51
|
Disruption of the Survival Motor Neuron (SMN) gene in pigs using ssDNA. Transgenic Res 2011; 20:1293-304. [PMID: 21350916 DOI: 10.1007/s11248-011-9496-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/10/2011] [Indexed: 12/30/2022]
Abstract
Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease that is a result of a deletion or mutation of the SMN1 (Survival Motor Neuron) gene. A duplicated and nearly identical copy, SMN2, serves as a disease modifier as increasing SMN2 copy number decreases the severity of the disease. Currently many therapeutic approaches for SMA are being developed. Therapeutic strategies aim to modulate splicing of SMN2-derived transcripts, increase SMN2 gene expression, increase neuro-protection of motor neurons, stabilize the SMN protein, replace the SMN1 gene and reconstitute the motor neuron population. It is our goal to develop a pig animal model of SMA for the development and testing of therapeutics and evaluation of toxicology. In the development of a SMA pig model, it was important to demonstrate that the human SMN2 gene would splice appropriately as the model would be based on the presence of the human SMN2 transgene. In this manuscript, we show splicing of the human SMN1 and SMN2 mini-genes in porcine cells is consistent with splicing in human cells, and we report the first genetic knockout of a gene responsible for a neurodegenerative disease in a large animal model using gene targeting with single-stranded DNA and somatic cell nuclear transfer.
Collapse
|
52
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
53
|
Butchbach MER. Trans-splicing, more than meets the eye: multifaceted therapeutics for spinal muscular atrophy. Hum Gene Ther 2011; 22:121-5. [PMID: 21288085 DOI: 10.1089/hum.2011.903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Matthew E R Butchbach
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University , Columbus, OH 43210, USA.
| |
Collapse
|
54
|
Shababi M, Glascock J, Lorson CL. Combination of SMN trans-splicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy. Hum Gene Ther 2010; 22:135-44. [PMID: 20804424 DOI: 10.1089/hum.2010.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA), a neurodegenerative disease, is the second most common genetic disorder and the leading genetic cause of infantile death. SMA arises from the loss of Survival Motor Neuron-1 (SMN1), leading to degeneration of lower motor neurons and, consequently, the atrophy of voluntary muscles. A duplicated copy gene called SMN2 exists in humans. SMN2 is unable to fully compensate for the loss of SMN1 because it produces very low levels of functional SMN protein due to an alternative splicing event. A C/T transition in SMN2 exon 7 results in a transcript lacking exon 7 and, therefore, creates a truncated SMN protein that cannot fully compensate for the loss of SMN1. However, SMN2 is an ideal target for therapeutic strategies that redirect this critical splicing event. Previously, we developed the first trans-splicing strategy to increase the full-length mRNA and functional SMN protein from the SMN2 gene. To improve the trans-splicing efficacy, we then developed a single-vector system that expressed a trans-splicing RNA (tsRNA) and an antisense blocking the downstream splice site. This single vector greatly enhanced trans-splicing of SMN2 transcripts in vitro and in vivo. In this report, we have added a neurotrophic factor [insulin-like growth factor (IGF)-1] to this single vector to determine whether neuroprotection and SMN induction provide greater protection in an SMA animal model. Intracerebroventricular injection of the trans-splicing/IGF vector significantly increased SMN protein in brain and spinal cord of SMAΔ7 mice and lessened the severity of disease in a more severe mouse model as evidenced by an extension of life span and increased body mass.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
55
|
Wally V, Brunner M, Lettner T, Wagner M, Koller U, Trost A, Murauer EM, Hainzl S, Hintner H, Bauer JW. K14 mRNA reprogramming for dominant epidermolysis bullosa simplex. Hum Mol Genet 2010; 19:4715-25. [DOI: 10.1093/hmg/ddq405] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
