, Germany
| | | |
Collapse
|
69
|
Hammond JA, Rambo RP, Kieft JS. Multi-domain packing in the aminoacylatable 3' end of a plant viral RNA. J Mol Biol 2010; 399:450-63. [PMID: 20398674 PMCID: PMC3111976 DOI: 10.1016/j.jmb.2010.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Turnip yellow mosaic virus (TYMV) contains a tRNA-like structure (TLS) in its 3' untranslated region (3' UTR). This highly structured element induces valylation of the viral RNA by host cell enzymes and is important for virus proliferation. Directly upstream of the TYMV TLS is an upstream pseudoknot domain (UPD) that has been considered to be structurally distinct from the TLS. However, using a combination of functional, biochemical, and biophysical assays, we show that the entire 3' UTR of the viral genome is a single structured element in the absence of cellular protein. This packing architecture stabilizes the RNA structure and creates a better substrate for aminoacylation, and thus the UPD and TLS are functionally and structurally coupled. It has been proposed that the TYMV TLS acts as a molecular switch between translation and replication. Our results suggest that this putative switch could be based on structural changes within the global architecture of the UTR induced by interactions with the ribosome. The TYMV TLS.UPD might demonstrate how RNA structural plasticity can play a role in regulation of biological processes.
Collapse
Affiliation(s)
- John A. Hammond
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Robert P. Rambo
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
| | - Jeffrey S. Kieft
- Howard Hughes Medical Institute, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
70
|
Rambo RP, Tainer JA. Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 2010; 20:128-37. [PMID: 20097063 DOI: 10.1016/j.sbi.2009.12.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/24/2009] [Accepted: 12/24/2009] [Indexed: 11/28/2022]
Abstract
Small-angle X-ray scattering (SAXS) is changing how we perceive biological structures, because it reveals dynamic macromolecular conformations and assemblies in solution. SAXS information captures thermodynamic ensembles, enhances static structures detailed by high-resolution methods, uncovers commonalities among diverse macromolecules, and helps define biological mechanisms. SAXS-based experiments on RNA riboswitches and ribozymes and on DNA-protein complexes including DNA-PK and p53 discover flexibilities that better define structure-function relationships. Furthermore, SAXS results suggest conformational variation is a general functional feature of macromolecules. Thus, accurate structural analyses will require a comprehensive approach that assesses both flexibility, as seen by SAXS, and detail, as determined by X-ray crystallography and NMR. Here, we review recent SAXS computational tools, technologies, and applications to nucleic acids and related structures.
Collapse
Affiliation(s)
- Robert P Rambo
- Life Science Division, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|