51
|
Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 2011; 40:3131-42. [PMID: 22140119 PMCID: PMC3326292 DOI: 10.1093/nar/gkr1009] [Citation(s) in RCA: 446] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Circular RNA forms had been described in all domains of life. Such RNAs were shown to have diverse biological functions, including roles in the life cycle of viral and viroid genomes, and in maturation of permuted tRNA genes. Despite their potentially important biological roles, discovery of circular RNAs has so far been mostly serendipitous. We have developed circRNA-seq, a combined experimental/computational approach that enriches for circular RNAs and allows profiling their prevalence in a whole-genome, unbiased manner. Application of this approach to the archaeon Sulfolobus solfataricus P2 revealed multiple circular transcripts, a subset of which was further validated independently. The identified circular RNAs included expected forms, such as excised tRNA introns and rRNA processing intermediates, but were also enriched with non-coding RNAs, including C/D box RNAs and RNase P, as well as circular RNAs of unknown function. Many of the identified circles were conserved in Sulfolobus acidocaldarius, further supporting their functional significance. Our results suggest that circular RNAs, and particularly circular non-coding RNAs, are more prevalent in archaea than previously recognized, and might have yet unidentified biological roles. Our study establishes a specific and sensitive approach for identification of circular RNAs using RNA-seq, and can readily be applied to other organisms.
Collapse
Affiliation(s)
- Miri Danan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
52
|
Mori T, Ogasawara C, Inada T, Englert M, Beier H, Takezawa M, Endo T, Yoshihisa T. Dual functions of yeast tRNA ligase in the unfolded protein response: unconventional cytoplasmic splicing of HAC1 pre-mRNA is not sufficient to release translational attenuation. Mol Biol Cell 2010; 21:3722-34. [PMID: 20844078 PMCID: PMC2965688 DOI: 10.1091/mbc.e10-08-0693] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/07/2010] [Indexed: 11/11/2022] Open
Abstract
The unfolded protein response (UPR) is an essential signal transduction to cope with protein-folding stress in the endoplasmic reticulum. In the yeast UPR, the unconventional splicing of HAC1 mRNA is a key step. Translation of HAC1 pre-mRNA (HAC1(u) mRNA) is attenuated on polysomes and restarted only after splicing upon the UPR. However, the precise mechanism of this restart remained unclear. Here we show that yeast tRNA ligase (Rlg1p/Trl1p) acting on HAC1 ligation has an unexpected role in HAC1 translation. An RLG1 homologue from Arabidopsis thaliana (AtRLG1) substitutes for yeast RLG1 in tRNA splicing but not in the UPR. Surprisingly, AtRlg1p ligates HAC1 exons, but the spliced mRNA (HAC1(i) mRNA) is not translated efficiently. In the AtRLG1 cells, the HAC1 intron is circularized after splicing and remains associated on polysomes, impairing relief of the translational repression of HAC1(i) mRNA. Furthermore, the HAC1 5' UTR itself enables yeast Rlg1p to regulate translation of the following ORF. RNA IP revealed that yeast Rlg1p is integrated in HAC1 mRNP, before Ire1p cleaves HAC1(u) mRNA. These results indicate that the splicing and the release of translational attenuation of HAC1 mRNA are separable steps and that Rlg1p has pivotal roles in both of these steps.
