51
|
Dennis AB, Patel V, Oliver KM, Vorburger C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 2017; 71:2599-2617. [DOI: 10.1111/evo.13333] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Alice B. Dennis
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
- EAWAG; Swiss Federal Institute of Aquatic Science and Technology; Dübendorf Switzerland
- Current address: Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| | - Vilas Patel
- Department of Entomology; University of Georgia; Athens Georgia 30602
| | - Kerry M. Oliver
- Department of Entomology; University of Georgia; Athens Georgia 30602
| | - Christoph Vorburger
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
- EAWAG; Swiss Federal Institute of Aquatic Science and Technology; Dübendorf Switzerland
| |
Collapse
|
52
|
Smith MS, Shirley A, Strand MR. Copidosoma floridanum (Hymenoptera: Encyrtidae) Rapidly Alters Production of Soldier Embryos in Response to Competition. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2017; 110:501-505. [PMID: 29563646 PMCID: PMC5846696 DOI: 10.1093/aesa/sax056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 06/08/2023]
Abstract
Most social insects are free living and produce castes that develop in response to extrinsic environmental cues. Caste-forming polyembryonic insects, in contrast, are all endoparasitoids that form social groups inside the bodies of host insects. The best studied polyembryonic wasp is Copidosoma floridanum (Ashmead), which produces ∼3,000 clonal offspring that develop into two castes named reproductive and soldier larvae. Caste determination in this species is mediated by whether or not embryos inherit primary germ cells (PGCs). Prior results showed that C. floridanum increases the proportion of female soldier larvae it produces per host in response to other parasitoids like Microplitis demolitor. Here we show that caste ratio shifts occur through increased formation of embryos lacking PGCs. Our results further indicated that increased soldier production was a specific response to multiparasitism elicited by the chorion of M. demolitor eggs.
Collapse
Affiliation(s)
- Margaret S Smith
- Department of Biology, University of North Georgia, Dahlonega, GA 30597 (; )
- Corresponding author, e-mail:
| | - Andrew Shirley
- Department of Biology, University of North Georgia, Dahlonega, GA 30597 (; )
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602
| |
Collapse
|
53
|
Endogenous viruses of parasitic wasps: variations on a common theme. Curr Opin Virol 2017; 25:41-48. [DOI: 10.1016/j.coviro.2017.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/29/2017] [Accepted: 07/02/2017] [Indexed: 11/18/2022]
|
54
|
Drezen JM, Gauthier J, Josse T, Bézier A, Herniou E, Huguet E. Foreign DNA acquisition by invertebrate genomes. J Invertebr Pathol 2017; 147:157-168. [DOI: 10.1016/j.jip.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
|
55
|
Abstract
Several lineages of endoparasitoid wasps, which develop inside the body of other insects, have domesticated viruses, used as delivery tools of essential virulence factors for the successful development of their progeny. Virus domestications are major evolutionary transitions in highly diverse parasitoid wasps. Much progress has recently been made to characterize the nature of these ancestrally captured endogenous viruses that have evolved within the wasp genomes. Virus domestication from different viral families occurred at least three times in parasitoid wasps. This evolutionary convergence led to different strategies. Polydnaviruses (PDVs) are viral gene transfer agents and virus-like particles of the wasp Venturia canescens deliver proteins. Here, we take the standpoint of parasitoid wasps to review current knowledge on virus domestications by different parasitoid lineages. Then, based on genomic data from parasitoid wasps, PDVs and exogenous viruses, we discuss the different evolutionary steps required to transform viruses into vehicles for the delivery of the virulence molecules that we observe today. Finally, we discuss how endoparasitoid wasps manipulate host physiology and ensure parasitism success, to highlight the possible advantages of viral domestication as compared with other virulence strategies.
