51
|
Pountain AW, Weidt SK, Regnault C, Bates PA, Donachie AM, Dickens NJ, Barrett MP. Genomic instability at the locus of sterol C24-methyltransferase promotes amphotericin B resistance in Leishmania parasites. PLoS Negl Trop Dis 2019; 13:e0007052. [PMID: 30716073 PMCID: PMC6375703 DOI: 10.1371/journal.pntd.0007052] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 12/04/2018] [Indexed: 01/24/2023] Open
Abstract
Amphotericin B is an increasingly important tool in efforts to reduce the global disease burden posed by Leishmania parasites. With few other chemotherapeutic options available for the treatment of leishmaniasis, the potential for emergent resistance to this drug is a considerable threat. Here we characterised four novel amphotericin B-resistant Leishmania mexicana lines. All lines exhibited altered sterol biosynthesis, and hypersensitivity to pentamidine. Whole genome sequencing demonstrated resistance-associated mutation of the sterol biosynthesis gene sterol C5-desaturase in one line. However, in three out of four lines, RNA-seq revealed loss of expression of sterol C24-methyltransferase (SMT) responsible for drug resistance and altered sterol biosynthesis. Additional loss of the miltefosine transporter was associated with one of those lines. SMT is encoded by two tandem gene copies, which we found to have very different expression levels. In all cases, reduced overall expression was associated with loss of the 3' untranslated region of the dominant gene copy, resulting from structural variations at this locus. Local regions of sequence homology, between the gene copies themselves, and also due to the presence of SIDER1 retrotransposon elements that promote multi-gene amplification, correlate to these structural variations. Moreover, in at least one case loss of SMT expression was not associated with loss of virulence in primary macrophages or in vivo. Whilst such repeat sequence-mediated instability is known in Leishmania genomes, its presence associated with resistance to a major antileishmanial drug, with no evidence of associated fitness costs, is a significant concern.
Collapse
Affiliation(s)
- Andrew W. Pountain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Clément Regnault
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas J. Dickens
- Marine Biomedical & Biotechnology Research Program, Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, Florida, United States of America
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
52
|
Regli IB, Fernández OL, Martínez-Salazar B, Gómez MA, Saravia NG, Tacchini-Cottier F. Resistance of Leishmania (Viannia) Panamensis to Meglumine Antimoniate or Miltefosine Modulates Neutrophil Effector Functions. Front Immunol 2018; 9:3040. [PMID: 30622537 PMCID: PMC6308327 DOI: 10.3389/fimmu.2018.03040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/16/2023] Open
Abstract
Leishmania (Viannia) panamensis (L. (V.) p.) is the main causative agent of cutaneous leishmaniasis in Colombia and is usually treated with either meglumine antimoniate (MA) or miltefosine (MIL). In recent years, there has been increasing evidence of the emergence of drug-resistance against these compounds. Neutrophils are known to play an important role in immunity against Leishmania. These cells are rapidly recruited upon infection and are also present in chronic lesions. However, their involvement in the outcome of infection with drug-resistant Leishmania has not been examined. In this study, human and murine neutrophils were infected in vitro with MA or MIL drug-resistant L. (V.) p. lines derived from a parental L. (V.) p. drug-susceptible strain. Neutrophil effector functions were assessed analyzing the production of reactive oxygen species (ROS), the formation of neutrophil extracellular trap (NET) and the expression of cell surface activation markers. Parasite killing by neutrophils was assessed using L. (V.) p. transfected with a luciferase reporter. We show here that MA and MIL-resistant L. (V.) p. lines elicited significantly increased NET formation and MA-resistant L. (V.) p. induced significantly increased ROS production in both murine and human neutrophils, compared to infections with the parental MIL and MA susceptible strain. Furthermore, neutrophils exposed to drug-resistant lines showed increased activation, as revealed by decreased expression of CD62L and increased expression of CD66b in human neutrophils yet presented higher survival within neutrophils than the drug-susceptible strain. These results provide evidence that parasite drug-susceptibility may influences neutrophil activation and function as well as parasite survival within neutrophils. Further investigaton of the inter-relationship of drug susceptibility and neutrophil effector function should contribute to better understanding of the factors involved in susceptibility to anti-Leishmania drugs.