56
|
Shababi M, Habibi J, Yang HT, Vale SM, Sewell WA, Lorson CL. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum Mol Genet 2010; 19:4059-71. [DOI: 10.1093/hmg/ddq329] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
57
|
Bebee TW, Gladman JT, Chandler DS. Splicing of the Survival Motor Neuron genes and implications for treatment of SMA. FRONT BIOSCI-LANDMRK 2010; 15:1191-1204. [PMID: 20515750 PMCID: PMC2921696 DOI: 10.2741/3670] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of the survival motor neuron (SMN) protein. The reduced SMN levels are due to loss of the survival motor neuron-1 (SMN1) gene. Humans carry a nearly identical SMN2 gene that generates a truncated protein, due to a C to T nucleotide alteration in exon 7 that leads to inefficient RNA splicing of exon 7. This exclusion of SMN exon 7 is central to the onset of the SMA disease, however, this offers a unique therapeutic intervention in which corrective splicing of the SMN2 gene would restore SMN function. Exon 7 splicing is regulated by a number of exonic and intronic splicing regulatory sequences and trans-factors that bind them. A better understanding of the way SMN pre-mRNA is spliced has lead to the development of targeted therapies aimed at correcting SMN2 splicing. As therapeutics targeted toward correction of SMN2 splicing continue to be developed available SMA mouse models can be utilized in validating their potential in disease treatment.
Collapse
Affiliation(s)
- Thomas W. Bebee
- The Molecular, Cellular, and Developmental Biology (MCDB) Graduate Program, The Ohio State University, Columbus, Ohio
- The Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jordan T. Gladman
- The Integrated Biomedical Science Graduate Program (IBGP), The Ohio State University, Columbus, Ohio
- The Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Dawn S. Chandler
- The Molecular, Cellular, and Developmental Biology (MCDB) Graduate Program, The Ohio State University, Columbus, Ohio
- The Integrated Biomedical Science Graduate Program (IBGP), The Ohio State University, Columbus, Ohio
- The Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
58
|
Lorain S, Peccate C, Le Hir M, Garcia L. Exon exchange approach to repair Duchenne dystrophin transcripts. PLoS One 2010; 5:e10894. [PMID: 20531943 PMCID: PMC2878348 DOI: 10.1371/journal.pone.0010894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Trans-splicing strategies for mRNA repair involve engineered transcripts designed to anneal target mRNAs in order to interfere with their natural splicing, giving rise to mRNA chimeras where endogenous mutated exons have been replaced by exogenous replacement sequences. A number of trans-splicing molecules have already been proposed for replacing either the 5′ or the 3′ part of transcripts to be repaired. Here, we show the feasibility of RNA surgery by using a double trans-splicing approach allowing the specific substitution of a given mutated exon. Methodology/Principal Findings As a target we used a minigene encoding a fragment of the mdx dystrophin gene enclosing the mutated exon (exon 23). This minigene was cotransfected with a variety of exon exchange constructions, differing in their annealing domains. We obtained accurate and efficient replacement of exon 23 in the mRNA target. Adding up a downstream intronic splice enhancer DISE in the exon exchange molecule enhanced drastically its efficiency up to 25–45% of repair depending on the construction in use. Conclusions/Significance These results demonstrate the possibility to fix up mutated exons, refurbish deleted exons and introduce protein motifs, while keeping natural untranslated sequences, which are essential for mRNA stability and translation regulation. Conversely to the well-known exon skipping, exon exchange has the advantage to be compatible with almost any type of mutations and more generally to a wide range of genetic conditions. In particular, it allows addressing disorders caused by dominant mutations.
