51
|
Unique regulatory mechanism of sporulation and enterotoxin production in Clostridium perfringens. J Bacteriol 2013; 195:2931-6. [PMID: 23585540 DOI: 10.1128/jb.02152-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens causes gas gangrene and gastrointestinal (GI) diseases in humans. The most common cause of C. perfringens-associated food poisoning is the consumption of C. perfringens vegetative cells followed by sporulation and production of enterotoxin in the gut. Despite the importance of spore formation in C. perfringens pathogenesis, the details of the regulation of sporulation have not yet been defined fully. In this study, microarray and bioinformatic analyses identified a candidate gene (the RNA regulator virX) for the repression of genes encoding positive regulators (Spo0A and sigma factors) of C. perfringens sporulation. A virX mutant constructed in the food poisoning strain SM101 had a much higher sporulation efficiency than that of the wild type. The transcription of sigE, sigF, and sigK was strongly induced at 2.5 h of culture of the virX mutant. Moreover, the transcription of the enterotoxin gene was also strongly induced in the virX mutant. Western blotting confirmed that the levels of enterotoxin production were higher in the virX mutant than in the wild type. These observations indicated that the higher levels of sporulation and enterotoxin production in the virX mutant were specifically due to inactivation of the virX gene. Since virX homologues were not found in any Bacillus species but were present in other clostridial species, our findings identify further differences in the regulation of sporulation between Bacillus and certain Clostridium species. The virX RNA regulator plays a key role in the drastic shift in lifestyle of the anaerobic flesh eater C. perfringens between the vegetative state (for gas gangrene) and the sporulating state (for food poisoning).
Collapse
|
52
|
Use of a mariner-based transposon mutagenesis system to isolate Clostridium perfringens mutants deficient in gliding motility. J Bacteriol 2012. [PMID: 23204460 DOI: 10.1128/jb.01288-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is an anaerobic Gram-positive pathogen that causes many human and animal diseases, including food poisoning and gas gangrene. C. perfringens lacks flagella but possesses type IV pili (TFP). We have previously shown that C. perfringens can glide across an agar surface in long filaments composed of individual bacteria attached end to end and that two TFP-associated proteins, PilT and PilC, are needed for this. To discover additional gene products that play a role in gliding, we developed a plasmid-based mariner transposon mutagenesis system that works effectively in C. perfringens. More than 10,000 clones were screened for mutants that lacked the ability to move away from the edge of a colony. Twenty-four mutants (0.24%) were identified that fit the criteria. The genes containing insertions that affected gliding motility fell into nine different categories. One gene, CPE0278, which encodes a homolog of the SagA cell wall-dependent endopeptidase, acquired distinct transposon insertions in two independent mutants. sagA mutants were unable to form filaments due to a complete lack of end-to-end connections essential for gliding motility. Complementation of the sagA mutants with a wild-type copy of the gene restored gliding motility. We constructed an in-frame deletion mutation in the sagA gene and found that this mutant had a phenotype similar to those of the transposon mutants. We hypothesize that the sagA mutant strains are unable to form the molecular complexes which are needed to keep the cells in an end-to-end orientation, leading to separation of daughter cells and the inability to carry out gliding motility.
Collapse
|
53
|
Role of the Agr-like quorum-sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795. Infect Immun 2012; 80:3008-17. [PMID: 22689820 DOI: 10.1128/iai.00438-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium perfringens type B causes enteritis and enterotoxemia in domestic animals. By definition, these bacteria must produce alpha toxin (CPA), beta toxin (CPB) and epsilon toxin (ETX) although most type B strains also produce perfringolysin O (PFO) and beta2 toxin (CPB2). A recently identified Agr-like quorum-sensing (QS) system in C. perfringens controls all toxin production by surveyed type A, C, and D strains, but whether this QS is involved in regulating toxin production by type B strains has not been explored. Therefore, the current study introduced agrB null mutations into type B strains CN1795 and CN1793. Both type B agrB null mutants exhibited reduced levels of CPB, PFO, and CPA in their culture supernatants, and this effect was reversible by complementation. The reduced presence of CPB in culture supernatant involved decreased cpb transcription. In contrast, the agrB null mutants of both type B strains retained wild-type production levels of ETX and CPB2. In a Caco-2 cell model of enteritis, culture supernatants of the type B agrB null mutants were less cytotoxic than supernatants of their wild-type parents. However, in an MDCK cell in vitro model for enterotoxemic effects, supernatants from the agrB null mutants or wild-type parents were equally cytotoxic after trypsin activation. Coupling these and previous results, it is now evident that strain-dependent variations exist in Agr-like QS system regulation of C. perfringens toxin production. The cell culture results further support a role for trypsin in determining which toxins contribute to disease involving type B strains.