Collapse
Affiliation(s)
- Ivo B Regli
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Olga Lucía Fernández
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.,CIDEIM, Universidad ICESI, Cali, Colombia
| | - Berenice Martínez-Salazar
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Maria Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.,CIDEIM, Universidad ICESI, Cali, Colombia
| | - Nancy Gore Saravia
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.,CIDEIM, Universidad ICESI, Cali, Colombia
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
53
|
Hendrickx S, Bulté D, Van den Kerkhof M, Cos P, Delputte P, Maes L, Caljon G. Immunosuppression of Syrian golden hamsters accelerates relapse but not the emergence of resistance in Leishmania infantum following recurrent miltefosine pressure. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 9:1-7. [PMID: 30562667 PMCID: PMC6296292 DOI: 10.1016/j.ijpddr.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022]
Abstract
Although miltefosine (MIL) has only been approved for the treatment of visceral leishmaniasis (VL) in 2002, its application in monotherapy already led to the development of two confirmed MIL-resistant isolates by 2009. Although liposomal amphotericin B is recommended as first-line treatment in Europe, MIL is still occasionally used in HIV co-infected patients. Since their immune system is incapable of controlling the infection, high parasite burdens and post-treatment relapses are common. Linked to the particular pharmacokinetic profile of MIL, successive treatment of recurrent relapses could in principle facilitate the emergence of drug resistance. This study evaluated the effect of immunosuppression (cyclophosphamide 150 mg/kg once weekly) on the development of MIL-resistance in Syrian golden hamsters infected with Leishmania infantum. The hamsters were treated with MIL (20 mg/kg orally for 5 days) whenever clinical signs of infection or relapse were observed. The immunosuppression resulted in a significant depletion of CD4+ lymphocytes and MHCII-expressing cells in peripheral blood, and a concomitant increase in tissue parasite burdens and shorter time to relapse, but the strain's susceptibility upon repeated MIL exposure remained unaltered. This study demonstrates that immunosuppression accelerates the occurrence of relapse without expediting MIL resistance development.
Collapse
Affiliation(s)
- S Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - D Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - M Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - P Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - P Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - L Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - G Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
54
|
Chauhan K, Kaur G, Kaur S. Activity of rutin, a potent flavonoid against SSG-sensitive and -resistant Leishmania donovani parasites in experimental leishmaniasis. Int Immunopharmacol 2018; 64:372-385. [DOI: 10.1016/j.intimp.2018.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/02/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
|
55
|
Lipase Precursor-Like Protein Promotes Miltefosine Tolerance in Leishmania donovani by Enhancing Parasite Infectivity and Eliciting Anti-inflammatory Responses in Host Macrophages. Antimicrob Agents Chemother 2018; 62:AAC.00666-18. [PMID: 30297367 DOI: 10.1128/aac.00666-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
The oral drug miltefosine (MIL) was introduced in the Indian subcontinent in the year 2002 for the treatment of visceral leishmaniasis (VL). However, recent reports on its declining efficacy and increasing relapse rates pose a serious concern. An understanding of the factors contributing to MIL tolerance in Leishmania parasites is critical. In the present study, we assessed the role of the lipase precursor-like protein (Lip) in conferring tolerance to miltefosine by episomally overexpressing Lip in Leishmania donovani (LdLip++). We observed a significant increase (∼3-fold) in the MIL 50% inhibitory concentration (IC50) at both the promastigote (3.90 ± 0.68 µM; P < 0.05) and intracellular amastigote (9.10 ± 0.60 µM; P < 0.05) stages compared to the wild-type counterpart (LdNeo) (MIL IC50s of 1.49 ± 0.20 µM at the promastigote stage and 3.95 ± 0.45 µM at the amastigote stage). LdLip++ parasites exhibited significantly (P < 0.05) increased infectivity to host macrophages and increased metacyclogenesis and tolerance to MIL-induced oxidative stress. The susceptibility of LdLip++ to other antileishmanial drugs (sodium antimony gluconate and amphotericin B) remained unchanged. In comparison to LdNeo, the LdLip++ parasites elicited high host interleukin-10 (IL-10) cytokine expression levels (1.6-fold; P < 0.05) with reduced expression of the cytokine tumor necrosis factor alpha (TNF-α) (1.5-fold; P < 0.05), leading to a significantly (P < 0.01) increased ratio of IL-10/TNF-α. The above-described findings suggest a role of lipase precursor-like protein in conferring tolerance to the oral antileishmanial drug MIL in L. donovani parasites.