Collapse
|
56
|
Wang RJ, Lin Z, Jiang H, Li J, Saha TT, Lu Z, Lu Z, Zou Z. Comparative analysis of peptidoglycan recognition proteins in endoparasitoid wasp Microplitis mediator. INSECT SCIENCE 2017; 24:2-16. [PMID: 26549814 DOI: 10.1111/1744-7917.12290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of innate immune receptors that specifically recognize peptidoglycans (PGNs) on the surface of a number of pathogens. Here, we have identified and characterized six PGRPs from endoparasitoid wasp, Microplitis mediator (MmePGRPs). To understand the roles of PGRPs in parasitoid wasps, we analyzed their evolutionary relationship and orthology, expression profiles during different developmental stages, and transcriptional expression following infection with Gram-positive and -negative bacteria and a fungus. MmePGRP-S1 was significantly induced in response to pathogenic infection. This prompted us to evaluate the effects of RNA interference mediated gene specific knockdown of MmePGRP-S1. The knockdown of MmePGRP-S1 (iMmePGRP-S1) dramatically affected wasps' survival following challenge by Micrococcus luteus, indicating the involvement of this particular PGRP in immune responses against Gram-positive bacteria. This action is likely to be mediated by the Toll pathway, but the mechanism remains to be determined. MmePGRP-S1 does not play a significant role in anti-fungal immunity as indicated by the survival rate of iMmePGRP-S1 wasps. This study provides a comprehensive characterization of PGRPs in the economically important hymenopteran species M. mediator.
Collapse
Affiliation(s)
- Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| | - Jiancheng Li
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, IPM Center of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Tusar T Saha
- Department of Entomology, University of California, Riverside, CA, USA
| | - Ziyun Lu
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, IPM Center of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| |
Collapse
|
57
|
Kim E, Kim Y. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus. PLoS One 2016; 11:e0161661. [PMID: 27598941 PMCID: PMC5012692 DOI: 10.1371/journal.pone.0161661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF.
Collapse
Affiliation(s)
- Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
- * E-mail:
| |
Collapse
|
58
|
Simmonds TJ, Carrillo D, Burke GR. Characterization of a venom gland-associated rhabdovirus in the parasitoid wasp Diachasmimorpha longicaudata. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:48-55. [PMID: 27374981 DOI: 10.1016/j.jinsphys.2016.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Parasitoid wasps reproduce by laying their eggs on or inside of a host insect, which triggers a defense response in the host insect that kills the developing wasp. To counteract the host's lethal response, some parasitoid wasps are associated with symbiotic viruses that alter host metabolism and development to promote successful development of the wasp embryo. These symbiotic viruses display a number of characteristics that differ from those of pathogenic viruses, but are poorly understood with the exception of one group, the polydnaviruses. Here, we characterize the genome of a non-polydnavirus associated with parasitoid wasps, Diachasmimorpha longicaudata rhabdovirus (DlRhV), and assess its role as a potential mutualistic virus. Our results show that the DlRhV genome contains six open reading frames (ORFs). Three ORFs show sequence homology to known viral genes and one ORF encodes a previously identified protein, called parasitism-specific protein 24 (PSP24), that has been hypothesized to play a role in promoting successful parasitism by D. longicaudata. We constructed a phylogeny that shows that DlRhV is most closely related to other insect-infecting rhabdoviruses. Finally, we report that DlRhV infection does not occur in all populations of D. longicaudata, and is not required for successful parasitism.