Collapse
Affiliation(s)
| | | | - Toshifumi Inada
- Division of Biological Science, Graduate School of Science, and
| | - Markus Englert
- Institut für Biochemie, Universität Würzburg, Biozentrum, D-97074, Würzburg, Germany
| | - Hildburg Beier
- Institut für Biochemie, Universität Würzburg, Biozentrum, D-97074, Würzburg, Germany
| | - Mine Takezawa
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Tohru Yoshihisa
- *Department of Chemistry and
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan; and
| |
Collapse
|
53
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
54
|
Jain R, Shuman S. Characterization of a thermostable archaeal polynucleotide kinase homologous to human Clp1. RNA (NEW YORK, N.Y.) 2009; 15:923-31. [PMID: 19299550 PMCID: PMC2673061 DOI: 10.1261/rna.1492809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/21/2009] [Indexed: 05/24/2023]
Abstract
Clp1 proteins are essential components of the eukaryal mRNA 3' cleavage-polyadenylation machinery. Human Clp1 has an additional function as an RNA-specific 5'-OH polynucleotide kinase, which is implicated in RNA end healing. Yeast Clp1 has no kinase activity, although it binds ATP. Here we report that Clp1-like proteins are extant in archaea. Purification and characterization of Pyrococcus horikoshii Clp1 (PhoClp1) reveals it to be a thermostable 5'-OH polynucleotide kinase optimally active at 55 degrees C to 85 degrees C. PhoClp1 catalyzes transfer of the gamma phosphate from ATP (K (m) 16 microM) to either 5'-OH RNA or DNA ends, although it prefers RNA in a competitive situation. Increasing the monovalent salt concentration to 250 mM suppresses the DNA kinase without affecting RNA phosphorylation, suggesting that RNA is a likely substrate for this enzyme in vivo. Indeed, we show that expression of PhoClp1 in budding yeast can complement a lethal mutation in the 5'-OH RNA kinase module of tRNA ligase. PhoClp1 is a member of the P-loop phosphotransferase superfamily. Alanine mutations at the P-loop lysine (Lys49) and a conserved aspartate (Asp73) inactivate the kinase. Our studies fortify emerging evidence for an enzymatic RNA repair capacity in archaea and provide a new reagent for polynucleotide phosphorylation at high temperatures.
Collapse
Affiliation(s)
- Ruchi Jain
- Graduate Program in Chemical Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
55
|
Torchia C, Takagi Y, Ho CK. Archaeal RNA ligase is a homodimeric protein that catalyzes intramolecular ligation of single-stranded RNA and DNA. Nucleic Acids Res 2008; 36:6218-27. [PMID: 18829718 PMCID: PMC2577357 DOI: 10.1093/nar/gkn602] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RNA ligases participate in repair, splicing and editing pathways that either reseal broken RNAs or alter their primary structure. Here, we report the characterization of an RNA ligase from the thermophilic archaeon, Methanobacterium thermoautotrophicum. The 381-amino acid Methanobacterium RNA ligase (MthRnl) catalyzes intramolecular ligation of 5′-PO4 single-strand RNA to form a covalently closed circular RNA molecule through ligase-adenylylate and RNA-adenylylate (AppRNA) intermediates. At the optimal temperature of 65°C, AppRNA was predominantly ligated to a circular product. In contrast, at 35°C, phosphodiester bond formation was suppressed and the majority of the AppRNA was deadenylylated. Sedimentation analysis indicates that MthRnl is a homodimer in solution. The C-terminal 127-amino acid segment is required for dimerization, is itself capable of oligomeization and acts in trans to inhibit the ligation activity of native MthRnl. MthRnl can also join single-stranded DNA to form a circular molecule. The lack of specificity for RNA and DNA by MthRnl may exemplify an undifferentiated ancestral stage in the evolution of ATP-dependent ligases.
Collapse
Affiliation(s)
- Christopher Torchia
- Department of Biological Sciences and Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
56
|
Ramirez A, Shuman S, Schwer B. Human RNA 5'-kinase (hClp1) can function as a tRNA splicing enzyme in vivo. RNA (NEW YORK, N.Y.) 2008; 14:1737-45. [PMID: 18648070 PMCID: PMC2525948 DOI: 10.1261/rna.1142908] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/16/2008] [Indexed: 05/22/2023]
Abstract
Yeast and human Clp1 proteins are homologous components of the mRNA 3'-cleavage-polyadenylation machinery. Recent studies highlighting an association of human Clp1 (hClp1) with tRNA splicing endonuclease and an intrinsic RNA-specific 5'-OH polynucleotide kinase activity of hClp1 have prompted speculation that Clp1 might play a catalytic role in tRNA splicing in animal cells. Here, we show that expression of hClp1 in budding yeast can complement conditional and lethal mutations in the essential 5'-OH RNA kinase module of yeast or plant tRNA ligases. The tRNA splicing activity of hClp1 in yeast is abolished by mutations in the kinase active site. In contrast, overexpression of yeast Clp1 (yClp1) cannot rescue kinase-defective tRNA ligase mutants, and, unlike hClp1, the purified recombinant yClp1 protein has no detectable RNA kinase activity in vitro. Mutations of the yClp1 ATP-binding site do not affect yeast viability. These findings, and the fact that hClp1 cannot complement growth of a yeast clp1Delta strain, indicate that yeast and human Clp1 proteins are not functional orthologs, despite their structural similarity. Although hClp1 can perform the 5'-end-healing step of a yeast-type tRNA splicing pathway in vivo, it is uncertain whether its kinase activity is necessary for tRNA splicing in human cells, given that other mammalian counterparts of yeast-type tRNA repair enzymes are nonessential in vivo.
