51
|
Melanson BD, Cabrita MA, Bose R, Hamill JD, Pan E, Brochu C, Marcellus KA, Zhao TT, Holcik M, McKay BC. A novel cis-acting element from the 3'UTR of DNA damage-binding protein 2 mRNA links transcriptional and post-transcriptional regulation of gene expression. Nucleic Acids Res 2013; 41:5692-703. [PMID: 23605047 PMCID: PMC3675493 DOI: 10.1093/nar/gkt279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA damage-binding protein 2 (DDB2) is an adapter protein that can direct a modular Cul4-DDB1-RING E3 Ligase complex to sites of ultraviolet light-induced DNA damage to ubiquitinate substrates during nucleotide excision repair. The DDB2 transcript is ultraviolet-inducible; therefore, its regulation is likely important for its function. Curiously, the DDB2 mRNA is reportedly short-lived, but the transcript does not contain any previously characterized cis-acting determinants of mRNA stability in its 3' untranslated region (3'UTR). Here, we used a tetracycline regulated d2EGFP reporter construct containing specific 3'UTR sequences from DDB2 to identify novel cis-acting elements that regulate mRNA stability. Synthetic 3'UTRs corresponding to sequences as short as 25 nucleotides from the central region of the 3'UTR of DDB2 were sufficient to accelerate decay of the heterologous reporter mRNA. Conversely, these same 3'UTRs led to more rapid induction of the reporter mRNA, export of the message to the cytoplasm and the subsequent accumulation of the encoded reporter protein, indicating that this newly identified cis-acting element affects transcriptional and post-transciptional processes. These results provide clear evidence that nuclear and cytoplasmic processing of the DDB2 mRNA is inextricably linked.
Collapse
Affiliation(s)
- Brian D Melanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada, K1H 8L6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Dressaire C, Picard F, Redon E, Loubière P, Queinnec I, Girbal L, Cocaign-Bousquet M. Role of mRNA stability during bacterial adaptation. PLoS One 2013; 8:e59059. [PMID: 23516597 PMCID: PMC3596320 DOI: 10.1371/journal.pone.0059059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Bacterial adaptation involves extensive cellular reorganization. In particular, growth rate adjustments are associated with substantial modifications of gene expression and mRNA abundance. In this work we aimed to assess the role of mRNA degradation during such variations. A genome-wide transcriptomic-based method was used to determine mRNA half-lives. The model bacterium Lactococcus lactis was used and different growth rates were studied in continuous cultures under isoleucine-limitation and in batch cultures during the adaptation to the isoleucine starvation. During continuous isoleucine-limited growth, the mRNAs of different genes had different half-lives. The stability of most of the transcripts was not constant, and increased as the growth rate decreased. This half-life diversity was analyzed to investigate determinants of mRNA stability. The concentration, length, codon adaptation index and secondary structures of mRNAs were found to contribute to the determination of mRNA stability in these conditions. However, the growth rate was, by far, the most influential determinant. The respective influences of mRNA degradation and transcription on the regulation of intra-cellular transcript concentration were estimated. The role of degradation on mRNA homeostasis was clearly evidenced: for more than 90% of the mRNAs studied during continuous isoleucine-limited growth of L. lactis, degradation was antagonistic to transcription. Although both transcription and degradation had, opposite effects, the mRNA changes in response to growth rate were driven by transcription. Interestingly, degradation control increased during the dynamic adaptation of bacteria as the growth rate reduced due to progressive isoleucine starvation in batch cultures. This work shows that mRNA decay differs between gene transcripts and according to the growth rate. It demonstrates that mRNA degradation is an important regulatory process involved in bacterial adaptation. However, its impact on the regulation of mRNA levels is smaller than that of transcription in the conditions studied.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; The Institut National des Sciences Appliquées, UPS, INP, LISBP, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
53
|
Müller-McNicoll M, Neugebauer KM. How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet 2013; 14:275-87. [PMID: 23478349 DOI: 10.1038/nrg3434] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
mRNA is packaged into ribonucleoprotein particles called mRNPs. A multitude of RNA-binding proteins as well as a host of associated proteins participate in the fate of mRNA from transcription and processing in the nucleus to translation and decay in the cytoplasm. Methodological innovations in cell biology and genome-wide high-throughput approaches have revealed an unexpected diversity of mRNA-associated proteins and unforeseen interconnections between mRNA-processing steps. Recent insights into mRNP formation in vivo have also highlighted the importance of mRNP packaging, which can sort RNAs on the basis of their length and determine mRNA fate through alternative mRNP assembly, processing and export pathways.