Collapse
Affiliation(s)
- Tyler J Simmonds
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida-IFAS, Homestead, FL 33031, USA
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
59
|
Analysis of Genetic Variation across the Encapsidated Genome of Microplitis demolitor Bracovirus in Parasitoid Wasps. PLoS One 2016; 11:e0158846. [PMID: 27390861 PMCID: PMC4938607 DOI: 10.1371/journal.pone.0158846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022] Open
Abstract
Insect parasitoids must complete part of their life cycle within or on another insect, ultimately resulting in the death of the host insect. One group of parasitoid wasps, the ‘microgastroid complex’ (Hymenoptera: Braconidae), engage in an association with beneficial symbiotic viruses that are essential for successful parasitism of hosts. These viruses, known as Bracoviruses, persist in an integrated form in the wasp genome, and activate to replicate in wasp ovaries during development to ultimately be delivered into host insects during parasitism. The lethal nature of host-parasitoid interactions, combined with the involvement of viruses in mediating these interactions, has led to the hypothesis that Bracoviruses are engaged in an arms race with hosts, resulting in recurrent adaptation in viral (and host) genes. Deep sequencing was employed to characterize sequence variation across the encapsidated Bracovirus genome within laboratory and field populations of the parasitoid wasp species Microplitis demolitor. Contrary to expectations, there was a paucity of evidence for positive directional selection among virulence genes, which generally exhibited signatures of purifying selection. These data suggest that the dynamics of host-parasite interactions may not result in recurrent rounds of adaptation, and that adaptation may be more variable in time than previously expected.
Collapse
|
60
|
Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes. Virology 2016; 492:259-72. [DOI: 10.1016/j.virol.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023]
|
61
|
Abstract
Virus-host associations are usually viewed as parasitic, but several studies in recent years have reported examples of viruses that benefit host organisms. The Polydnaviridae are of particular interest because these viruses are all obligate mutualists of insects called parasitoid wasps. Parasitoids develop during their immature stages by feeding inside the body of other insects, which serve as their hosts. Polydnaviruses are vertically transmitted as proviruses through the germ line of wasps but also function as gene delivery vectors that wasps rely upon to genetically manipulate the hosts they parasitize. Here we review the evolutionary origin of polydnaviruses, the organization and function of their genomes, and some of their roles in parasitism.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| |
Collapse
|
62
|
Alic AS, Ruzafa D, Dopazo J, Blanquer I. Objective review of de novostand-alone error correction methods for NGS data. WILEY INTERDISCIPLINARY REVIEWS: COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andy S. Alic
- Institute of Instrumentation for Molecular Imaging (I3M); Universitat Politècnica de València; València Spain
| | - David Ruzafa
- Departamento de Quìmica Fìsica e Instituto de Biotecnologìa, Facultad de Ciencias; Universidad de Granada; Granada Spain
| | - Joaquin Dopazo
- Department of Computational Genomics; Príncipe Felipe Research Centre (CIPF); Valencia Spain
- CIBER de Enfermedades Raras (CIBERER); Valencia Spain
- Functional Genomics Node (INB) at CIPF; Valencia Spain
| | - Ignacio Blanquer
- Institute of Instrumentation for Molecular Imaging (I3M); Universitat Politècnica de València; València Spain
- Biomedical Imaging Research Group GIBI 2; Polytechnic University Hospital La Fe; Valencia Spain
| |
Collapse
|
63
|
Pichon A, Bézier A, Urbach S, Aury JM, Jouan V, Ravallec M, Guy J, Cousserans F, Thézé J, Gauthier J, Demettre E, Schmieder S, Wurmser F, Sibut V, Poirié M, Colinet D, da Silva C, Couloux A, Barbe V, Drezen JM, Volkoff AN. Recurrent DNA virus domestication leading to different parasite virulence strategies. SCIENCE ADVANCES 2015; 1:e1501150. [PMID: 26702449 PMCID: PMC4681339 DOI: 10.1126/sciadv.1501150] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/15/2015] [Indexed: 05/31/2023]
Abstract
Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce "liposomes" that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.