Collapse
Affiliation(s)
- Alejandro Ramirez
- Graduate Program in Molecular Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | |
Collapse
|
57
|
Box C/D RNA-guided 2'-O methylations and the intron of tRNATrp are not essential for the viability of Haloferax volcanii. J Bacteriol 2008; 190:7308-13. [PMID: 18757532 DOI: 10.1128/jb.00820-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deleting the box C/D RNA-containing intron in the Haloferax volcanii tRNATrp gene abolishes RNA-guided 2'-O methylations of C34 and U39 residues of tRNATrp. However, this deletion does not affect growth under standard conditions.
Collapse
|
58
|
Singh SK, Gurha P, Gupta R. Dynamic guide-target interactions contribute to sequential 2'-O-methylation by a unique archaeal dual guide box C/D sRNP. RNA (NEW YORK, N.Y.) 2008; 14:1411-23. [PMID: 18515549 PMCID: PMC2441990 DOI: 10.1261/rna.1003308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 04/16/2008] [Indexed: 05/05/2023]
Abstract
Assembly and guide-target interaction of an archaeal box C/D-guide sRNP was investigated under various conditions by analyzing the lead (II)-induced cleavage of the guide RNA. Guide and target RNAs derived from Haloferax volcanii pre-tRNA(Trp) were used with recombinant Methanocaldococcus jannaschii core proteins in the reactions. Core protein L7Ae binds differentially to C/D and C'/D' motifs of the guide RNA, and interchanging the two motifs relative to the termini of the guide RNA did not affect L7Ae binding or sRNA function. L7Ae binding to the guide RNA exposes its D'-guide sequence first followed by the D guide. These exposures are reduced when aNop5p and aFib proteins are added. The exposed guide sequences did not pair with the target sequences in the presence of L7Ae alone. The D-guide sequence could pair with the target in the presence of L7Ae and aNop5p, suggesting a role of aNop5p in target recruitment and rearrangement of sRNA structure. aFib binding further stabilizes this pairing. After box C/D-guided modification, target-guide pairing at the D-guide sequence is disrupted, suggesting that each round of methylation may require some conformational change or reassembly of the RNP. Asymmetric RNPs containing only one L7Ae at either of the two box motifs can be assembled, but a functional RNP requires L7Ae at the box C/D motif. This arrangement resembles the asymmetric eukaryal snoRNP. Observations of initial D-guide-target pairing and the functional requirement for L7Ae at the box C/D motif are consistent with our previous report of the sequential 2'-O-methylations of the target RNA.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | | | | |
Collapse
|
59
|
Brooks MA, Meslet-Cladiére L, Graille M, Kuhn J, Blondeau K, Myllykallio H, van Tilbeurgh H. The structure of an archaeal homodimeric ligase which has RNA circularization activity. Protein Sci 2008; 17:1336-45. [PMID: 18511537 DOI: 10.1110/ps.035493.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genome of Pyrococcus abyssi contains two open reading frames encoding proteins which had been previously predicted to be DNA ligases, Pab2002 and Pab1020. We show that while the former is indeed a DNA ligase, Pab1020 had no effect on the substrate deoxyoligo-ribonucleotides tested. Instead, Pab1020 catalyzes the nucleotidylation of oligo-ribonucleotides in an ATP-dependent reaction, suggesting that it is an RNA ligase. We have solved the structure of Pab1020 in complex with the ATP analog AMPPNP by single-wavelength anomalous dispersion (SAD), elucidating a structure with high structural similarity to the catalytic domains of two RNA ligases from the bacteriophage T4. Additional carboxy-terminal domains are also present, and one of these mediates contacts with a second protomer, which is related by noncrystallographic symmetry, generating a homodimeric structure. These C-terminal domains are terminated by short domain swaps which themselves end within 5 A of the active sites of the partner molecules. Additionally, we show that the protein is indeed capable of circularizing RNA molecules in an ATP-dependent reaction. These structural and biochemical results provide an insight into the potential physiological roles of Pab1020.