Collapse
Affiliation(s)
- Michaela Müller-McNicoll
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
54
|
Measurements of the impact of 3' end sequences on gene expression reveal wide range and sequence dependent effects. PLoS Comput Biol 2013; 9:e1002934. [PMID: 23505350 PMCID: PMC3591272 DOI: 10.1371/journal.pcbi.1002934] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
A full understanding of gene regulation requires an understanding of the contributions that the various regulatory regions have on gene expression. Although it is well established that sequences downstream of the main promoter can affect expression, our understanding of the scale of this effect and how it is encoded in the DNA is limited. Here, to measure the effect of native S. cerevisiae 3′ end sequences on expression, we constructed a library of 85 fluorescent reporter strains that differ only in their 3′ end region. Notably, despite being driven by the same strong promoter, our library spans a continuous twelve-fold range of expression values. These measurements correlate with endogenous mRNA levels, suggesting that the 3′ end contributes to constitutive differences in mRNA levels. We used deep sequencing to map the 3′UTR ends of our strains and show that determination of polyadenylation sites is intrinsic to the local 3′ end sequence. Polyadenylation mapping was followed by sequence analysis, we found that increased A/T content upstream of the main polyadenylation site correlates with higher expression, both in the library and genome-wide, suggesting that native genes differ by the encoded efficiency of 3′ end processing. Finally, we use single cells fluorescence measurements, in different promoter activation levels, to show that 3′ end sequences modulate protein expression dynamics differently than promoters, by predominantly affecting the size of protein production bursts as opposed to the frequency at which these bursts occur. Altogether, our results lead to a more complete understanding of gene regulation by demonstrating that 3′ end regions have a unique and sequence dependent effect on gene expression. A basic question in gene expression is the relative contribution of different regulatory layers and genomic regions to the differences in protein levels. In this work we concentrated on the effect of 3′ end sequences. For this, we constructed a library of yeast strains that differ only by a native 3′ end region integrated downstream to a reported gene driven by a constant inducible promoter. Thus we could attribute all differences in reporter expression between the strains to the different 3′ end sequences. Interestingly, we found that despite being driven by the same strong, inducible promoter, our library spanned a wide and continuous range of expression levels of more than twelve-fold. As these measurements represent the sole effect of the 3′ end region, we quantify the contribution of these sequences to the variance in mRNA levels by comparing our measurements to endogenous mRNA levels. We follow by sequence analysis to find a simple sequence signature that correlates with expression. In addition, single cell analysis reveals distinct noise dynamics of 3′ end mediated differences in expression compared to different levels of promoter activation leading to a more complete understanding of gene expression which also incorporates the effect of these regions.
Collapse
|
55
|
Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 2013; 425:3750-75. [PMID: 23467123 DOI: 10.1016/j.jmb.2013.02.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/15/2023]
Abstract
mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.