Collapse
Affiliation(s)
- Apolline Pichon
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Serge Urbach
- Functional Proteomics Platform, BioCampus Montpellier, UMS CNRS 3426, INSERM US009, Institut de Génomique Fonctionnelle, UMR CNRS 5203, INSERM U661, Université de Montpellier, Montpellier 34094, France
| | - Jean-Marc Aury
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Véronique Jouan
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Marc Ravallec
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Julie Guy
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - François Cousserans
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Julien Thézé
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Jérémy Gauthier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Edith Demettre
- Functional Proteomics Platform, BioCampus Montpellier, UMS CNRS 3426, INSERM US009, Institut de Génomique Fonctionnelle, UMR CNRS 5203, INSERM U661, Université de Montpellier, Montpellier 34094, France
| | - Sandra Schmieder
- Institut Sophia Agrobiotech (ISA), UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, 400 route des Chappes, Sophia Antipolis 06903, France
| | - François Wurmser
- PPF Analyse des systèmes biologiques, Université François Rabelais de Tours, 3 Boulevard Tonnellé, Tours 37000, France
| | - Vonick Sibut
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Marylène Poirié
- Institut Sophia Agrobiotech (ISA), UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, 400 route des Chappes, Sophia Antipolis 06903, France
| | - Dominique Colinet
- Institut Sophia Agrobiotech (ISA), UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, 400 route des Chappes, Sophia Antipolis 06903, France
| | - Corinne da Silva
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Arnaud Couloux
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Valérie Barbe
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Anne-Nathalie Volkoff
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| |
Collapse
|
64
|
Gasmi L, Boulain H, Gauthier J, Hua-Van A, Musset K, Jakubowska AK, Aury JM, Volkoff AN, Huguet E, Herrero S, Drezen JM. Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses. PLoS Genet 2015; 11:e1005470. [PMID: 26379286 PMCID: PMC4574769 DOI: 10.1371/journal.pgen.1005470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens. Eukaryotes are generally thought to evolve mainly through the modification of existing genetic information. However, evidence of horizontal gene transfer (HGT) in eukaryotes-the accidental acquisition of a novel gene from another species, allowing acquisition of novel traits—is now recognized as an important factor in their evolution. We show here that in several lineages, lepidopteran genomes have acquired genes from a bracovirus that is symbiotically used by parasitic wasps to inhibit caterpillar host immune defences. Integration of parts of the viral genome into host caterpillar DNA strongly suggests that integration can sporadically occur in the germline, leading to the production of lepidopteran lineages that harbor bracovirus sequences. Moreover, some of the transferred bracovirus genes reported here originate from the wasp genome, demonstrating that a gene flux exists between the two insect orders Hymenoptera and Lepidoptera that diverged ≈300 MYA. As bracovirus gene organisation has evolved to allow expression in Lepidoptera, these transferred genes can be readily domesticated. Additionally, we present functional analyses suggesting that some of the acquired genes confer to caterpillars a protection toward baculovirus, a very common pathogen in the field. This phenomenon may have implications for understanding how caterpillars acquire resistance against baculoviruses used in biological control.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Genetics, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Helene Boulain
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université François Rabelais, Tours, France
| | - Jeremy Gauthier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université François Rabelais, Tours, France
| | - Aurelie Hua-Van
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS/Université Paris-Sud UMR9191, IRD UMR247, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université François Rabelais, Tours, France
| | - Agata K. Jakubowska
- Department of Genetics, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Jean-Marc Aury
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Anne-Nathalie Volkoff
- Diversity, Genomes and Interactions Between Microorganisms and Insects Laboratory, INRA (UMR 1333), Université de Montpellier, Place Eugène Bataillon, CC 101, Montpellier, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université François Rabelais, Tours, France
| | - Salvador Herrero
- Department of Genetics, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
- * E-mail: (SH); (JMD)
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université François Rabelais, Tours, France
- * E-mail: (SH); (JMD)
| |
Collapse
|
65
|
Zhou X, Rokas A, Berger SL, Liebig J, Ray A, Zwiebel LJ. Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality. Genome Biol Evol 2015; 7:2407-16. [PMID: 26272716 PMCID: PMC4558866 DOI: 10.1093/gbe/evv149] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Eusocial insects, mostly Hymenoptera, have evolved unique colonial lifestyles that rely on the perception of social context mainly through pheromones, and chemoreceptors are hypothesized to have played important adaptive roles in the evolution of sociality. However, because chemoreceptor repertoires have been characterized in few social insects and their solitary relatives, a comprehensive examination of this hypothesis has not been possible. Here, we annotate ∼3,000 odorant and gustatory receptors in recently sequenced Hymenoptera genomes and systematically compare >4,000 chemoreceptors from 13 hymenopterans, representing one solitary lineage (wasps) and three independently evolved eusocial lineages (ants and two bees). We observe a strong general tendency for chemoreceptors to expand in Hymenoptera, whereas the specifics of gene gains/losses are highly diverse between lineages. We also find more frequent positive selection on chemoreceptors in a facultative eusocial bee and in the common ancestor of ants compared with solitary wasps. Our results suggest that the frequent expansions of chemoreceptors have facilitated the transition to eusociality. Divergent expression patterns of odorant receptors between honeybee and ants further indicate differential roles of chemoreceptors in parallel trajectories of social evolution.