Collapse
Affiliation(s)
- Stéphanie Lorain
- Université Pierre et Marie Curie (UMR S 974)-Institut National de la Santé et de la Recherche Médicale (U974)-Centre National de la Recherche Scientifique (UMR 7215), Paris, France.
| | | | | | | |
Collapse
|
59
|
Lorson CL, Rindt H, Shababi M. Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Genet 2010; 19:R111-8. [PMID: 20392710 DOI: 10.1093/hmg/ddq147] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder and a leading genetic cause of infantile mortality. SMA is caused by mutation or deletion of Survival Motor Neuron-1 (SMN1). The clinical features of the disease are caused by specific degeneration of alpha-motor neurons in the spinal cord, leading to muscle weakness, atrophy and, in the majority of cases, premature death. A highly homologous copy gene (SMN2) is retained in almost all SMA patients but fails to generate adequate levels of SMN protein due to its defective splicing pattern. The severity of the SMA phenotype is inversely correlated with SMN2 copy number and the level of full-length SMN protein produced by SMN2 ( approximately 10-15% compared with SMN1). The natural history of SMA has been altered over the past several decades, primarily through supportive care measures, but an effective treatment does not presently exist. However, the common genetic etiology and recent progress in pre-clinical models suggest that SMA is well-suited for the development of therapeutic regimens. We summarize recent advances in translational research that hold promise for the progression towards clinical trials.
Collapse
Affiliation(s)
- Christian L Lorson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.
| | | | | |
Collapse
|
60
|
Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O'Riordan CR, Klinger KW, Shihabuddin LS, Cheng SH. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010; 120:1253-64. [PMID: 20234094 DOI: 10.1172/jci41615] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/13/2010] [Indexed: 01/27/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN-expressing self-complementary AAV vector - a vector that leads to earlier onset of gene expression compared with standard AAV vectors - led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.
Collapse
Affiliation(s)
- Marco A Passini
- Genzyme Corporation, 49 New York Avenue, Room 2410, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Spinal muscular atrophy is a leading genetic cause of infantile death and occurs in approximately 1/6000 live births. SMA is caused by the loss of Survival Motor Neuron-1 (SMN1), however, all patients retain at least one copy of a nearly identical gene called SMN2. While SMN2 and SMN1 are comprised of identical coding sequences, the majority of SMN2 transcripts are alternatively spliced, encoding a truncated protein that is unstable and nonfunctional. Considerable effort has focused upon modulating the SMN2 alternative splicing event since this would produce more wild-type protein. Recently we reported the development of an optimized trans-splicing system that involved the coexpression of a SMN2 trans-splicing RNA and an antisense RNA that blocks a downstream splice site in SMN2 pre-mRNA. Here, we demonstrate that in vivo delivery of the optimized trans-splicing vector increases an important SMN-dependent activity, snRNP assembly, in disease-relevant tissue in the SMA mouse model. A single injection of the vector into the intracerebral-ventricular space in SMA neonates also lessens the severity of the SMA phenotype in a severe SMA mouse model, extending survival approximately 70%. Collectively, these results provide the first in vivo demonstration that SMN2 trans-splicing leads to a lessening of the severity of the SMA phenotype and provide evidence for the power of this strategy for reprogramming genetic diseases at the pre-mRNA level.
Collapse
|
62
|
Stavarachi M, Apostol P, Toma M, Cimponeriu D, Gavrila L. Spinal muscular atrophy disease: a literature review for therapeutic strategies. J Med Life 2010; 3:3-9. [PMID: 20302191 PMCID: PMC3019038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/21/2010] [Indexed: 10/29/2022] Open
Abstract
Currently, there is no cure for the treatment of spinal muscular atrophy (SMA). Based on the available clinical and molecular findings, different therapeutic strategies were tested in vitro and in vivo and clinical trials are ongoing. The main therapeutic direction is focused on the enhancement of SMN expression by increasing the full-length (fl) SMN2 transcript levels, preventing the SMN exon 7 from skipping or from protein stabilizing. In addition, the action of neurotrophic, neuroprotective or anabolic agents is tested and stem cell and gene therapy approaches are in a promising development.