Collapse
|
56
|
The fate of the messenger is pre-determined: a new model for regulation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:643-53. [PMID: 23337853 DOI: 10.1016/j.bbagrm.2013.01.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023]
Abstract
Recent years have seen a rise in publications demonstrating coupling between transcription and mRNA decay. This coupling most often accompanies cellular processes that involve transitions in gene expression patterns, for example during mitotic division and cellular differentiation and in response to cellular stress. Transcription can affect the mRNA fate by multiple mechanisms. The most novel finding is the process of co-transcriptional imprinting of mRNAs with proteins, which in turn regulate cytoplasmic mRNA stability. Transcription therefore is not only a catalyst of mRNA synthesis but also provides a platform that enables imprinting, which coordinates between transcription and mRNA decay. Here we present an overview of the literature, which provides the evidence of coupling between transcription and decay, review the mechanisms and regulators by which the two processes are coupled, discuss why such coupling is beneficial and present a new model for regulation of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
57
|
Reese JC. The control of elongation by the yeast Ccr4-not complex. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:127-33. [PMID: 22975735 PMCID: PMC3545033 DOI: 10.1016/j.bbagrm.2012.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Abstract
The Ccr4-Not complex is a highly conserved nine-subunit protein complex that has been implicated in virtually all aspects of gene control, including transcription, mRNA decay and quality control, RNA export, translational repression and protein ubiquitylation. Understanding its mechanisms of action has been difficult due to the size of the complex and the fact that it regulates mRNAs and proteins at many levels in both the cytoplasm and the nucleus. Recently, biochemical and genetic studies on the yeast Ccr4-Not complex have revealed insights into its role in promoting elongation by RNA polymerase II. This review will describe what is known about the Ccr4-Not complex in regulating transcription elongation and its possible collaboration with other factors traveling with RNAPII across genes. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Joseph C Reese
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
58
|
Collart MA, Panasenko OO, Nikolaev SI. The Not3/5 subunit of the Ccr4-Not complex: a central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cell Signal 2012; 25:743-51. [PMID: 23280189 DOI: 10.1016/j.cellsig.2012.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
The Ccr4-Not complex is a conserved multi-subunit complex in eukaryotes that carries 2 enzymatic activities: ubiquitination mediated by the Not4 RING E3 ligase and deadenylation mediated by the Ccr4 and Caf1 orthologs. This complex has been implicated in all aspects of the mRNA life cycle, from synthesis of mRNAs in the nucleus to their degradation in the cytoplasm. More recently the complex has also been implicated in many aspects of the life cycle of proteins, from quality control during synthesis of peptides, to assembly of protein complexes and protein degradation. Consistently, the Ccr4-Not complex is found both in the nucleus, where it is connected to transcribing ORFs, and in the cytoplasm, where it was revealed to be both associated with translating ribosomes and in RNA processing bodies. This functional and physical presence of the Ccr4-Not complex at all stages of gene expression raises the question of its fundamental role. This review will summarize recent evidence designing the Not3/5 module of the Ccr4-Not complex as a functional module involved in coordination of the regulation of gene expression between the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Martine A Collart
- Dpt of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Genève 4, Switzerland.
| | | | | |
Collapse
|
59
|
Dori-Bachash M, Shalem O, Manor YS, Pilpel Y, Tirosh I. Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biol 2012; 13:R114. [PMID: 23237624 PMCID: PMC4056365 DOI: 10.1186/gb-2012-13-12-r114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022] Open
Abstract
Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation.
Collapse
|
60
|
The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS Genet 2012; 8:e1003000. [PMID: 23071454 PMCID: PMC3469421 DOI: 10.1371/journal.pgen.1003000] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/14/2012] [Indexed: 12/26/2022] Open
Abstract
Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals. Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii) genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (iii) genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in 10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses. Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across individuals. We found 195 such loci, which we named RNA decay quantitative trait loci (“rdQTLs”). All the observed rdQTLs are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates. Recent studies of functional genetic variation in humans have identified numerous loci that are associated with variation in gene expression levels, called expression quantitative trait loci (eQTLs). The mechanisms by which these loci affect gene expression, however, are still largely unknown. Specifically, since most studies rely on measures of steady-state gene expression levels, they are unable to distinguish between the relative influences of either transcriptional- or decay-related processes. To address this gap, we examined the specific impact of mRNA decay processes on steady-state gene expression levels for over 16,000 genes in human lymphoblastoid cell lines. By characterizing decay rates in 70 individuals, we show that steady-state expression levels are significantly influenced by variation in decay rates for 10% of genes. Yet, for roughly half of these genes, we find that individuals with higher expression levels also have faster decay rates. This pattern points to a non-simple mechanistic interplay between transcriptional and decay processes, especially for genes involved in rapid cellular responses. Finally, we identify 195 genetic variants that are significantly associated with both gene expression variation and variation in mRNA decay rates. Using these data, we estimate that that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates.