Collapse
Affiliation(s)
- Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania Department of Genetics, University of Pennsylvania Department of Biology, University of Pennsylvania
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe
| | | | | |
Collapse
|
66
|
Microplitis demolitor Bracovirus Proviral Loci and Clustered Replication Genes Exhibit Distinct DNA Amplification Patterns during Replication. J Virol 2015; 89:9511-23. [PMID: 26157119 DOI: 10.1128/jvi.01388-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Polydnaviruses are large, double-stranded DNA viruses that are beneficial symbionts of parasitoid wasps. Polydnaviruses in the genus Bracovirus (BVs) persist in wasps as proviruses, and their genomes consist of two functional components referred to as proviral segments and nudivirus-like genes. Prior studies established that the DNA domains where proviral segments reside are amplified during replication and that segments within amplified loci are circularized before packaging into nucleocapsids. One DNA domain where nudivirus-like genes are located is also amplified but never packaged into virions. We recently sequenced the genome of the braconid Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). Here, we took advantage of this resource to characterize the DNAs that are amplified during MdBV replication using a combination of Illumina and Pacific Biosciences sequencing approaches. The results showed that specific nucleotide sites identify the boundaries of amplification for proviral loci. Surprisingly, however, amplification of loci 3, 4, 6, and 8 produced head-to-tail concatemeric intermediates; loci 1, 2, and 5 produced head-to-head/tail-to-tail concatemers; and locus 7 yielded no identified concatemers. Sequence differences at amplification junctions correlated with the types of amplification intermediates the loci produced, while concatemer processing gave rise to the circularized DNAs that are packaged into nucleocapsids. The MdBV nudivirus-like gene cluster was also amplified, albeit more weakly than most proviral loci and with nondiscrete boundaries. Overall, the MdBV genome exhibited three patterns of DNA amplification during replication. Our data also suggest that PacBio sequencing could be useful in studying the replication intermediates produced by other DNA viruses. IMPORTANCE Polydnaviruses are of fundamental interest because they provide a novel example of viruses evolving into beneficial symbionts. All polydnaviruses are associated with insects called parasitoid wasps, which are of additional applied interest because many are biological control agents of pest insects. Polydnaviruses in the genus Bracovirus (BVs) evolved ~100 million years ago from an ancestor related to the baculovirus-nudivirus lineage but have also established many novelties due to their symbiotic lifestyle. These include the fact that BVs are transmitted only vertically as proviruses and produce replication-defective virions that package only a portion of the viral genome. Here, we studied Microplitis demolitor bracovirus (MdBV) and report that its genome exhibits three distinct patterns of DNA amplification during replication. We also identify several previously unknown features of BV genomes that correlate with these different amplification patterns.
Collapse
|
67
|
Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors. J Virol 2015; 89:8909-21. [PMID: 26085165 DOI: 10.1128/jvi.01001-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps. However, the identity of the ichnovirus ancestor is unknown, and questions remain regarding the possibility that the two described ichnovirus subgroups, banchine and campoplegine ichnoviruses, have distinct origins. Our study provides unequivocal evidence that these two ichnovirus types are derived from related viral progenitors. This suggests that morphological and genomic differences observed between the ichnovirus lineages, including features unique to banchine ichnovirus genome segments, result from evolutionary divergence either before or after their endogenization. Strikingly, analysis of selected wasp genomic regions revealed genes presumed to be part of the replicative machinery of the progenitor virus, shedding new light on the likely identity of this virus. Finally, these genes could well play a role in ichnovirus replication as they were overexpressed in the virogenic tissue.
