51
|
Gayral M, Elmorjani K, Dalgalarrondo M, Balzergue SM, Pateyron S, Morel MH, Brunet S, Linossier L, Delluc C, Bakan B, Marion D. Responses to Hypoxia and Endoplasmic Reticulum Stress Discriminate the Development of Vitreous and Floury Endosperms of Conventional Maize ( Zea mays) Inbred Lines. FRONTIERS IN PLANT SCIENCE 2017; 8:557. [PMID: 28450877 PMCID: PMC5390489 DOI: 10.3389/fpls.2017.00557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 05/17/2023]
Abstract
Major nutritional and agronomical issues relating to maize (Zea mays) grains depend on the vitreousness/hardness of its endosperm. To identify the corresponding molecular and cellular mechanisms, most studies have been conducted on opaque/floury mutants, and recently on Quality Protein Maize, a reversion of an opaque2 mutation by modifier genes. These mutant lines are far from conventional maize crops. Therefore, a dent and a flint inbred line were chosen for analysis of the transcriptome, amino acid, and sugar metabolites of developing central and peripheral endosperm that is, the forthcoming floury and vitreous regions of mature seeds, respectively. The results suggested that the formation of endosperm vitreousness is clearly associated with significant differences in the responses of the endosperm to hypoxia and endoplasmic reticulum stress. This occurs through a coordinated regulation of energy metabolism and storage protein (i.e., zein) biosynthesis during the grain-filling period. Indeed, genes involved in the glycolysis and tricarboxylic acid cycle are up-regulated in the periphery, while genes involved in alanine, sorbitol, and fermentative metabolisms are up-regulated in the endosperm center. This spatial metabolic regulation allows the production of ATP needed for the significant zein synthesis that occurs at the endosperm periphery; this finding agrees with the zein-decreasing gradient previously observed from the sub-aleurone layer to the endosperm center. The massive synthesis of proteins transiting through endoplasmic reticulum elicits the unfolded protein responses, as indicated by the splicing of bZip60 transcription factor. This splicing is relatively higher at the center of the endosperm than at its periphery. The biological responses associated with this developmental stress, which control the starch/protein balance, leading ultimately to the formation of the vitreous and floury regions of mature endosperm, are discussed.
Collapse
Affiliation(s)
- Mathieu Gayral
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Khalil Elmorjani
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Michèle Dalgalarrondo
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Sandrine M. Balzergue
- POPS (transcriptOmic Platform of iPS2) Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- Institute of Plant Sciences Paris-Saclay, Paris Diderot, Sorbonne Paris-CitéOrsay, France
| | - Stéphanie Pateyron
- POPS (transcriptOmic Platform of iPS2) Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- Institute of Plant Sciences Paris-Saclay, Paris Diderot, Sorbonne Paris-CitéOrsay, France
| | - Marie-Hélène Morel
- Agropolymer Engineering and Emerging Technologies, Institut National de la Recherche AgronomiqueMontpellier, France
| | | | | | | | - Bénédicte Bakan
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Didier Marion
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
- *Correspondence: Didier Marion
| |
Collapse
|
52
|
Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:198-204. [PMID: 27457996 DOI: 10.1016/j.plantsci.2016.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 05/11/2023]
Abstract
Increasing yield and quality of seed storage compounds in a sustainable way is a key challenge for our societies. Genome-wide analyses conducted in both monocot and dicot angiosperms emphasized drastic transcriptional switches that occur during seed development. In Arabidopsis thaliana, a reference species, genetic and molecular analyses have demonstrated the key role of LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factors (TFs), in controlling gene expression programs essential to accomplish seed maturation and the accumulation of storage compounds. Here, we summarize recent progress obtained in the characterization of these LAFL proteins, their regulation, partners and target genes. Moreover, we illustrate how these evolutionary conserved TFs can be used to engineer new crops with altered seed compositions and point out the current limitations. Last, we discuss about the interest of investigating further the environmental and epigenetic regulation of this network for the coming years.
Collapse
Affiliation(s)
- Abdelhak Fatihi
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| | - Céline Boulard
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Daniel Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
| | - Sébastien Baud
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Bertrand Dubreucq
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Loïc Lepiniec
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
53
|
Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 2016; 16:58. [PMID: 27515683 PMCID: PMC4982333 DOI: 10.1186/s12896-016-0289-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023] Open
Abstract
Background CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. Results We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. Conclusions The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.,Coordinated Crop Biology Research Center (CBRC), Beijing, 100193, China
| | - Tong Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zhongrui Tian
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Chaobin Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Wei Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China. .,National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China. .,Coordinated Crop Biology Research Center (CBRC), Beijing, 100193, China.
| |
Collapse
|
54
|
Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 2016. [PMID: 27515683 DOI: 10.1186/s12896-016-0289-282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. RESULTS We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. CONCLUSIONS The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.
Collapse
Affiliation(s)
- Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
- Coordinated Crop Biology Research Center (CBRC), Beijing, 100193, China
| | - Tong Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zhongrui Tian
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Chaobin Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Wei Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
- Coordinated Crop Biology Research Center (CBRC), Beijing, 100193, China.
| |
Collapse
|
55
|
Mathew IE, Das S, Mahto A, Agarwal P. Three Rice NAC Transcription Factors Heteromerize and Are Associated with Seed Size. FRONTIERS IN PLANT SCIENCE 2016; 7:1638. [PMID: 27872632 PMCID: PMC5098391 DOI: 10.3389/fpls.2016.01638] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 05/18/2023]
Abstract
NACs are plant-specific transcription factors (TFs) involved in multiple aspects of development and stress. In rice, three NAC TF encoding genes, namely ONAC020, ONAC026, and ONAC023 express specifically during seed development, at extremely high levels. They exhibit significantly strong association with seed size/weight with the sequence variations located in the upstream regulatory region. Concomitantly, their expression pattern/levels during seed development vary amongst different accessions with variation in seed size. The alterations in the promoter sequences of the three genes, amongst the five rice accessions, correlate with the expression levels to a certain extent only. In terms of transcriptional properties, the three NAC TFs can activate and/or suppress downstream genes, though to different extents. Only ONAC026 is localized to the nucleus while ONAC020 and ONAC023 are targeted to the ER and cytoplasm, respectively. Interestingly, these two proteins interact with ONAC026 and the dimers localize in the nucleus. Trans-splicing between ONAC020 and ONAC026 results in three additional forms of ONAC020. The transcriptional properties including activation, repression, subcellular localization and heterodimerization of trans-spliced forms of ONAC020 and ONAC026 are different, indicating toward their role as competitors. The analysis presented in this paper helps to conclude that the three NAC genes, which are associated with seed size, have independent as well as overlapping roles during the process and can be exploited as potential targets for crop improvement.
Collapse
|