51
|
Meierhofer D, Halbach M, Şen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations. Mol Cell Proteomics 2016; 15:1728-39. [PMID: 26850065 DOI: 10.1074/mcp.m115.056770] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy.
Collapse
Affiliation(s)
- David Meierhofer
- From the ‡Max Planck Institute for Molecular Genetics, Ihnestraβe 63-73, 14195 Berlin, Germany;
| | - Melanie Halbach
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nesli Ece Şen
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
52
|
Yang H, Liu S, He WT, Zhao J, Jiang LL, Hu HY. Aggregation of Polyglutamine-expanded Ataxin 7 Protein Specifically Sequesters Ubiquitin-specific Protease 22 and Deteriorates Its Deubiquitinating Function in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex. J Biol Chem 2015. [PMID: 26195632 DOI: 10.1074/jbc.m114.631663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ataxin 7 (Atx7) is a component of the deubiquitination module (DUBm) in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex for transcriptional regulation, and expansion of its polyglutamine (polyQ) tract leads to spinocerebellar ataxia type 7. However, how polyQ expansion of Atx7 affects DUBm function remains elusive. We investigated the effects of polyQ-expanded Atx7 on ubiquitin-specific protease (USP22), an interacting partner of Atx7 functioning in deubiquitination of histone H2B. The results showed that the inclusions or aggregates formed by polyQ-expanded Atx7 specifically sequester USP22 through their interactions mediated by the N-terminal zinc finger domain of Atx7. The mutation of the zinc finger domain in Atx7 that disrupts its interaction with USP22 dramatically abolishes sequestration of USP22. Moreover, polyQ expansion of Atx7 decreases the deubiquitinating activity of USP22 and, consequently, increases the level of monoubiquitinated H2B. Therefore, we propose that polyQ-expanded Atx7 forms insoluble aggregates that sequester USP22 into a catalytically inactive state, and then the impaired DUBm loses the function to deubiquitinate monoubiquitinated histone H2B or H2A. This may result in dysfunction of the SAGA complex and transcriptional dysregulation in spinocerebellar ataxia type 7 disease.
Collapse
Affiliation(s)
- Hui Yang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Shuai Liu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Wen-Tian He
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Jian Zhao
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Lei-Lei Jiang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | - Hong-Yu Hu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
53
|
TDP-35 sequesters TDP-43 into cytoplasmic inclusions through binding with RNA. FEBS Lett 2015; 589:1920-8. [PMID: 26099433 DOI: 10.1016/j.febslet.2015.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022]
Abstract
TDP-43 (TAR DNA binding protein of 43 kDa) and its C-terminal fragments are thought to be linked to the pathologies of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Here, we demonstrate that the aggregates or inclusions formed by its 35-kDa fragment (namely TDP-35) sequester full-length TDP-43 into cytoplasmic inclusions; and this sequestration is mediated by binding with RNA that is enriched in the cytoplasmic inclusions. RNA recognition motif 1 (RRM1) of TDP-43/TDP-35 plays a dominant role in nucleic-acid binding; mutation in this moiety abrogates formation of the TDP-35 inclusions and its RNA-assisted association with TDP-43. Thus, TDP-35 is able to sequester TDP-43 from nuclear localization into cytoplasmic inclusions, and RNA binding plays an essential role in this process.
Collapse
|
54
|
Dansithong W, Paul S, Figueroa KP, Rinehart MD, Wiest S, Pflieger LT, Scoles DR, Pulst SM. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet 2015; 11:e1005182. [PMID: 25902068 PMCID: PMC4406435 DOI: 10.1371/journal.pgen.1005182] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/28/2015] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder with progressive degeneration of cerebellar Purkinje cells (PCs) and other neurons caused by expansion of a glutamine (Q) tract in the ATXN2 protein. We generated BAC transgenic lines in which the full-length human ATXN2 gene was transcribed using its endogenous regulatory machinery. Mice with the ATXN2 BAC transgene with an expanded CAG repeat (BAC-Q72) developed a progressive cellular and motor phenotype, whereas BAC mice expressing wild-type human ATXN2 (BAC-Q22) were indistinguishable from control mice. Expression analysis of laser-capture microdissected (LCM) fractions and regional expression confirmed that the BAC transgene was expressed in PCs and in other neuronal groups such as granule cells (GCs) and neurons in deep cerebellar nuclei as well as in spinal cord. Transcriptome analysis by deep RNA-sequencing revealed that BAC-Q72 mice had progressive changes in steady-state levels of specific mRNAs including Rgs8, one of the earliest down-regulated transcripts in the Pcp2-ATXN2[Q127] mouse line. Consistent with LCM analysis, transcriptome changes analyzed by deep RNA-sequencing were not restricted to PCs, but were also seen in transcripts enriched in GCs such as Neurod1. BAC-Q72, but not BAC-Q22 mice had reduced Rgs8 mRNA levels and even more severely reduced steady-state protein levels. Using RNA immunoprecipitation we showed that ATXN2 interacted selectively with RGS8 mRNA. This interaction was impaired when ATXN2 harbored an expanded polyglutamine. Mutant ATXN2 also reduced RGS8 expression in an in vitro coupled translation assay when compared with equal expression of wild-type ATXN2-Q22. Reduced abundance of Rgs8 in Pcp2-ATXN2[Q127] and BAC-Q72 mice supports our observations of a hyper-excitable mGluR1-ITPR1 signaling axis in SCA2, as RGS proteins are linked to attenuating mGluR1 signaling.