Collapse
|
54
|
An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum. Appl Environ Microbiol 2011; 78:1113-22. [PMID: 22179241 DOI: 10.1128/aem.06376-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Gram-positive, anaerobic, endospore-forming bacterium Clostridium acetobutylicum has considerable biotechnological potential due to its ability to produce solvents as fermentation products, in particular the biofuel butanol. Its genome contains a putative agr locus, agrBDCA, known in staphylococci to constitute a cyclic peptide-based quorum sensing system. In staphylococci, agrBD is required for the generation of a peptide signal that, upon extracellular accumulation, is sensed by an agrCA-encoded two-component system. Using ClosTron technology, agrB, agrC, and agrA mutants of C. acetobutylicum ATCC 824 were generated and phenotypically characterized. Mutants and wild type displayed similar growth kinetics and no apparent differences in solvent formation under the conditions tested. However, the number of heat-resistant endospores formed by the mutants in liquid culture was reduced by about one order of magnitude. On agar-solidified medium, spore formation was more strongly affected, particularly in agrA and agrC mutants. Similarly, accumulation of the starch-like storage compound granulose was almost undetectable in colonies of agrB, agrA, and agrC mutants. Importantly, these defects could be genetically complemented, demonstrating that they were directly linked to agr inactivation. A diffusible factor produced by agrBD-expressing strains was found to restore granulose and spore formation in the agrB mutant. Furthermore, a synthetic cyclic peptide, designed on the basis of the C. acetobutylicum AgrD sequence, was also capable of complementing the defects of the agrB mutant when added exogenously to the culture. Together, these findings support the hypothesis that agr-dependent quorum sensing is involved in the regulation of sporulation and granulose formation in C. acetobutylicum.
Collapse
|
55
|
Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. mBio 2011; 2:mBio.00275-11. [PMID: 22167225 PMCID: PMC3236063 DOI: 10.1128/mbio.00275-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that the type D strain CN3718 upregulates production of ETX upon close contact with enterocyte-like Caco-2 cells. This host cell-induced upregulation of ETX expression was mediated at the transcriptional level. Using an isogenic agrB null mutant and complemented strain, the agr operon was shown to be required when CN3718 produces ETX in broth culture or, via a secreted signal consistent with a quorum-sensing (QS) effect, upregulates ETX production upon contact with host cells. These findings provide the first insights into the regulation of ETX production, as well as additional evidence that the Agr-like QS system functions as a global regulator of C. perfringens toxin production. Since it was proposed previously that the Agr-like QS system regulates C. perfringens gene expression via the VirS/VirR two-component regulatory system, an isogenic virR null mutant of CN3718 was constructed to evaluate the importance of VirS/VirR for CN3718 toxin production. This mutation affected production of CPA and PFO, but not ETX, by CN3718. These results provide the first indication that C. perfringens toxin expression regulation by the Agr-like quorum-sensing system may not always act via the VirS/VirR two-component system. IMPORTANCE Mechanisms by which Clostridium perfringens type B and D strains regulate production of epsilon-toxin (ETX), a CDC class B select toxin, are poorly understood. Production of several other toxins expressed by C. perfringens is wholly or partially regulated by both the Agr-like quorum-sensing (QS) system and the VirS/VirR two-component regulatory system, so the present study tested whether ETX expression by type D strain CN3718 also requires these regulatory systems. The agr operon was shown to be essential for signaling CN3718 to produce ETX in broth culture or to upregulate ETX production upon close contact with enterocyte-like Caco-2 cells, which may have pathogenic relevance since ETX is produced intestinally. However, ETX production remained at wild-type levels after inactivation of the VirS/VirR system in CN3718. These findings provide the first information regarding regulation of ETX production and suggest Agr-like QS toxin production regulation in C. perfringens does not always require the VirS/VirR system.