Collapse
Affiliation(s)
- M Stavarachi
- Human Genetics and Molecular Diagnosis Department, Institute of Genetics, 1-3 Portocalelor Street, District 6, postal code 060101, Bucharest, Romania.
| | | | | | | | | |
Collapse
|
63
|
Le Roy F, Charton K, Lorson CL, Richard I. RNA-targeting approaches for neuromuscular diseases. Trends Mol Med 2009; 15:580-91. [PMID: 19906562 DOI: 10.1016/j.molmed.2009.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/25/2009] [Accepted: 10/08/2009] [Indexed: 12/16/2022]
Abstract
Although most molecular therapy strategies for genetic diseases are based on gene replacement, interesting alternative approaches target RNA. These strategies rely on the modification of the mutated gene's expression in vivo by modulating pre-mRNA splicing, mRNA stability or mRNA translation. Here, we review recent progress using these RNA-based approaches in the field of muscle and muscle-related genetic diseases. Different molecular tools, including modified antisense oligonucleotides, pre-mRNA trans-splicing molecules, ribozymes or chemical compounds have been used successfully on patient cells or animal models of disease. These diverse strategies show tremendous therapeutic potential and several clinical trials have been initiated with Duchenne muscular dystrophy patients with promising results.
Collapse
Affiliation(s)
- Florence Le Roy
- Généthon, CNRS/UEVE UMR8587 LAMBE, 1, rue de l'Internationale, 91000 Evry, France
| | | | | | | |
Collapse
|
64
|
Horne C, Young PJ. Is RNA manipulation a viable therapy for spinal muscular atrophy? J Neurol Sci 2009; 287:27-31. [PMID: 19758605 DOI: 10.1016/j.jns.2009.08.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/06/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Childhood spinal muscular atrophy (SMA) is an autosomal recessive disorder characterised by loss of the alpha motor neurones of the spinal cord. SMA is cause by mutations in the survival motor neuron (SMN) gene. There are two copies of the SMN gene: SMN1 and SMN2. The two genes differ by only 11 nucleotides at the genomic level. One of these is a C to T single nucleotide polymorphism (SNP) at position 6 in exon 7. This change alters an exon splicing enhancer in exon 7, meaning that while SMN1 expresses exclusively full-length protein containing exon 7, SMN2 is predominantly alternatively spliced and expresses a truncated transcript lacking exon 7 (SMN7). As all SMA patients are effectively null for SMN1 but retain at least one copy of SMN2, patients express considerably lower levels of functional SMN protein compared with uneffected individuals. Therefore, SMA is triggered by a fall in the levels of expressed full-length protein, and the levels expressed by the retained SMN2 gene control the severity. As a result, RNA manipulation to suppress the alternative splicing event and thus increase SMN exon 7 inclusion has emerged as an attractive therapeutic approach. In this review we have discussed the current state of bifunctional RNAs as a viable therapy, concentrating on recent advances and overall implications of this research on SMA.
Collapse
Affiliation(s)
- Christopher Horne
- Clinical Neurobiology, Institute of Biomedical and Clinical Science, Peninsula Medical School, St Luke's Campus, Exeter EX1 2LU, United Kingdom
| | | |
Collapse
|
65
|
Rodriguez-Martin T, Anthony K, Garcia-Blanco MA, Mansfield SG, Anderton BH, Gallo JM. Correction of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing. Hum Mol Genet 2009; 18:3266-73. [PMID: 19498037 PMCID: PMC2722988 DOI: 10.1093/hmg/ddp264] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/05/2009] [Accepted: 06/01/2009] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the MAPT gene, encoding the tau protein that accumulates in intraneuronal lesions in a number of neurodegenerative diseases. Several FTDP-17 mutations affect alternative splicing and result in excess exon 10 (E10) inclusion in tau mRNA. RNA reprogramming using spliceosome-mediated RNA trans-splicing (SMaRT) could be a method of choice to correct aberrant E10 splicing resulting from FTDP-17 mutations. SMaRT creates a hybrid mRNA through a trans-splicing reaction between an endogenous target pre-mRNA and a pre-trans-splicing RNA molecule (PTM). However, FTDP-17 mutations affect the strength of cis-splicing elements and could favor cis-splicing over trans-splicing. Excess E10 inclusion in FTDP-17 can be caused by intronic mutations destabilizing a stem-loop protecting the 5' splice site at the E10/intron 10 junction. COS cells transfected with a minigene containing the intronic +14 mutation produce exclusively E10(+) RNA. Generation of E10(-) RNA was restored after co-transfection with a PTM designed to exclude E10. Similar results were obtained with a target containing the exonic N279K mutation which strengthens a splicing enhancer within E10. Conversely, increase or decrease in E10 content was achieved by trans-splicing from a target carrying the Delta280K mutation, which weakens the same splicing enhancer. Thus E10 inclusion can be modulated by trans-splicing irrespective of the strength of the cis-splicing elements affected by FTDP-17 mutations. In conclusion, RNA trans-splicing could provide the basis of therapeutic strategies for impaired alternative splicing caused by pathogenic mutations in cis-acting splicing elements.