Collapse
|
68
|
Strand MR, Burke GR. Polydnaviruses: From discovery to current insights. Virology 2015; 479-480:393-402. [PMID: 25670535 DOI: 10.1016/j.virol.2015.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/12/2015] [Accepted: 01/21/2015] [Indexed: 11/30/2022]
Abstract
The International Committee on Taxonomy of Viruses (ICTV) recognized the Polydnaviridae in 1991 as a virus family associated with insects called parasitoid wasps. Polydnaviruses (PDVs) have historically received limited attention but advances in recent years have elevated interest because their unusual biology sheds interesting light on the question of what viruses are and how they function. Here, we present a succinct history of the PDV literature. We begin with the findings that first led ICTV to recognize the Polydnaviridae. We then discuss what subsequent studies revealed and how these findings have shaped views of PDV evolution.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, United States of America.
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, United States of America
| |
Collapse
|
69
|
The genome of the nucleopolyhedrosis-causing virus from Tipula oleracea sheds new light on the Nudiviridae family. J Virol 2014; 89:3008-25. [PMID: 25540386 DOI: 10.1128/jvi.02884-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED A large double-stranded DNA (dsDNA) virus that produces occlusion bodies, typical of baculoviruses, has been described to infect crane fly larvae of the genus Tipula (Diptera, Tipulidae). Because of a lack of genomic data, this virus has remained unclassified. Electron microscopy of an archival virus isolated from Tipula oleracea, T. oleracea nudivirus (ToNV), showed irregularly shaped occlusion bodies measuring from 2 to 5 μm in length and 2 μm in middiameter, filled with rod-shape virions containing single nucleocapsids within a bilayer envelope. Whole-genome amplification and Roche 454 sequencing revealed a complete circular genome sequence of 145.7 kb, containing five direct repeat regions. We predicted 131 open reading frames, including a homolog of the polyhedrin gene encoding the major occlusion body protein of T. paludosa nucleopolyhedrovirus (NPV). BLAST searches demonstrated that ToNV had 21 of the 37 baculovirus core genes but shared 52 genes with nudiviruses (NVs). Phylogenomic analyses indicated that ToNV clearly belongs to the Nudiviridae family but should probably be assigned to a new genus. Among nudiviruses, ToNV was most closely related to the Penaeus monodon NV and Heliothis zea NV clade but distantly related to Drosophila innubia NV, the other nudivirus infecting a Diptera. Lastly, ToNV was found to be most closely related to the nuvidirus ancestor of bracoviruses. This was also reflected in terms of gene content, as ToNV was the only known exogenous virus harboring homologs of the Cc50C22.6 and 27b (Cc50C22.7) genes found in the nudiviral genomic cluster involved in bracovirus particle production. IMPORTANCE The Nudiviridae is a family of arthropod dsDNA viruses from which striking cases of endogenization have been reported (i.e., symbiotic bracoviruses deriving from a nudivirus and the endogenous nudivirus of the brown planthopper). Although related to baculoviruses, relatively little is known about the genomic diversity of exogenous nudiviruses. Here, we characterized, morphologically and genetically, an archival sample of the Tipula oleracea nudivirus (ToNV), which has the particularity of forming occlusion bodies. Comparative genomic and phylogenomic analyses showed ToNV to be to date the closest known relative of the exogenous ancestor of bracoviruses and that ToNV should be assigned to a new genus. Moreover, we revised the homology relationships of nudiviral genes and identified a new set of 32 core genes for the Nudiviridae, of which 21 were also baculovirus core genes. These findings provide important insights into the evolutionary history of large arthropod dsDNA viruses.
Collapse
|