Collapse
|
56
|
Vidal JE, Ma M, Saputo J, Garcia J, Uzal FA, McClane BA. Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol 2011; 83:179-94. [PMID: 22150719 DOI: 10.1111/j.1365-2958.2011.07925.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Clostridium perfringens possesses at least two functional quorum sensing (QS) systems, i.e. an Agr-like system and a LuxS-dependent AI-2 system. Both of those QS systems can reportedly control in vitro toxin production by C. perfringens but their importance for virulence has not been evaluated. Therefore, the current study assessed whether these QS systems might regulate the pathogenicity of CN3685, a C. perfringens type C strain. Since type C isolates cause both haemorrhagic necrotic enteritis and fatal enterotoxemias (where toxins produced in the intestines are absorbed into the circulation to target other internal organs), the ability of isogenic agrB or luxS mutants to cause necrotizing enteritis in rabbit small intestinal loops or enterotoxemic lethality in mice was evaluated. Results obtained strongly suggest that the Agr-like QS system, but not the LuxS-dependent AI-2 QS system, is required for CN3685 to cause haemorrhagic necrotizing enteritis, apparently because the Agr-like system regulates the production of beta toxin, which is essential for causing this pathology. The Agr-like system, but not the LuxS-mediated AI-2 system, was also important for CN3685 to cause fatal enterotoxemia. These results provide the first direct evidence supporting a role for any QS system in clostridial infections.
Collapse
Affiliation(s)
- Jorge E Vidal
- Hubert Department of Global Health, Division of Infectious Diseases, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
57
|
Cha SB, Rayamajhi N, Lee WJ, Shin MK, Jung MH, Shin SW, Kim JW, Yoo HS. Generation and envelope protein analysis of internalization defective Brucella abortus mutants in professional phagocytes, RAW 264.7. ACTA ACUST UNITED AC 2011; 64:244-54. [DOI: 10.1111/j.1574-695x.2011.00896.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Seung Bin Cha
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Nabin Rayamajhi
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Won Jung Lee
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Min Kyung Shin
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Myung Hwan Jung
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Seung Won Shin
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Jong Wan Kim
- Department of Animal and Plant and Fisheries Quarantine and Inspection Agency; Anyang 430-757; South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| |
Collapse
|
58
|
Complex transcriptional regulation of citrate metabolism in Clostridium perfringens. Anaerobe 2011; 18:48-54. [PMID: 21945821 DOI: 10.1016/j.anaerobe.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
Abstract
A Gram-positive, spore-forming bacterium, Clostridium perfringens, possesses genes for citrate metabolism, which might play an important role in the utilization of citrate as a sole carbon source. In this study, we identified a chromosomal citCDEFX-mae-citS operon in C. perfringens strain 13, which is transcribed on three mRNAs of different sizes. Expression of the cit operon was significantly induced when 5 mM extracellular citrate was added to the growth medium. Most interestingly, three regulatory systems were found to be involved in the regulation of the expression of cit genes: 1) the two upstream divergent genes citG and citI; 2) two different two-component regulatory systems, CitA/CitB (TCS6 consisted of CPE0531/CPE0532) and TCS5 (CPE0518/CPE0519); and 3) the global two-component VirR/VirS-VR-RNA regulatory system known to regulate various genes for toxins and degradative enzymes. Our results suggest that in C. perfringens the citrate metabolism might be strictly controlled by a complex regulatory system.
Collapse
|
59
|
The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 2011; 79:4050-60. [PMID: 21825061 DOI: 10.1128/iai.05186-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of death in children worldwide and forms highly organized biofilms in the nasopharynx, lungs, and middle ear mucosa. The luxS-controlled quorum-sensing (QS) system has recently been implicated in virulence and persistence in the nasopharynx, but its role in biofilms has not been studied. Here we show that this QS system plays a major role in the control of S. pneumoniae biofilm formation. Our results demonstrate that the luxS gene is contained by invasive isolates and normal-flora strains in a region that contains genes involved in division and cell wall biosynthesis. The luxS gene was maximally transcribed, as a monocistronic message, in the early mid-log phase of growth, and this coincides with the appearance of early biofilms. Demonstrating the role of the LuxS system in regulating S. pneumoniae biofilms, at 24 h postinoculation, two different D39ΔluxS mutants produced ∼80% less biofilm biomass than wild-type (WT) strain D39 did. Complementation of these strains with luxS, either in a plasmid or integrated as a single copy in the genome, restored their biofilm level to that of the WT. Moreover, a soluble factor secreted by WT strain D39 or purified AI-2 restored the biofilm phenotype of D39ΔluxS. Our results also demonstrate that during the early mid-log phase of growth, LuxS regulates the transcript levels of lytA, which encodes an autolysin previously implicated in biofilms, and also the transcript levels of ply, which encodes the pneumococcal pneumolysin. In conclusion, the luxS-controlled QS system is a key regulator of early biofilm formation by S. pneumoniae strain D39.