Collapse
|
56
|
Carnielli JBT, Crouch K, Forrester S, Silva VC, Carvalho SFG, Damasceno JD, Brown E, Dickens NJ, Costa DL, Costa CHN, Dietze R, Jeffares DC, Mottram JC. A Leishmania infantum genetic marker associated with miltefosine treatment failure for visceral leishmaniasis. EBioMedicine 2018; 36:83-91. [PMID: 30268832 PMCID: PMC6197651 DOI: 10.1016/j.ebiom.2018.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
Abstract
Background Miltefosine has been used successfully to treat visceral leishmaniasis (VL) in India, but it was unsuccessful for VL in a clinical trial in Brazil. Methods To identify molecular markers that predict VL treatment failure whole genome sequencing of 26 L. infantum isolates, from cured and relapsed patients allowed a GWAS analysis of SNPs, gene and chromosome copy number variations. Findings A strong association was identified (p = 0·0005) between the presence of a genetically stable L. infantumMiltefosine Sensitivity Locus (MSL), and a positive response to miltefosine treatment. The risk of treatment failure increased 9·4-fold (95% CI 2·11–53·54) when an isolate did not have the MSL. The complete absence of the MSL predicted miltefosine failure with 0·92 (95% CI 0·65–0·996) sensitivity and 0·78 (95% CI 0·52–0·92) specificity. A genotyping survey of L. infantum (n = 157) showed that the frequency of MSL varies in a cline from 95% in North East Brazil to <5% in the South East. The MSL was found in the genomes of all L. infantum and L. donovani sequenced isolates from the Old World (n = 671), where miltefosine can have a cure rate higher than 93%. Interpretation Knowledge on the presence or absence of the MSL in L. infantum will allow stratification of patients prior to treatment, helping to establish better therapeutic strategies for VL treatment. Fund CNPq, FAPES, GCRF MRC and Wellcome Trust.
Collapse
Affiliation(s)
- Juliana B T Carnielli
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.; Centre for Immunology and Infection, Department of Biology, University of York, United Kingdom.; Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom..
| | - Kathryn Crouch
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom
| | - Sarah Forrester
- Centre for Immunology and Infection, Department of Biology, University of York, United Kingdom
| | - Vladimir Costa Silva
- Laboratório de Pesquisas em Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Sílvio F G Carvalho
- Hospital Universitário Clemente de Faria, Universidade Estadual de Montes Claros, Montes Claros, MG, Brazil
| | - Jeziel D Damasceno
- Laboratório de Biologia Molecular de Leishmania, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine Brown
- Centre for Immunology and Infection, Department of Biology, University of York, United Kingdom
| | - Nicholas J Dickens
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom
| | - Dorcas L Costa
- Laboratório de Pesquisas em Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Carlos H N Costa
- Laboratório de Pesquisas em Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Reynaldo Dietze
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.; Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Daniel C Jeffares
- Centre for Immunology and Infection, Department of Biology, University of York, United Kingdom
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, United Kingdom.; Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom..