Collapse
Affiliation(s)
- Mark Adrian Brooks
- IBBMC-CNRS, Université de Paris-Sud, CNRS-UMR8619, IFR115, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Schwer B, Aronova A, Ramirez A, Braun P, Shuman S. Mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. RNA (NEW YORK, N.Y.) 2008; 14:204-10. [PMID: 18094118 PMCID: PMC2212240 DOI: 10.1261/rna.858108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/06/2007] [Indexed: 05/24/2023]
Abstract
Yeast and plant tRNA splicing entails discrete healing and sealing steps catalyzed by a tRNA ligase that converts the 2',3' cyclic phosphate and 5'-OH termini of the broken tRNA exons to 3'-OH/2'-PO4 and 5'-PO4 ends, respectively, then joins the ends to yield a 2'-PO4, 3'-5' phosphodiester splice junction. The junction 2'-PO4 is removed by a tRNA phosphotransferase, Tpt1. Animal cells have two potential tRNA repair pathways: a yeast-like system plus a distinctive mechanism, also present in archaea, in which the 2',3' cyclic phosphate and 5'-OH termini are ligated directly. Here we report that a mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can perform the essential 3' end-healing steps of tRNA splicing in yeast and thereby complement growth of strains bearing lethal or temperature-sensitive mutations in the tRNA ligase 3' end-healing domain. Although this is the first evidence of an RNA processing function in vivo for the mammalian CNP protein, it seems unlikely that the yeast-like pathway is responsible for animal tRNA splicing, insofar as neither CNP nor Tpt1 is essential in mice.
Collapse
|
61
|
Harding HP, Lackey JG, Hsu HC, Zhang Y, Deng J, Xu RM, Damha MJ, Ron D. An intact unfolded protein response in Trpt1 knockout mice reveals phylogenic divergence in pathways for RNA ligation. RNA (NEW YORK, N.Y.) 2008; 14:225-32. [PMID: 18094117 PMCID: PMC2212252 DOI: 10.1261/rna.859908] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/08/2007] [Indexed: 05/23/2023]
Abstract
Unconventional mRNA splicing by an endoplasmic reticulum stress-inducible endoribonuclease, IRE1, is conserved in all known eukaryotes. It controls the expression of a transcription factor, Hac1p/XBP-1, that regulates gene expression in the unfolded protein response. In yeast, the RNA fragments generated by Ire1p are ligated by tRNA ligase (Trl1p) in a process that leaves a 2'-PO4(2-) at the splice junction, which is subsequently removed by an essential 2'-phosphotransferase, Tpt1p. However, animals, unlike yeast, have two RNA ligation/repair pathways that could potentially rejoin the cleaved Xbp-1 mRNA fragments. We report that inactivation of the Trpt1 gene, encoding the only known mammalian homolog of Tpt1p, eliminates all detectable 2'-phosphotransferase activity from cultured mouse cells but has no measurable effect on spliced Xbp-1 translation. Furthermore, the relative translation rates of tyrosine-rich proteins is unaffected by the Trpt1 genotype, suggesting that the pool of (normally spliced) tRNA(Tyr) is fully functional in the Trpt1-/- mouse cells. These observations argue against the presence of a 2'-PO4(2-) at the splice junction of ligated RNA molecules in Trpt1-/- cells, and suggest that Xbp-1 and tRNA ligation proceed by distinct pathways in yeast and mammals.