Collapse
Affiliation(s)
- Teresa Rodriguez-Martin
- MRC Centre for Neurodegeneration Research, Department of Clinical Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
- MRC Centre for Neurodegeneration Research, Department of Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - Karen Anthony
- MRC Centre for Neurodegeneration Research, Department of Clinical Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - Mariano A. Garcia-Blanco
- Center for RNA Biology, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Brian H. Anderton
- MRC Centre for Neurodegeneration Research, Department of Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - Jean-Marc Gallo
- MRC Centre for Neurodegeneration Research, Department of Clinical Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
66
|
Fu RH, Liu SP, Ou CW, Yu HH, Li KW, Tsai CH, Shyu WC, Lin SZ. Alternative Splicing Modulates Stem Cell Differentiation. Cell Transplant 2009; 18:1029-38. [PMID: 19523332 DOI: 10.3727/096368909x471260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cells have the surprising potential to develop into many different cell types. Therefore, major research efforts have focused on transplantation of stem cells and/or derived progenitors for restoring depleted diseased cells in degenerative disorders. Understanding the molecular controls, including alternative splicing, that arise during lineage differentiation of stem cells is crucial for developing stem cell therapeutic approaches in regeneration medicine. Alternative splicing to allow a single gene to encode multiple transcripts with different protein coding sequences and RNA regulatory elements increases genomic complexities. Utilizing differences in alternative splicing as a molecular marker may be more sensitive than simply gene expression in various degrees of stem cell differentiation. Moreover, alternative splicing maybe provide a new concept to acquire induced pluripotent stem cells or promote cell–cell transdifferentiation for restorative therapies and basic medicine researches. In this review, we highlight the recent advances of alternative splicing regulation in stem cells and their progenitors. It will hopefully provide much needed knowledge into realizing stem cell biology and related applications.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chen-Wei Ou
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Hsiu-Hui Yu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Wei Li
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- China Medical University Beigang Hospital, Yunlin, Taiwan
| |
Collapse
|
67
|
Mattis VB, Ebert AD, Fosso MY, Chang CW, Lorson CL. Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum Mol Genet 2009; 18:3906-13. [PMID: 19625298 DOI: 10.1093/hmg/ddp333] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality and is caused by the loss of a functional SMN1 gene. In humans, there exists a nearly-identical copy gene known as SMN2 that encodes an identical protein as SMN1, but differs by a silent C to T transition within exon 7. This single nucleotide difference produces an alternatively spliced isoform, SMNDelta7, which encodes a rapidly degraded protein. The absence of the short peptide encoded by SMN exon 7 is critical in the disease development process; however, heterologous sequences can partially compensate for the SMN exon 7 peptide in several cellular assays. Consistent with this, aminoglycosides, compounds that can suppress efficient recognition of stop codons, resulted in significantly increased levels of SMN protein in SMA patient fibroblasts. We now examine the potential therapeutic capabilities of a novel aminoglycoside, TC007. In an intermediate SMA model (Smn-/-; SMN2+/+; SMNDelta7), when delivered directly to the central nervous system (CNS), TC007 induces SMN in both the brain and spinal cord, significantly increases lifespan ( approximately 30%) and increases ventral horn cell number, consistent with its ability to increase SMN levels in induced pluripotent stem cell-derived human SMA motor neuron cultures. Collectively, these experiments are the first in vivo examination of therapeutics for SMA designed to induce read-through of the SMNDelta7 stop codon to show increased benefit by direct administration to the CNS.