| |
Collapse
|
57
|
den Boer M, Das AK, Akhter F, Burza S, Ramesh V, Ahmed BN, Zijlstra EE, Ritmeijer K. Safety and Effectiveness of Short-Course AmBisome in the Treatment of Post–Kala-Azar Dermal Leishmaniasis: A Prospective Cohort Study in Bangladesh. Clin Infect Dis 2018; 67:667-675. [DOI: 10.1093/cid/ciy172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
| | | | | | | | - V Ramesh
- Safdarjang Hospital, New Delhi, India
| | - Be-Nazir Ahmed
- Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Dhaka, Bangladesh
| | | | | |
Collapse
|
58
|
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11:e0006052. [PMID: 29240765 PMCID: PMC5730103 DOI: 10.1371/journal.pntd.0006052] [Citation(s) in RCA: 585] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reevaluation of treatment guidelines for Old and New World leishmaniasis is urgently needed on a global basis because treatment failure is an increasing problem. Drug resistance is a fundamental determinant of treatment failure, although other factors also contribute to this phenomenon, including the global HIV/AIDS epidemic with its accompanying impact on the immune system. Pentavalent antimonials have been used successfully worldwide for the treatment of leishmaniasis since the first half of the 20th century, but the last 10 to 20 years have witnessed an increase in clinical resistance, e.g., in North Bihar in India. In this review, we discuss the meaning of “resistance” related to leishmaniasis and discuss its molecular epidemiology, particularly for Leishmania donovani that causes visceral leishmaniasis. We also discuss how resistance can affect drug combination therapies. Molecular mechanisms known to contribute to resistance to antimonials, amphotericin B, and miltefosine are also outlined. Chemotherapy is central to the control and management of leishmaniasis. Antimonials remain the primary drugs against different forms of leishmaniasis in several regions. However, resistance to antimony has necessitated the use of alternative medications, especially in the Indian subcontinent (ISC). Compounds, notably the orally available miltefosine (MIL), parenteral paromomycin, and amphotericin B (AmB), are increasingly used to treat leishmaniasis. Although treatment failure (TF) has been observed in patients treated with most anti-leishmanials, its frequency of appearance may be important in patients treated with MIL, which has replaced antimonials within the kala-azar elimination program in the ISC. AmB is highly efficacious, and the associated toxic effects—when administered in its free deoxycholate form—are somewhat ameliorated in its liposomal formulation. Regrettably, laboratory experimentation has demonstrated a risk of resistance towards AmB as well. The rise of drug resistance impacts treatment outcome, and understanding its causes, spread, and impact will help us manage the risks it imposes. Here, we review the problem of TF in leishmaniasis and the contribution of drug resistance to the problem. Molecular mechanisms causing resistance to anti-leishmanials are discussed along with the appropriate use of additional available drugs, as well as the urgent need to consolidate strategies to monitor drug efficacy, epidemiological surveillance, and local policies. Coordination of these activities in national and international programs against leishmaniasis might represent a successful guide to further research and prevention activities.