Collapse
|
61
|
Leska A, Kiezun J, Kaminska B, Dusza L. Seasonal changes in the expression of the androgen receptor in the testes of the domestic goose (Anser anser f. domestica). Gen Comp Endocrinol 2012; 179:63-70. [PMID: 22885558 DOI: 10.1016/j.ygcen.2012.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
It is generally acknowledged that seasonal fluctuations in the morphology and function of bird testes are primarily regulated by seasonal changes in circulating concentrations of testosterone (T) which mediates its action via the androgen receptor (AR). However, it has not yet been elucidated whether gonadal sensitivity to androgens also varies across the bird reproductive cycle. In order to answer the above question, this study makes the first ever attempt to account for the gonadal expression of the AR gene and protein in relation to circulating and testicular T concentrations in the gonads of male birds during the reproductive cycle. The experimental model used in this study was the domestic goose, Anser anser f. domestica, a species with three distinct phases of the annual reproductive cycle: the breeding season in March, the non-breeding season in July and the sexual reactivation phase in November. The plasma and testicular T concentrations were highest in the breeding season, followed by a dramatic decline in the non-breeding season with a successive rise in the sexual reactivation phase. Interestingly, we observed the divergent effect of season on AR mRNA and protein expression. Whereas the AR gene expression showed a nearly inverse relationship with T levels, the seasonal variations in AR protein levels primarily reflected the differences in T concentrations. The results of our study also indicated that regardless of the examined phase of the season, an abundance of AR protein was found only in the nuclei of Leydig and Sertoli cells and myoid cells. The above supports the observation that somatic cells are the targets for androgen action in bird testes. Summarizing, this study revealed that seasonal variations in sensitivity to androgens in the gonads of male birds are reflected in variations in the availability of their cognate receptors. Furthermore, a different pattern of seasonal expression of the AR gene and protein suggests that the AR system is subject to complex regulation that includes both steroid-dependent and steroid-independent factors.
Collapse
Affiliation(s)
- A Leska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | | | | | | |
Collapse
|
62
|
Dahan N, Choder M. The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:169-73. [PMID: 22982191 DOI: 10.1016/j.bbagrm.2012.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/28/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
In eukaryotes, nuclear mRNA synthesis is physically separated from its cytoplasmic translation and degradation. Recent unexpected findings have revealed that, despite this separation, the transcriptional machinery can remotely control the cytoplasmic stages. Key to this coupling is the capacity of the transcriptional machinery to "imprint" the transcript with factors that escort it to the cytoplasm and regulate its localization, translation and decay. Some of these factors are known transcriptional regulators that also function in mRNA decay and are hence named "synthegradases". Imprinting can be carried out and/or regulated by RNA polymerase II or by promoter cis- and trans-acting elements. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Nili Dahan
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
63
|
Lee JE, Lee JY, Trembly J, Wilusz J, Tian B, Wilusz CJ. The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts. PLoS Genet 2012; 8:e1002901. [PMID: 22956911 PMCID: PMC3431312 DOI: 10.1371/journal.pgen.1002901] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022] Open
Abstract
PARN is one of several deadenylase enzymes present in mammalian cells, and as such the contribution it makes to the regulation of gene expression is unclear. To address this, we performed global mRNA expression and half-life analysis on mouse myoblasts depleted of PARN. PARN knockdown resulted in the stabilization of 40 mRNAs, including that encoding the mRNA decay factor ZFP36L2. Additional experiments demonstrated that PARN knockdown induced an increase in Zfp36l2 poly(A) tail length as well as increased translation. The elements responsible for PARN-dependent regulation lie within the 3′ UTR of the mRNA. Surprisingly, changes in mRNA stability showed an inverse correlation with mRNA abundance; stabilized transcripts showed either no change or a decrease in mRNA abundance. Moreover, we found that stabilized mRNAs had reduced accumulation of pre–mRNA, consistent with lower transcription rates. This