Collapse
|
60
|
Bryant AE, Stevens DL. Clostridial myonecrosis: new insights in pathogenesis and management. Curr Infect Dis Rep 2011; 12:383-91. [PMID: 21308521 DOI: 10.1007/s11908-010-0127-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clostridial myonecrosis remains an important cause of human morbidity and mortality worldwide. Although traumatic gas gangrene can be readily diagnosed from clinical findings and widely available technologies, spontaneous gas gangrene is more insidious, and gynecologic infections due to Clostridium sordellii progress so rapidly that death often precedes diagnosis. In each case, extensive tissue destruction and the subsequent systemic manifestations are mediated directly and indirectly by potent bacterial exotoxins. The management triumvirate of timely diagnosis, thorough surgical removal of necrotic tissue, and treatment with antibiotics that inhibit toxin synthesis remains the gold standard of care. Yet, despite these measures, mortality remains 30% to 100% and survivors often must cope with life-altering amputations. Recent insights regarding the genetic regulation of toxin production, the molecular mechanisms of toxin-induced host cell dysfunction, and the roles of newly described toxins in pathogenesis suggest that novel prevention, diagnostic, and treatment modalities may be on the horizon for these devastating infections.
Collapse
Affiliation(s)
- Amy E Bryant
- Infectious Diseases Section, Veterans Affairs Medical Center, 500 West Fort Street (Bldg 45), Boise, ID, 83702, USA,
| | | |
Collapse
|
61
|
The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 2011; 79:2451-9. [PMID: 21464088 DOI: 10.1128/iai.00169-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens type A strains producing enterotoxin (CPE) cause one of the most common bacterial food-borne illnesses, as well as many cases of non-food-borne human gastrointestinal disease. Recent studies have shown that an Agr-like quorum-sensing system controls production of chromosomally encoded alpha-toxin and perfringolysin O by C. perfringens, as well as sporulation by Clostridium botulinum and Clostridium sporogenes. The current study explored whether the Agr-like quorum-sensing system also regulates sporulation and production of two plasmid-encoded toxins (CPE and beta2 toxin) that may contribute to the pathogenesis of non-food-borne human gastrointestinal disease strain F5603. An isogenic agrB null mutant was inhibited for production of beta2 toxin during vegetative growth and in sporulating culture, providing the first evidence that, in C. perfringens, this system can control production of plasmid-encoded toxins as well as chromosomally encoded toxins. This mutant also showed reduced production of alpha-toxin and perfringolysin O during vegetative growth. Importantly, when cultured in sporulation medium, the mutant failed to efficiently form spores and was blocked for CPE production. Complementation partially or fully reversed all phenotypic changes in the mutant, confirming that they were specifically due to inactivation of the agr locus. Western blots suggest that this loss of sporulation and sporulation-specific CPE production for the agrB null mutant involves, at least in part, Agr-mediated regulation of production of Spo0A and alternative sigma factors, which are essential for C. perfringens sporulation.