Collapse
Affiliation(s)
- Heather P Harding
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Hofacker IL, Stadler PF. Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 2006; 22:1172-6. [PMID: 16452114 DOI: 10.1093/bioinformatics/btl023] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A small class of RNA molecules, in particular the tiny genomes of viroids, are circular. Yet most structure prediction algorithms handle only linear RNAs. The most straightforward approach is to compute circular structures from 'internal' and 'external' substructures separated by a base pair. This is incompatible, however, with the memory-saving approach of the Vienna RNA Package which builds a linear RNA structure from shorter (internal) structures only. RESULT Here we describe how circular secondary structures can be obtained without additional memory requirements as a kind of 'post-processing' of the linear structures. AVAILABILITY The circular folding algorithm is implemented in the current version of the of RNAfold program of the Vienna RNA Package, which can be downloaded from http://www.tbi.univie.ac.at/RNA/
Collapse
Affiliation(s)
- Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna Währingerstr. 17, A-1090 Vienna, Austria
| | | |
Collapse
|
63
|
Abstract
Recombination is widespread among RNA viruses, but many molecular mechanisms of this phenomenon are still poorly understood. It was believed until recently that the only possible mechanism of RNA recombination is replicative template switching, with synthesis of a complementary strand starting on one viral RNA molecule and being completed on another. The newly synthesized RNA is a primary recombinant molecule in this case. Recent studies have revealed other mechanisms of replicative RNA recombination. In addition, recombination between the genomes of RNA viruses can be nonreplicative, resulting from a joining of preexisting parental molecules. Recombination is a potent tool providing for both the variation and conservation of the genome in RNA viruses. Replicative and nonreplicative mechanisms may contribute differently to each of these evolutionary processes. In the form of trans splicing, nonreplicative recombination of cell RNAs plays an important role in at least some organisms. It is conceivable that RNA recombination continues to contribute to the evolution of DNA genomes.
Collapse
Affiliation(s)
- A P Gmyl
- 1Chumakov Institute of Poliomyelitis and Viral Encephalites, Russian Academy of Medical Sciences, Moscow Region, 142782 Russia
| | - V I Agol
- 1Chumakov Institute of Poliomyelitis and Viral Encephalites, Russian Academy of Medical Sciences, Moscow Region, 142782 Russia.,2Moscow State University, Moscow, 119992 Russia
| |
Collapse
|
64
|
Coombes CE, Boeke JD. An evaluation of detection methods for large lariat RNAs. RNA (NEW YORK, N.Y.) 2005; 11:323-31. [PMID: 15661842 PMCID: PMC1370721 DOI: 10.1261/rna.7124405] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 12/08/2004] [Indexed: 05/20/2023]
Abstract
Ty1 elements are long terminal repeat (LTR) retrotransposons that reside within the genome of Saccharomyces cerevisiae. It has been known for many years that the 2'-5' phosphodiesterase Dbr1p, which debranches intron lariats, is required for efficient Ty1 transposition. A recent report suggested the intriguing possibility that Ty1 RNA forms a lariat as a transposition intermediate. We set out to further investigate the nature of the proposed Ty1 lariat branchpoint. However, using a wide range of techniques we were unable to find any evidence for the proposed lariat structure. Furthermore, we demonstrate that some of the techniques used in the initial study describing the lariat are capable of incorrectly reporting a lariat structure. Thus, the role of the Dbr1 protein in Ty1 retrotransposition remains elusive.
Collapse
Affiliation(s)
- Candice E Coombes
- Department of Oncology, Johns Hopkins University School of Medicine, 339 Broadway Research Building, 733 North Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
65
|
Randau L, Münch R, Hohn MJ, Jahn D, Söll D. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature 2005; 433:537-41. [PMID: 15690044 DOI: 10.1038/nature03233] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 12/02/2004] [Indexed: 11/09/2022]
Abstract
Analysis of the genome sequence of the small hyperthermophilic archaeal parasite Nanoarchaeum equitans has not revealed genes encoding the glutamate, histidine, tryptophan and initiator methionine transfer RNA species. Here we develop a computational approach to genome analysis that searches for widely separated genes encoding tRNA halves that, on the basis of structural prediction, could form intact tRNA molecules. A search of the N. equitans genome reveals nine genes that encode tRNA halves; together they account for the missing tRNA genes. The tRNA sequences are split after the anticodon-adjacent position 37, the normal location of tRNA introns. The terminal sequences can be accommodated in an intervening sequence that includes a 12-14-nucleotide GC-rich RNA duplex between the end of the 5' tRNA half and the beginning of the 3' tRNA half. Reverse transcriptase polymerase chain reaction and aminoacylation experiments of N. equitans tRNA demonstrated maturation to full-size tRNA and acceptor activity of the tRNA(His) and tRNA(Glu) species predicted in silico. As the joining mechanism possibly involves tRNA trans-splicing, the presence of an intron might have been required for early tRNA synthesis.