presents compelling evidence for the coupling of mRNA decay and transcription to buffer mRNA abundances. Although PARN knockdown altered decay of relatively few mRNAs, there was a much larger effect on global gene expression. Many of the mRNAs whose abundance was reduced by PARN knockdown encode factors required for cell migration and adhesion. The biological relevance of this observation was demonstrated by the fact that PARN KD cells migrate faster in wound-healing assays. Collectively, these data indicate that PARN modulates decay of a defined set of mRNAs in mammalian cells and implicate this deadenylase in coordinating control of genes required for cell movement. Almost all cellular mRNAs terminate in a 3′ poly(A) tail, the removal of which can induce both translational silencing and mRNA decay. Mammalian cells encode many poly(A)-specific exoribonucleases, but their individual roles are poorly understood. Here, we undertook an analysis of the role of PARN deadenylase in mouse myoblasts using global measurements of mRNA decay rates. Our results reveal that a discrete set of mRNAs exhibit altered mRNA decay as a result of PARN depletion and that stabilization is associated with increased poly(A) tail length and translation efficiency. We determined that stabilization of mRNAs does not generally result in their increased abundance, supporting the idea that mRNA decay is coupled to transcription. Importantly, knockdown of PARN has wide ranging effects on gene expression that specifically impact the extracellular matrix and cell migration.
Collapse
Affiliation(s)
- Jerome E. Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ju Youn Lee
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jarrett Trembly
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (JW); (CJW)
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (JW); (CJW)
| |
Collapse
|
64
|
Tacheny A, Michel S, Dieu M, Payen L, Arnould T, Renard P. Unbiased proteomic analysis of proteins interacting with the HIV-1 5'LTR sequence: role of the transcription factor Meis. Nucleic Acids Res 2012; 40:e168. [PMID: 22904091 PMCID: PMC3505963 DOI: 10.1093/nar/gks733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To depict the largest picture of a core promoter interactome, we developed a one-step DNA-affinity capture method coupled with an improved mass spectrometry analysis process focused on the identification of low abundance proteins. As a proof of concept, this method was developed through the analysis of 230 bp contained in the 5′long terminal repeat (LTR) of the human immunodeficiency virus 1 (HIV-1). Beside many expected interactions, many new transcriptional regulators were identified, either transcription factors (TFs) or co-regulators, which interact directly or indirectly with the HIV-1 5′LTR. Among them, the homeodomain-containing TF myeloid ectopic viral integration site was confirmed to functionally interact with a specific binding site in the HIV-1 5′LTR and to act as a transcriptional repressor, probably through recruitment of the repressive Sin3A complex. This powerful and validated DNA-affinity approach could also be used as an efficient screening tool to identify a large set of proteins that physically interact, directly or indirectly, with a DNA sequence of interest. Combined with an in silico analysis of the DNA sequence of interest, this approach provides a powerful approach to select the interacting candidates to validate functionally by classical approaches.
Collapse
Affiliation(s)
- A Tacheny
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
The purpose of this review is to provide an analysis of the latest developments on the functions of the carbon catabolite-repression 4-Not (Ccr4-Not) complex in regulating eukaryotic gene expression. Ccr4-Not is a nine-subunit protein complex that is conserved in sequence and function throughout the eukaryotic kingdom. Although Ccr4-Not has been studied since the 1980s, our understanding of what it does is constantly evolving. Once thought to solely regulate transcription, it is now clear that it has much broader roles in gene regulation, such as in mRNA decay and quality control, RNA export, translational repression and protein ubiquitylation. The mechanism of actions for each of its functions is still being debated. Some of the difficulty in drawing a clear picture is that it has been implicated in so many processes that regulate mRNAs and proteins in both the cytoplasm and the nucleus. We will describe what is known about the Ccr4-Not complex in yeast and other eukaryotes in an effort to synthesize a unified model for how this complex coordinates multiple steps in gene regulation and provide insights into what questions will be most exciting to answer in the future.