Collapse
Affiliation(s)
- Alicia Ponte-Sucre
- Department of Physiological Sciences, Laboratory of Molecular Physiology, Institute of Experimental Medicine, Luis Razetti School of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- * E-mail: (BP); (APS)
| | - Francisco Gamarro
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rogelio López-Vélez
- Department of Infectious Diseases, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, Madrid, Spain
| | - Raquel García-Hernández
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Andrew W. Pountain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roy Mwenechanya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, University Laval, Quebec, Canada
- * E-mail: (BP); (APS)
| |
Collapse
|
59
|
Verma A, Bhandari V, Deep DK, Sundar S, Dujardin JC, Singh R, Salotra P. Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. Int J Parasitol Drugs Drug Resist 2017; 7:370-377. [PMID: 29035735 PMCID: PMC5645162 DOI: 10.1016/j.ijpddr.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 01/19/2023]
Abstract
Widespread resistance towards antimony and reports of relapses following miltefosine treatment has severely affected the management of visceral leishmaniasis (VL) in the Indian subcontinent. Paromomycin (PMM), an aminoglycoside antibiotic, has been licensed for VL treatment in India in 2007. Although its use is still restricted in the field, unraveling the molecular mechanism of resistance towards PMM is the key to preserve the drug. In this study, PMM resistant lines were selected up to 100 μM of PMM in three distinct field isolates of Leishmania donovani at promastigote stage. The resistance induced at promastigote level was also evident in amastigotes which showed 6 fold decreases in PMM susceptibility. Comparative transcriptome profiling of PMM resistant (PMM-R) and the corresponding PMM sensitive (PMM-S) parasites revealed modulated expression of 500 genes (1.5 fold cut off) in PMM-R parasites. Selected genes were validated for their modulated expression by quantitative real-time PCR. Functional classification and pathway analysis of modulated genes indicated probable adaptations in drug resistant lines which included a) reduced oxidative phosphorylation; b) increased glycosomal succinate fermentation and substrate level phosphorylation; c) dependency on lipids and amino acids for energy generation; d) reduced DNA synthesis and increased DNA damage repair and e) decreased protein synthesis and degradation. Interestingly, PMM-R parasites showed a marked increase in PMM susceptibility in presence of verapamil and amlodipine, antagonists of Ca2+ channel that are also modulators of ABC transporters. Moreover, infection of macrophages by PMM-R parasites led to modulated nitric oxide (NO) levels while reactive oxygen species (ROS) level remained unaltered. The present study highlights the putative mechanisms of PMM resistance in Leishmania.
Collapse
Affiliation(s)
- Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India; Symbiosis School of Biomedical Sciences, Symbiosis International University, Pune, India
| | - Vasundhra Bhandari
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Deepak Kumar Deep
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jean Claude Dujardin
- Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.
| |
Collapse
|
60
|
Akinsolu FT, de Paiva VN, Souza SS, Varga O. Patent landscape of neglected tropical diseases: an analysis of worldwide patent families. Global Health 2017; 13:82. [PMID: 29137663 PMCID: PMC5686799 DOI: 10.1186/s12992-017-0306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND "Neglected Tropical Diseases" (NTDs) affect millions of people in Africa, Asia and South America. The two primary ways of strategic interventions are "preventive chemotherapy and transmission control" (PCT), and "innovative and intensified disease management" (IDM). In the last 5 years, phenomenal progress has been achieved. However, it is crucial to intensify research effort into NTDs, because of the emerging drug resistance. According to the World Health Organization (WHO), the term NTDs covers 17 diseases, namely buruli ulcer, Chagas disease, dengue, dracunculiasis, echinococcosis, trematodiasis, human African trypanosomiasis, leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, rabies, schistosomiasis, soil-transmitted helminthes, taeniasis, trachoma, and yaws. The aim of this study is to map out research and development (R&D) landscape through patent analysis of these identified NTDs. To achieve this, analysis and evaluation have been conducted on patenting trends, current legal status of patent families, priority countries by earliest priority years and their assignee types, technological fields of patent families over time, and original and current patent assignees. MAIN BODY Patent families were extracted from Patseer, an international database of patents from over 100 patent issuing authorities worldwide. Evaluation of the patents was carried out using the combination of different search terms related to each identified NTD. In this paper, a total number of 12,350 patent families were analyzed. The main countries with sources of inventions were identified to be the United States (US) and China. The main technological fields covered by NTDs patent landscape are pharmaceuticals, biotechnology, organic fine chemistry, analysis of biological materials, basic materials chemistry, and medical technology. Governmental institutions and universities are the primary original assignees. Among the NTDs, leishmaniasis, dengue, and rabies received the highest number of patent families, while human African trypanosomiasis (sleeping sickness), taeniasis, and dracunciliasis received the least. The overall trend of patent families shows an increase between 1985 and 2008, and followed by at least 6 years of stagnation. CONCLUSION The filing pattern of patent families analyzed undoubtedly reveals slow progress on research and development of NTDs. Involving new players, such as non-governmental organizations may help to mitigate and reduce the burden of NTDs.