Collapse
Affiliation(s)
- Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Marc D. Rinehart
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Shaina Wiest
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Lance T. Pflieger
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
55
|
Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 PolyQ expansions, but only FBXW8 expression is dysregulated. PLoS One 2015; 10:e0121089. [PMID: 25790475 PMCID: PMC4366354 DOI: 10.1371/journal.pone.0121089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
The involvement of the ubiquitin-proteasome system (UPS) in the course of various age-associated neurodegenerative diseases is well established. The single RING finger type E3 ubiquitin-protein ligase PARK2 is mutated in a Parkinson’s disease (PD) variant and was found to interact with ATXN2, a protein where polyglutamine expansions cause Spinocerebellar ataxia type 2 (SCA2) or increase the risk for Levodopa-responsive PD and for the motor neuron disease Amyotrophic lateral sclerosis (ALS). We previously reported evidence for a transcriptional induction of the multi-subunit RING finger Skp1/Cul/F-box (SCF) type E3 ubiquitin-protein ligase complex component FBXW8 in global microarray profiling of ATXN2-expansion mouse cerebellum and demonstrated its role for ATXN2 degradation in vitro. Now, we documented co-localization in vitro and co-immunoprecipitations both in vitro and in vivo, which indicate associations of FBXW8 with ATXN2 and PARK2. Both FBXW8 and PARK2 proteins are driven into insolubility by expanded ATXN2. Whereas the FBXW8 transcript upregulation by ATXN2- expansion was confirmed also in qPCR of skin fibroblasts and blood samples of SCA2 patients, a FBXW8 expression dysregulation was not observed in ATXN2-deficient mice, nor was a PARK2 transcript dysregulation observed in any samples. Jointly, all available data suggest that the degradation of wildtype and mutant ATXN2 is dependent on FBXW8, and that ATXN2 accumulation selectively modulates FBXW8 levels, while PARK2 might act indirectly through FBXW8. The effects of ATXN2-expansions on FBXW8 expression in peripheral tissues like blood may become useful for clinical diagnostics.
Collapse
|
56
|
Szafranski K, Abraham KJ, Mekhail K. Non-coding RNA in neural function, disease, and aging. Front Genet 2015; 6:87. [PMID: 25806046 PMCID: PMC4353379 DOI: 10.3389/fgene.2015.00087] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/18/2015] [Indexed: 12/03/2022] Open
Abstract
Declining brain and neurobiological function is arguably one of the most common features of human aging. The study of conserved aging processes as well as the characterization of various neurodegenerative diseases using different genetic models such as yeast, fly, mouse, and human systems is uncovering links to non-coding RNAs. These links implicate a variety of RNA-regulatory processes, including microRNA function, paraspeckle formation, RNA–DNA hybrid regulation, nucleolar RNAs and toxic RNA clearance, amongst others. Here we highlight these connections and reveal over-arching themes or questions related to recently appreciated roles of non-coding RNA in neural function and dysfunction across lifespan.
Collapse
Affiliation(s)
- Kirk Szafranski
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Karan J Abraham
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada ; Canada Research Chairs Program, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
57
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
58
|
Figiel M, Krzyzosiak WJ, Switonski PM, Szlachcic WJ. Mouse Models of SCA3 and Other Polyglutamine Repeat Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
59
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
60
|
Ramani B, Harris GM, Huang R, Seki T, Murphy GG, Costa MDC, Fischer S, Saunders TL, Xia G, McEachin RC, Paulson HL. A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum Mol Genet 2014; 24:1211-24. [PMID: 25320121 DOI: 10.1093/hmg/ddu532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine diseases, including spinocerebellar ataxia type 3 (SCA3), are caused by CAG repeat expansions that encode abnormally long glutamine repeats in the respective disease proteins. While the mechanisms underlying neurodegeneration remain uncertain, evidence supports a proteotoxic role for the mutant protein dictated in part by the specific genetic and protein context. To further define pathogenic mechanisms in SCA3, we generated a mouse model in which a CAG expansion of 82 repeats was inserted into the murine locus by homologous recombination. SCA3 knockin mice exhibit region-specific aggregate pathology marked by intranuclear accumulation of the mutant Atxn3 protein, abundant nuclear inclusions and, in select brain regions, extranuclear aggregates localized to neuritic processes. Knockin mice also display altered splicing of the disease gene, promoting expression of an alternative isoform in which the intron immediately downstream of the CAG repeat is retained. In an independent mouse model expressing the full human ATXN3 disease gene, expression of this alternatively spliced transcript is also enhanced. These results, together with recent findings in other polyglutamine diseases, suggest that CAG repeat expansions can promote aberrant splicing to produce potentially more aggregate-prone isoforms of the disease proteins. This report of a SCA3 knockin mouse expands the repertoire of existing models of SCA3, and underscores the potential contribution of alternative splicing to disease pathogenesis in SCA3 and other polyglutamine disorders.