Collapse
Affiliation(s)
- Jason E. Miller
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Center for RNA Molecular Biology, Penn State University, University Park, PA 16802
| | - Joseph C. Reese
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Center for RNA Molecular Biology, Penn State University, University Park, PA 16802
| |
Collapse
|
66
|
Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 2012; 13:505-16. [PMID: 22705669 DOI: 10.1038/nrg3229] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hypothesis that differences in gene regulation have an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at an unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels and have developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates and how they are complemented by studies in model organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
67
|
Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res 2012; 22:1350-9. [PMID: 22466169 PMCID: PMC3396375 DOI: 10.1101/gr.130161.111] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To monitor eukaryotic mRNA metabolism, we developed comparative dynamic transcriptome analysis (cDTA). cDTA provides absolute rates of mRNA synthesis and decay in Saccharomyces cerevisiae (Sc) cells with the use of Schizosaccharomyces pombe (Sp) as an internal standard. cDTA uses nonperturbing metabolic labeling that supersedes conventional methods for mRNA turnover analysis. cDTA reveals that Sc and Sp transcripts that encode orthologous proteins have similar synthesis rates, whereas decay rates are fivefold lower in Sp, resulting in similar mRNA concentrations despite the larger Sp cell volume. cDTA of Sc mutants reveals that a eukaryote can buffer mRNA levels. Impairing transcription with a point mutation in RNA polymerase (Pol) II causes decreased mRNA synthesis rates as expected, but also decreased decay rates. Impairing mRNA degradation by deleting deadenylase subunits of the Ccr4–Not complex causes decreased decay rates as expected, but also decreased synthesis rates. Extended kinetic modeling reveals mutual feedback between mRNA synthesis and degradation that may be achieved by a factor that inhibits synthesis and enhances degradation.
Collapse
|
68
|
Abstract
The level of an mRNA within a cell depends on both its rate of synthesis and rate of decay. Now, independent studies by Bregman et al. and Trcek et al. provide evidence that these two processes are integrated. They show that transcription factors and DNA promoters can directly influence the relative stability of transcripts that they produce.
Collapse
Affiliation(s)
- Vivian Bellofatto
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | |
Collapse
|
69
|
Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A, Choder M. Promoter elements regulate cytoplasmic mRNA decay. Cell 2012; 147:1473-83. [PMID: 22196725 DOI: 10.1016/j.cell.2011.12.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 09/14/2011] [Accepted: 12/06/2011] [Indexed: 01/11/2023]
Abstract
Promoters are DNA elements that enable transcription and its regulation by trans-acting factors. Here, we demonstrate that yeast promoters can also regulate mRNA decay after the mRNA leaves the nucleus. A conventional yeast promoter consists of a core element and an upstream activating sequence (UAS). We find that changing UASs of a reporter gene without altering the transcript sequence affects the transcript's decay kinetics. A short cis element, comprising two Rap1p-binding sites, and Rap1p itself, are necessary and sufficient to induce enhanced decay of the reporter mRNA. Furthermore, Rap1p stimulates both the synthesis and the decay of a specific population of endogenous mRNAs. We propose that Rap1p association with target promoter in the nucleus affects the composition of the exported mRNP, which in turn regulates mRNA decay in the cytoplasm. Thus, promoters can play key roles in determining mRNA levels and have the capacity to coordinate rates of mRNA synthesis and decay.