Collapse
MESH Headings
- Aminoacylation
- Base Sequence
- Computational Biology
- Genes, Archaeal/genetics
- Genome, Archaeal
- Genomics
- Glutamate-tRNA Ligase/metabolism
- Histidine-tRNA Ligase/metabolism
- Introns/genetics
- Molecular Sequence Data
- Nanoarchaeota/enzymology
- Nanoarchaeota/genetics
- Nucleic Acid Conformation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/isolation & purification
- RNA, Archaeal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/isolation & purification
- RNA, Transfer/metabolism
- Trans-Splicing/genetics
Collapse
Affiliation(s)
- Lennart Randau
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
66
|
Starostina NG, Marshburn S, Johnson LS, Eddy SR, Terns RM, Terns MP. Circular box C/D RNAs in Pyrococcus furiosus. Proc Natl Acad Sci U S A 2004; 101:14097-101. [PMID: 15375211 PMCID: PMC521125 DOI: 10.1073/pnas.0403520101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Box C/D RNAs are small, noncoding RNAs that function in RNA modification in eukaryotes and archaea. Here, we report that box C/D RNAs exist in the rare biological form of RNA circles in the hyperthermophilic archaeon Pyrococcus furiosus. Northern analysis of box C/D RNAs reveals two prominent RNA species of different electrophoretic mobilities in total P. furiosus RNA preparations. Together, the results of Northern, ribozyme, RT-PCR, and lariat debranching analyses indicate that the two species are circular and linear RNAs of similar length and abundance. It seems that most, if not all, species of box C/D RNAs exist as circles in P. furiosus. In addition, the circular RNAs are found in complexes with proteins required for box C/D RNA function. Our finding places box C/D RNAs among the extremely few circular RNAs known to exist in nature. Moreover, the unexpected discovery of circular box C/D RNAs points to the existence of a previously unrecognized biogenesis pathway for box C/D RNAs in archaea.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Conserved Sequence
- Immunoprecipitation/methods
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pyrococcus furiosus/chemistry
- Pyrococcus furiosus/genetics
- RNA/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Catalytic/analysis
- RNA, Catalytic/genetics
- RNA, Circular
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- Rabbits
- Recombinant Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoproteins, Small Nucleolar/genetics
Collapse
Affiliation(s)
- Natalia G Starostina
- Department of Biochemistry and Molecular Biology, University of Georgia, Davison Life Science Building, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
67
|
Singh SK, Gurha P, Tran EJ, Maxwell ES, Gupta R. Sequential 2'-O-methylation of archaeal pre-tRNATrp nucleotides is guided by the intron-encoded but trans-acting box C/D ribonucleoprotein of pre-tRNA. J Biol Chem 2004; 279:47661-71. [PMID: 15347671 DOI: 10.1074/jbc.m408868200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haloferax volcanii pre-tRNA(Trp) processing requires box C/D ribonucleoprotein (RNP)-guided 2'-O-methylation of nucleotides C34 and U39 followed by intron excision. Positioning of the box C/D guide RNA within the intron of this pre-tRNA led to the assumption that nucleotide methylation is guided by the cis-positioned box C/D RNPs. We have now investigated the mechanism of 2'-O-methylation for the H. volcanii pre-tRNA(Trp) in vitro by assembling methylation-competent box C/D RNPs on both the pre-tRNA and the excised intron (both linear and circular forms) using Methanocaldococcus jannaschii box C/D RNP core proteins. With both kinetic studies and single nucleotide substitutions of target and guide nucleotides, we now demonstrate that pre-tRNA methylation is guided in trans by the intron-encoded box C/D RNPs positioned in either another pre-tRNA(Trp) or in the excised intron. Methylation by in vitro assembled RNPs prefers but does not absolutely require Watson-Crick pairing between the guide and target nucleotides. We also demonstrate for the first time that methylation of two nucleotides guided by a single box C/D RNA is sequential, that is, box C'/D' RNP-guided U39 methylation first requires box C/D RNP-guided methylation of C34. Methylation of the two nucleotides of exogenous pre-tRNA(Trp) added to an H. volcanii cell extract also occurs sequentially and is also accomplished in trans using RNPs that pre-exist in the extract. Thus, this trans mechanism is analogous to eukaryal pre-rRNA 2'-O-methylation guided by intron-encoded but trans-acting box C/D small nucleolar RNPs. This trans mechanism could explain the observed accumulation of the excised H. volcanii pre-tRNA(Trp) intron in vivo. A trans mechanism would also eliminate the obligatory refolding of the pre-tRNA that would be required to carry out two cis-methylation reactions before pre-tRNA splicing.