Collapse
Affiliation(s)
- Folahanmi Tomiwa Akinsolu
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | | | | | - Orsolya Varga
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
61
|
Villa-Pulgarín JA, Gajate C, Botet J, Jimenez A, Justies N, Varela-M RE, Cuesta-Marbán Á, Müller I, Modolell M, Revuelta JL, Mollinedo F. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl Trop Dis 2017; 11:e0005805. [PMID: 28829771 PMCID: PMC5568728 DOI: 10.1371/journal.pntd.0005805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Background Leishmaniasis is the world’s second deadliest parasitic disease after malaria, and current treatment of the different forms of this disease is far from satisfactory. Alkylphospholipid analogs (APLs) are a family of anticancer drugs that show antileishmanial activity, including the first oral drug (miltefosine) for leishmaniasis and drugs in preclinical/clinical oncology trials, but their precise mechanism of action remains to be elucidated. Methodology/Principal findings Here we show that the tumor cell apoptosis-inducer edelfosine was the most effective APL, as compared to miltefosine, perifosine and erucylphosphocholine, in killing Leishmania spp. promastigotes and amastigotes as well as tumor cells, as assessed by DNA breakdown determined by flow cytometry. In studies using animal models, we found that orally-administered edelfosine showed a potent in vivo antileishmanial activity and diminished macrophage pro-inflammatory responses. Edelfosine was also able to kill Leishmania axenic amastigotes. Edelfosine was taken up by host macrophages and killed intracellular Leishmania amastigotes in infected macrophages. Edelfosine accumulated in tumor cell mitochondria and Leishmania kinetoplast-mitochondrion, and led to mitochondrial transmembrane potential disruption, and to the successive breakdown of parasite mitochondrial and nuclear DNA. Ectopic expression of Bcl-XL inhibited edelfosine-induced cell death in both Leishmania parasites and tumor cells. We found that the cytotoxic activity of edelfosine against Leishmania parasites and tumor cells was associated with a dramatic recruitment of FOF1-ATP synthase into lipid rafts following edelfosine treatment in both parasites and cancer cells. Raft disruption and specific FOF1-ATP synthase inhibition hindered edelfosine-induced cell death in both Leishmania parasites and tumor cells. Genetic deletion of FOF1-ATP synthase led to edelfosine drug resistance in Saccharomyces cerevisiae yeast. Conclusions/Significance The present study shows that the antileishmanial and anticancer actions of edelfosine share some common signaling processes, with mitochondria and raft-located FOF1-ATP synthase being critical in the killing process, thus identifying novel druggable targets for the treatment of leishmaniasis. Leishmaniasis is a major health problem worldwide, and can result in loss of human life or a lifelong stigma because of bodily scars. According to World Health Organization, leishmaniasis is considered as an emerging and uncontrolled disease, and its current treatment is far from ideal, with only a few drugs available that could lead to drug resistance or cause serious side-effects. Here, we have found that mitochondria and raft-located FOF1-ATPase synthase are efficient druggable targets, through which an ether lipid named edelfosine exerts its antileishmanial action. Edelfosine effectively kills Leishmania spp. promastigotes and amastigotes. Our experimental animal models demonstrate that oral administration of edelfosine exerts a potent antileishmanial activity, while inhibits macrophage pro-inflammatory responses. Our results show that both Leishmania and tumor cells share mitochondria and raft-located FOF1-ATPase synthase as major druggable targets in leishmaniasis and cancer therapy. These data, showing a potent antileishmanial activity of edelfosine and unveiling its mechanism of action, together with the inhibition of the inflammatory responses elicited by macrophages, suggest that the ether lipid edelfosine is a promising oral drug for leishmaniasis, and highlight mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Janny A Villa-Pulgarín
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Botet
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Alberto Jimenez
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Nicole Justies
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Rubén E Varela-M
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Álvaro Cuesta-Marbán
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Ingrid Müller
- Department of Medicine, Section of Immunology, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - José L Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|