Collapse
Affiliation(s)
- Biswarathan Ramani
- Department of Neurology, Medical Scientist Training Program and Neuroscience Graduate Program
| | - Ginny M Harris
- Medical Scientist Training and Cellular and Molecular Biology Graduate Programs, University of Iowa College of Medicine, IA, USA
| | | | | | | | | | | | | | - Guangbin Xia
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Richard C McEachin
- Department of Computational Medicine & Bioinformatics, University of Michigan, MI, USA
| | | |
Collapse
|
61
|
Gispert S, Brehm N, Weil J, Seidel K, Rüb U, Kern B, Walter M, Roeper J, Auburger G. Potentiation of neurotoxicity in double-mutant mice with Pink1 ablation and A53T-SNCA overexpression. Hum Mol Genet 2014; 24:1061-76. [PMID: 25296918 PMCID: PMC4986551 DOI: 10.1093/hmg/ddu520] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The common age-related neurodegeneration of Parkinson's disease can result from dominant causes like increased dosage of vesicle-associated alpha-synuclein (SNCA) or recessive causes like deficiency of mitophagy factor PINK1. Interactions between these triggers and their convergence onto shared pathways are crucial, but currently conflicting evidence exists. Here, we crossed previously characterized mice with A53T-SNCA overexpression and with Pink1 deletion to generate double mutants (DMs). We studied their lifespan and behavior, histological and molecular anomalies at late and early ages. DM animals showed potentiated phenotypes in comparison with both single mutants (SMs), with reduced survival and strongly reduced spontaneous movements from the age of 3 months onwards. In contrast to SMs, a quarter of DM animals manifested progressive paralysis at ages >1 year and exhibited protein aggregates immunopositive for pSer129-SNCA, p62 and ubiquitin in spinal cord and basal brain. Brain proteome quantifications of ubiquitination sites documented altered degradation of SNCA and the DNA-damage marker H2AX at the age of 18 months. Global brain transcriptome profiles and qPCR validation experiments identified many consistent transcriptional dysregulations already at the age of 6 weeks, which were absent from SMs. The observed downregulations for Dapk1, Dcaf17, Rab42 and the novel SNCA-marker Lect1 as well as the upregulations for Dctn5, Mrpl9, Tmem181a, Xaf1 and H2afx reflect changes in ubiquitination, mitochondrial/synaptic/microtubular/cell adhesion dynamics and DNA damage. Thus, our study confirmed that SNCA-triggered neurotoxicity is exacerbated by the absence of PINK1 and identified a novel molecular signature that is detectable early in the course of this double pathology.