Collapse
Affiliation(s)
- Almog Bregman
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
70
|
Trcek T, Larson DR, Moldón A, Query CC, Singer RH. Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 2012; 147:1484-97. [PMID: 22196726 DOI: 10.1016/j.cell.2011.11.051] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 12/29/2022]
Abstract
Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short timescales. To address this deficiency, we measured cell cycle-regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2, exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis, when a precipitous decay eliminates the mRNA complement, preventing carryover into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein Dbf2p binds to SWI5 and CLB2 mRNAs cotranscriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a regulatory mechanism that could be employed by a variety of mRNAs and organisms.
Collapse
Affiliation(s)
- Tatjana Trcek
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
71
|
HIV develops indirect cross-resistance to combinatorial RNAi targeting two distinct and spatially distant sites. Mol Ther 2012; 20:840-8. [PMID: 22294151 DOI: 10.1038/mt.2012.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Resistance to existing HIV therapies is an increasing problem, and alternative treatments are urgently needed. RNA interference (RNAi), an innate mechanism for sequence-specific gene silencing, can be harnessed therapeutically to treat viral infections, yet viral resistance can still emerge. Here, we demonstrate that HIV can develop indirect resistance to individual and combinatorial RNAi-targeting protein-coding regions up to 5,500 nucleotides (nt) downstream of the viral promoter. We identify several variants harboring mutations in the HIV promoter, and not within the RNAi targets, that produce more fully elongated transcripts. Furthermore, these variants are resistant to the RNAi, potentially by stoichiometrically overwhelming this cellular mechanism. Alarmingly, virus resistant to one short hairpin RNA (shRNA) also exhibits cross-resistance to a different shRNA, which targets a distinct and spatially distant region to which the virus has not been previously exposed. To our knowledge, this is the first example of HIV "cross-resistance" to viral inhibitors targeting different loci. Finally, combining anti-HIV RNAi with a small molecule enhancer of RNAi can inhibit the replication of an indirectly resistant mutant. These results suggest that indirect resistance to RNAi is a general mechanism that should be considered when investigating viral resistance and designing combinatorial RNAi therapies.
Collapse
|
72
|
Abstract
Perennial questions of evolutionary biology can be applied to gene regulatory systems using the abundance of experimental data addressing gene regulation in a comparative context. What is the tempo (frequency, rate) and mode (way, mechanism) of transcriptional regulatory evolution? Here we synthesize the results of 230 experiments performed on insects and nematodes in which regulatory DNA from one species was used to drive gene expression in another species. General principles of regulatory evolution emerge. Gene regulatory evolution is widespread and accumulates with genetic divergence in both insects and nematodes. Divergence in cis is more common than divergence in trans. Coevolution between cis and trans shows a particular increase over greater evolutionary timespans, especially in sex-specific gene regulation. Despite these generalities, the evolution of gene regulation is gene- and taxon-specific. The congruence of these conclusions with evidence from other types of experiments suggests that general principles are discoverable, and a unified view of the tempo and mode of regulatory evolution may be achievable.
