51
|
Ali A, Thorgaard GH, Salem M. PacBio Iso-Seq Improves the Rainbow Trout Genome Annotation and Identifies Alternative Splicing Associated With Economically Important Phenotypes. Front Genet 2021; 12:683408. [PMID: 34335690 PMCID: PMC8321248 DOI: 10.3389/fgene.2021.683408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Rainbow trout is an important model organism that has received concerted international efforts to study the transcriptome. For this purpose, short-read sequencing has been primarily used over the past decade. However, these sequences are too short of resolving the transcriptome complexity. This study reported a first full-length transcriptome assembly of the rainbow trout using single-molecule long-read isoform sequencing (Iso-Seq). Extensive computational approaches were used to refine and validate the reconstructed transcriptome. The study identified 10,640 high-confidence transcripts not previously annotated, in addition to 1,479 isoforms not mapped to the current Swanson reference genome. Most of the identified lncRNAs were non-coding variants of coding transcripts. The majority of genes had multiple transcript isoforms (average ∼3 isoforms/locus). Intron retention (IR) and exon skipping (ES) accounted for 56% of alternative splicing (AS) events. Iso-Seq improved the reference genome annotation, which allowed identification of characteristic AS associated with fish growth, muscle accretion, disease resistance, stress response, and fish migration. For instance, an ES in GVIN1 gene existed in fish susceptible to bacterial cold-water disease (BCWD). Besides, under five stress conditions, there was a commonly regulated exon in prolyl 4-hydroxylase subunit alpha-2 (P4HA2) gene. The reconstructed gene models and their posttranscriptional processing in rainbow trout provide invaluable resources that could be further used for future genetics and genomics studies. Additionally, the study identified characteristic transcription events associated with economically important phenotypes, which could be applied in selective breeding.
Collapse
Affiliation(s)
- Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
52
|
da Silva EMG, Santos LGC, de Oliveira FS, Freitas FCDP, Parreira VDSC, dos Santos HG, Tavares R, Carvalho PC, Neves-Ferreira AGDC, Haibara AS, de Araujo-Souza PS, Dias AAM, Passetti F. Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer's Disease Mouse Model. Cells 2021; 10:1583. [PMID: 34201730 PMCID: PMC8303486 DOI: 10.3390/cells10071583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing (AS) may increase the number of proteoforms produced by a gene. Alzheimer's disease (AD) is a neurodegenerative disease with well-characterized AS proteoforms. In this study, we used a proteogenomics strategy to build a customized protein sequence database and identify orthologous AS proteoforms between humans and mice on publicly available shotgun proteomics (MS/MS) data of the corpus callosum (CC) and olfactory bulb (OB). Identical proteotypic peptides of six orthologous AS proteoforms were found in both species: PKM1 (gene PKM/Pkm), STXBP1a (gene STXBP1/Stxbp1), Isoform 3 (gene HNRNPK/Hnrnpk), LCRMP-1 (gene CRMP1/Crmp1), SP3 (gene CADM1/Cadm1), and PKCβII (gene PRKCB/Prkcb). These AS variants were also detected at the transcript level by publicly available RNA-Seq data and experimentally validated by RT-qPCR. Additionally, PKM1 and STXBP1a were detected at higher abundances in a publicly available MS/MS dataset of the AD mouse model APP/PS1 than its wild type. These data corroborate other reports, which suggest that PKM1 and STXBP1a AS proteoforms might play a role in amyloid-like aggregate formation. To the best of our knowledge, this report is the first to describe PKM1 and STXBP1a overexpression in the OB of an AD mouse model. We hope that our strategy may be of use in future human neurodegenerative studies using mouse models.
Collapse
Affiliation(s)
- Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
- Laboratory of Toxinology, Oswaldo Cruz Institute (FIOCRUZ), Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil;
| | - Letícia Graziela Costa Santos
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Flávia Santiago de Oliveira
- Laboratório de Inflamação e Câncer, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil; (F.S.d.O.); (A.A.M.D.)
| | - Flávia Cristina de Paula Freitas
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Vinícius da Silva Coutinho Parreira
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Hellen Geremias dos Santos
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil;
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | | | - Andrea Siqueira Haibara
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil;
| | - Patrícia Savio de Araujo-Souza
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, PR 81530-980, Brazil;
| | - Adriana Abalen Martins Dias
- Laboratório de Inflamação e Câncer, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil; (F.S.d.O.); (A.A.M.D.)
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| |
Collapse
|
53
|
Pozo F, Martinez-Gomez L, Walsh TA, Rodriguez JM, Di Domenico T, Abascal F, Vazquez J, Tress ML. Assessing the functional relevance of splice isoforms. NAR Genom Bioinform 2021; 3:lqab044. [PMID: 34046593 PMCID: PMC8140736 DOI: 10.1093/nargab/lqab044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of messenger RNA can generate an array of mature transcripts, but it is not clear how many go on to produce functionally relevant protein isoforms. There is only limited evidence for alternative proteins in proteomics analyses and data from population genetic variation studies indicate that most alternative exons are evolving neutrally. Determining which transcripts produce biologically important isoforms is key to understanding isoform function and to interpreting the real impact of somatic mutations and germline variations. Here we have developed a method, TRIFID, to classify the functional importance of splice isoforms. TRIFID was trained on isoforms detected in large-scale proteomics analyses and distinguishes these biologically important splice isoforms with high confidence. Isoforms predicted as functionally important by the algorithm had measurable cross species conservation and significantly fewer broken functional domains. Additionally, exons that code for these functionally important protein isoforms are under purifying selection, while exons from low scoring transcripts largely appear to be evolving neutrally. TRIFID has been developed for the human genome, but it could in principle be applied to other well-annotated species. We believe that this method will generate valuable insights into the cellular importance of alternative splicing.
Collapse
Affiliation(s)
- Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - José Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tomas Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Jesús Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|