Collapse
Affiliation(s)
- Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nadine Brehm
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Jonas Weil
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University Medical School, 60590 Frankfurt/Main, Germany
| | - Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University Medical School, 60590 Frankfurt/Main, Germany
| | - Beatrice Kern
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany and
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076 Tübingen, Germany
| | - Jochen Roeper
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany and
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany,
| |
Collapse
|
62
|
Auburger G, Gispert S, Lahut S, Ömür &O, Damrath E, Heck M, Başak N. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? World J Diabetes 2014; 5:316-327. [PMID: 24936253 PMCID: PMC4058736 DOI: 10.4239/wjd.v5.i3.316] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
Genetic linkage analyses, genome-wide association studies of single nucleotide polymorphisms, copy number variation surveys, and mutation screenings found the human chromosomal 12q24 locus, with the genes SH2B3 and ATXN2 in its core, to be associated with an exceptionally wide spectrum of disease susceptibilities. Hematopoietic traits of red and white blood cells (like erythrocytosis and myeloproliferative disease), autoimmune disorders (like type 1 diabetes, coeliac disease, juvenile idiopathic arthritis, rheumatoid arthritis, thrombotic antiphospholipid syndrome, lupus erythematosus, multiple sclerosis, hypothyroidism and vitiligo), also vascular pathology (like kidney glomerular filtration rate deficits, serum urate levels, plasma beta-2-microglobulin levels, retinal microcirculation problems, diastolic and systolic blood pressure and hypertension, cardiovascular infarction), furthermore obesity, neurodegenerative conditions (like the polyglutamine-expansion disorder spinocerebellar ataxia type 2, Parkinson’s disease, the motor-neuron disease amyotrophic lateral sclerosis, and progressive supranuclear palsy), and finally longevity were reported. Now it is important to clarify, in which ways the loss or gain of function of the locally encoded proteins SH2B3/LNK and ataxin-2, respectively, contribute to these polygenic health problems. SH2B3/LNK is known to repress the JAK2/ABL1 dependent proliferation of white blood cells. Its null mutations in human and mouse are triggers of autoimmune traits and leukemia (acute lymphoblastic leukemia or chronic myeloid leukemia-like), while missense mutations were found in erythrocytosis-1 patients. Ataxin-2 is known to act on RNA-processing and trophic receptor internalization. While its polyglutamine-expansion mediated gain-of-function causes neuronal atrophy in human and mouse, its deletion leads to obesity and insulin resistance in mice. Thus, it is conceivable that the polygenic pathogenesis of type 1 diabetes is enhanced by an SH2B3-dysregulation-mediated predisposition to autoimmune diseases that conspires with an ATXN2-deficiency-mediated predisposition to lipid and glucose metabolism pathology.
Collapse
|
63
|
Smeets CJLM, Verbeek DS. Cerebellar ataxia and functional genomics: Identifying the routes to cerebellar neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2030-2038. [PMID: 24726947 DOI: 10.1016/j.bbadis.2014.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
Cerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include among others, the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as Friedreich's ataxia, and X-linked cerebellar ataxias. Since all cerebellar ataxias display considerable overlap in their disease phenotypes, common pathological pathways must underlie the selective cerebellar neurodegeneration. Therefore, it is important to identify the molecular mechanisms and routes to neurodegeneration that cause cerebellar ataxia. In this review, we discuss the use of functional genomic approaches including whole-exome sequencing, genome-wide gene expression profiling, miRNA profiling, epigenetic profiling, and genetic modifier screens to reveal the underlying pathogenesis of various cerebellar ataxias. These approaches have resulted in the identification of many disease genes, modifier genes, and biomarkers correlating with specific stages of the disease. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- C J L M Smeets
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
64
|
Yamanaka T, Wong HK, Tosaki A, Bauer PO, Wada K, Kurosawa M, Shimogori T, Hattori N, Nukina N. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation. PLoS One 2014; 9:e93891. [PMID: 24705917 PMCID: PMC3976342 DOI: 10.1371/journal.pone.0093891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/10/2014] [Indexed: 01/04/2023] Open
Abstract
In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
- CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo, Japan
| | - Hon Kit Wong
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, Massachusetts, United States of America
| | - Asako Tosaki
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | - Peter O. Bauer
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | - Koji Wada
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
- CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Saitama, Japan
- CREST (Core Research for Evolutionary Science and Technology), JST, Tokyo, Japan
- * E-mail:
| |
Collapse
|
65
|
Na D, Rouf M, O'Kane CJ, Rubinsztein DC, Gsponer J. NeuroGeM, a knowledgebase of genetic modifiers in neurodegenerative diseases. BMC Med Genomics 2013; 6:52. [PMID: 24229347 PMCID: PMC3833180 DOI: 10.1186/1755-8794-6-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/08/2013] [Indexed: 11/26/2022] Open
Abstract
Background Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons in the human brain. Although the majority of NDs are sporadic, evidence is accumulating that they have a strong genetic component. Therefore, significant efforts have been made in recent years to not only identify disease-causing genes but also genes that modify the severity of NDs, so-called genetic modifiers. To date there exists no compendium that lists and cross-links genetic modifiers of different NDs. Description In order to address this need, we present NeuroGeM, the first comprehensive knowledgebase providing integrated information on genetic modifiers of nine different NDs in the model organisms D. melanogaster, C. elegans, and S. cerevisiae. NeuroGeM cross-links curated genetic modifier information from the different NDs and provides details on experimental conditions used for modifier identification, functional annotations, links to homologous proteins and color-coded protein-protein interaction networks to visualize modifier interactions. We demonstrate how this database can be used to generate new understanding through meta-analysis. For instance, we reveal that the Drosophila genes DnaJ-1, thread, Atx2, and mub are generic modifiers that affect multiple if not all NDs. Conclusion As the first compendium of genetic modifiers, NeuroGeM will assist experimental and computational scientists in their search for the pathophysiological mechanisms underlying NDs. http://chibi.ubc.ca/neurogem.
Collapse
Affiliation(s)
| | | | | | | | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Centre for High-throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|