Collapse
|
73
|
Pérez-Ortín JE, de Miguel-Jiménez L, Chávez S. Genome-wide studies of mRNA synthesis and degradation in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:604-15. [PMID: 22182827 DOI: 10.1016/j.bbagrm.2011.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
In recent years, the use of genome-wide technologies has revolutionized the study of eukaryotic transcription producing results for thousands of genes at every step of mRNA life. The statistical analyses of the results for a single condition, different conditions, different transcription stages, or even between different techniques, is outlining a totally new landscape of the eukaryotic transcription process. Although most studies have been conducted in the yeast Saccharomyces cerevisiae as a model cell, others have also focused on higher eukaryotes, which can also be comparatively analyzed. The picture which emerges is that transcription is a more variable process than initially suspected, with large differences between genes at each stage of the process, from initiation to mRNA degradation, but with striking similarities for functionally related genes, indicating that all steps are coordinately regulated. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | | | | |
Collapse
|
74
|
Tirosh I. Transcriptional priming of cytoplasmic post-transcriptional regulation. Transcription 2011; 2:258-62. [PMID: 22223046 DOI: 10.4161/trns.2.6.18608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent evidence suggests that post-transcriptional events that are executed in the cytoplasm can be predetermined during transcription. Here, I speculate that this is a widespread mode of regulation and discuss the potential mechanisms, advantages and implications of such a regulatory strategy.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
75
|
Tirosh I, Barkai N. Inferring regulatory mechanisms from patterns of evolutionary divergence. Mol Syst Biol 2011; 7:530. [PMID: 21915117 PMCID: PMC3202799 DOI: 10.1038/msb.2011.60] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022] Open
Abstract
The number of sequenced species is increasing at a staggering rate, calling for new approaches for incorporating evolutionary information in the study of biological mechanisms. Evolutionary conservation is widely used for assigning a function to new proteins and for predicting functional coding or non-coding sequences. Here, we argue for a complementary approach that focuses on the divergence of regulatory programs. Regulatory mechanisms can be learned from patterns of evolutionary divergence in regulatory properties such as gene expression, transcription factor binding or nucleosome positioning. We review examples of this concept using yeast as a model system, and highlight a hybrid-based approach that is highly instrumental in this analysis.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
76
|
Shalem O, Groisman B, Choder M, Dahan O, Pilpel Y. Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II. PLoS Genet 2011; 7:e1002273. [PMID: 21931566 PMCID: PMC3169527 DOI: 10.1371/journal.pgen.1002273] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/19/2011] [Indexed: 01/13/2023] Open
Abstract
Transcriptome dynamics is governed by two opposing processes, mRNA production and degradation. Recent studies found that changes in these processes are frequently coordinated and that the relationship between them shapes transcriptome kinetics. Specifically, when transcription changes are counter-acted with changes in mRNA stability, transient fast-relaxing transcriptome kinetics is observed. A possible molecular mechanism underlying such coordinated regulation might lay in two RNA polymerase (Pol II) subunits, Rpb4 and Rpb7, which are recruited to mRNAs during transcription and later affect their degradation in the cytoplasm. Here we used a yeast strain carrying a mutant Pol II which poorly recruits these subunits. We show that this mutant strain is impaired in its ability to modulate mRNA stability in response to stress. The normal negative coordinated regulation is lost in the mutant, resulting in abnormal transcriptome profiles both with respect to magnitude and kinetics of responses. These results reveal an important role for Pol II, in regulation of both mRNA synthesis and degradation, and also in coordinating between them. We propose a simple model for production-degradation coupling that accounts for our observations. The model shows how a simple manipulation of the rates of co-transcriptional mRNA imprinting by Pol II may govern genome-wide transcriptome kinetics in response to environmental changes. Organisms alter genes expression programs in response to changes in their environment. Such programs can specify fast induction, slow relaxation, oscillations, etc. Conceivably these kinetic outputs may depend on proper orchestration of the various phases of gene expression, including transcription, translation, and mRNA decay. In particular, in the transcriptomes of a broad range of species, fast mRNA “spikes” appear to result from surprisingly “pressing the gas and the brakes” together, i.e. by activating both transcription and degradation of same transcripts. A recently discovered molecular mechanism, in which subunits of RNA polymerase II (Pol II) associate to mRNAs during transcription and control their decay, could explain how such transcription-decay counter-action works. Yet, how such potential coupling responds to physiological conditions and how it shapes transcriptome kinetics remain unknown. Here we used a minimalist mutation in yeast RNA Pol II that is defective in the above mechanism in order to show that Pol II governs the ability of the cell to modulate mRNA decay in stress and, most importantly, that Pol II is essential for appropriate coupling between mRNA production and degradation. We further show that this transcription-decay coupling is responsible for shaping the transcriptome kinetic profiles under changing environmental conditions.
Collapse
Affiliation(s)
- Ophir Shalem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Bella Groisman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Choder
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|