Collapse
Affiliation(s)
- Virginia B Mattis
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, 65211, USA
| | | | | | | | | |
Collapse
|
68
|
Singh NN, Shishimorova M, Cao LC, Gangwani L, Singh RN. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol 2009; 6:341-50. [PMID: 19430205 PMCID: PMC2734876 DOI: 10.4161/rna.6.3.8723] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. Most SMA cases are associated with the low levels of SMN owing to deletion of Survival Motor Neuron 1 (SMN1). SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to predominant skipping of exon 7. Hence, correction of aberrant splicing of SMN2 exon 7 holds the potential for cure of SMA. Here we report an 8-mer antisense oligonucleotide (ASO) to have a profound stimulatory response on correction of aberrant splicing of SMN2 exon 7 by binding to a unique GC-rich sequence located within intron 7 of SMN2. We confirm that the splicing-switching ability of this short ASO comes with a high degree of specificity and reduced off-target effect compared to larger ASOs targeting the same sequence. We further demonstrate that a single low nanomolar dose of this 8-mer ASO substantially increases the levels of SMN and a host of factors including Gemin 2, Gemin 8, ZPR1, hnRNP Q and Tra2-beta1 known to be down-regulated in SMA. Our findings underscore the advantages and unmatched potential of very short ASOs in splicing modulation in vivo.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Sciences; Iowa State University; Ames, IA USA
| | | | - Lu Cheng Cao
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Laxman Gangwani
- Department of Cellular Biology and Anatomy; School of Medicine; Medical College of Georgia; Augusta, GA USA
| | - Ravindra N. Singh
- Department of Biomedical Sciences; Iowa State University; Ames, IA USA
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
69
|
Baughan TD, Dickson A, Osman EY, Lorson CL. Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum Mol Genet 2009; 18:1600-11. [PMID: 19228773 DOI: 10.1093/hmg/ddp076] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by the loss of survival motor neuron-1 (SMN1). A nearly identical copy gene, SMN2, is present in all SMA patients, which produces low levels of functional protein. Although the SMN2 coding sequence has the potential to produce normal, full-length SMN, approximately 90% of SMN2-derived transcripts are alternatively spliced and encode a truncated protein lacking the final coding exon (exon 7). SMN2, however, is an excellent therapeutic target. Previously, we developed bifunctional RNAs that bound SMN exon 7 and modulated SMN2 splicing. To optimize the efficiency of the bifunctional RNAs, a different antisense target was required. To this end, we genetically verified the identity of a putative intronic repressor and developed bifunctional RNAs that target this sequence. Consequently, there is a 2-fold mechanism of SMN induction: inhibition of the intronic repressor and recruitment of SR proteins via the SR recruitment sequence of the bifunctional RNA. The bifunctional RNAs effectively increased SMN in human primary SMA fibroblasts. Lead candidates were synthesized as 2'-O-methyl RNAs and were directly injected in the central nervous system of SMA mice. Single-RNA injections were able to illicit a robust induction of SMN protein in the brain and throughout the spinal column of neonatal SMA mice. In a severe model of SMA, mean life span was extended following the delivery of bifunctional RNAs. This technology has direct implications for the development of an SMA therapy, but also lends itself to a multitude of diseases caused by aberrant pre-mRNA splicing.
Collapse
Affiliation(s)
- Travis D Baughan
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, 65211, USA
| | | | | | | |
Collapse
|