Collapse
MESH Headings
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Gene Expression Regulation, Archaeal
- Haloferax volcanii/genetics
- Haloferax volcanii/metabolism
- Introns
- Methylation
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Transfer, Trp/chemistry
- RNA, Transfer, Trp/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | | | | | | | | |
Collapse
|
68
|
Marck C, Grosjean H. Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. RNA (NEW YORK, N.Y.) 2003; 9:1516-31. [PMID: 14624007 PMCID: PMC1370505 DOI: 10.1261/rna.5132503] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 09/08/2003] [Indexed: 05/19/2023]
Abstract
Most introns of archaeal tRNA genes (tDNAs) are located in the anticodon loop, between nucleotides 37 and 38, the unique location of their eukaryotic counterparts. However, in several Archaea, mostly in Crenarchaeota, introns have been found at many other positions of the tDNAs. In the present work, we revisit and extend all previous findings concerning the identification, exact location, size, and possible fit to the proposed bulge-helix-bulge structural motif (BHB, now renamed hBHBh') of the sequences spanning intron-exon junctions in intron-containing tRNAs of 18 archaea. A total of 103 introns were found located at the usual position 37/38 and 33 introns at 14 other different positions, that is, in the anticodon stem and loop, in the D-and T-loops, in the V-arm, or in the amino acid arm. For introns located at 37/38 and elsewhere in the pre-tRNA, canonical hBHBh' motifs were not always found. Instead, a relaxed hBH or HBh' motif including the constant central 4-bp helix H flanked by one helix (h or h') on either side generating only one bulge could be disclosed. Also, for introns located elsewhere than at position 37/38, the hBHBh' (or HBh') structure competes with the three-dimensional structure of the mature tRNA, attesting to important structural rearrangements during the complex multistep maturation-splicing processes. A homotetramer-type of splicing endonuclease (like in all Crenarchaeota) instead of a homodimeric-type of enzyme (as in most Euryarchaeota) appears to best fit the requirement for splicing introns at relaxed hBH or HBh' motifs, and may represent the most primitive form of this enzyme.
Collapse
Affiliation(s)
- Christian Marck
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
69
|
Gmyl AP, Korshenko SA, Belousov EV, Khitrina EV, Agol VI. Nonreplicative homologous RNA recombination: promiscuous joining of RNA pieces? RNA (NEW YORK, N.Y.) 2003; 9:1221-1231. [PMID: 13130136 PMCID: PMC1370486 DOI: 10.1261/rna.5111803] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 07/15/2003] [Indexed: 05/24/2023]
Abstract
Biologically important joining of RNA pieces in cells, as exemplified by splicing and some classes of RNA editing, is posttranscriptional, whereas in RNA viruses it is generally believed to occur during viral RNA polymerase-dependent RNA synthesis. Here, we demonstrate the assembly of precise genome of an RNA virus (poliovirus) from its cotransfected fragments, which does not require specific RNA sequences, takes place before generation of the viral RNA polymerase, and occurs in different ways: Apparently unrestricted ligation of the terminal nucleotides, joining of any one of the two entire fragments with the relevant internal nucleotide of its partner, or internal crossovers within the overlapping sequence. Incorporation of the entire 5' or 3' partners into the recombinant RNA is activated by the presence of terminal 3'-phosphate and 5'-OH, respectively. Such postreplicative reactions, fundamentally differing from the known site-specific and structurally demanding cellular RNA rearrangements, might contribute to the origin and evolution of RNA viruses and could generate new RNA species during all stages of biological evolution.
Collapse
Affiliation(s)
- Anatoly P Gmyl
- M.P. Chumakov Institute of Poliomyelitis & Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia
| | | | | | | | | |
Collapse
|