Collapse
|
62
|
The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. mBio 2011; 2:e00338-10. [PMID: 21264065 PMCID: PMC3025664 DOI: 10.1128/mbio.00338-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens vegetative cells cause both histotoxic infections (e.g., gas gangrene) and diseases originating in the intestines (e.g., hemorrhagic necrotizing enteritis or lethal enterotoxemia). Despite their medical and veterinary importance, the molecular pathogenicity of C. perfringens vegetative cells causing diseases of intestinal origin remains poorly understood. However, C. perfringens beta toxin (CPB) was recently shown to be important when vegetative cells of C. perfringens type C strain CN3685 induce hemorrhagic necrotizing enteritis and lethal enterotoxemia. Additionally, the VirS/VirR two-component regulatory system was found to control CPB production by CN3685 vegetative cells during aerobic infection of cultured enterocyte-like Caco-2 cells. Using an isogenic virR null mutant, the current study now reports that the VirS/VirR system also regulates CN3685 cytotoxicity during infection of Caco-2 cells under anaerobic conditions, as found in the intestines. More importantly, the virR mutant lost the ability to cause hemorrhagic necrotic enteritis in rabbit small intestinal loops. Western blot analyses demonstrated that the VirS/VirR system mediates necrotizing enteritis, at least in part, by controlling in vivo CPB production. In addition, vegetative cells of the isogenic virR null mutant were, relative to wild-type vegetative cells, strongly attenuated in their lethality in a mouse enterotoxemia model. Collectively, these results identify the first regulator of in vivo pathogenicity for C. perfringens vegetative cells causing disease originating in the complex intestinal environment. Since VirS/VirR also mediates histotoxic infections, this two-component regulatory system now assumes a global role in regulating a spectrum of infections caused by C. perfringens vegetative cells.
Collapse
|
63
|
Affiliation(s)
- Matthew Thoendel
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| | - Jeffrey S. Kavanaugh
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| | - Caralyn E. Flack
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| | - Alexander R. Horswill
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| |
Collapse
|
64
|
Abstract
Strain engineering of bacteria has been accomplished by many methods where mobile DNA elements (transposons) are inserted into the genomic DNA of a host organism. This chapter addresses engineering with transposable elements complexed with transposase enzyme. In traditional techniques, transposon and transposase are introduced as distinct entities. The method of mobilization into cells is often unique for each class of DNA element, and for each organism. The discovery of pre-formed transposon/transposase complexes (transposomes) that can be electroporated into living cells opens a new gateway to strain mutagenesis. Described are the preparation of electrocompetent bacterial cells and their transformation with transposomes. Once within the cell, the transposome is equipped to randomly insert its DNA into chromosomes without needing additional components. Ocr, a T7 phage protein that inhibits the host restriction of electroporated DNAs, will also be discussed as an adjunct reagent that can widen the applicability of transposomes. The transposomes used in most of the applications are commercially available, but also described is the process of making custom transposon DNAs and transposomes. The techniques are not limited to bacterial strain engineering per se and may be adapted for single-cell eukaryotes as well.
Collapse
Affiliation(s)
- Les M Hoffman
- Epicentre Biotechnologies, an Illumina company, Madison, WI, USA.
| |
Collapse
|
65
|
Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol 2010; 77:471-8. [PMID: 21097603 DOI: 10.1128/aem.01536-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is a Gram-positive anaerobic pathogen which causes many diseases in humans and animals. While some genetic tools exist for working with C. perfringens, a tightly regulated, inducible promoter system is currently lacking. Therefore, we constructed a plasmid-based promoter system that provided regulated expression when lactose was added. This plasmid (pKRAH1) is an Escherichia coli-C. perfringens shuttle vector containing the gene encoding a transcriptional regulator, BgaR, and a divergent promoter upstream of gene bgaL (bgaR-P(bgaL)). To measure transcription at the bgaL promoter in pKRAH1, the E. coli reporter gene gusA, encoding β-glucuronidase, was placed downstream of the P(bgaL) promoter to make plasmid pAH2. When transformed into three strains of C. perfringens, pAH2 exhibited lactose-inducible expression. C. perfringens strain 13, a commonly studied strain, has endogenous β-glucuronidase activity. We mutated gene bglR, encoding a putative β-glucuronidase, and observed an 89% decrease in endogenous activity with no lactose. This combination of a system for regulated gene expression and a mutant of strain 13 with low β-glucuronidase activity are useful tools for studying gene regulation and protein expression in an important pathogenic bacterium. We used this system to express the yfp-pilB gene, comprised of a yellow fluorescent protein (YFP)-encoding gene fused to an assembly ATPase gene involved in type IV pilus-dependent gliding motility in C. perfringens. Expression in the wild-type strain showed that YFP-PilB localized mostly to the poles of cells, but in a pilC mutant it localized throughout the cell, demonstrating that the membrane protein PilC is required for polar localization of PilB.
Collapse
|
66
|
Cooksley CM, Davis IJ, Winzer K, Chan WC, Peck MW, Minton NP. Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 2010; 76:4448-60. [PMID: 20453132 PMCID: PMC2897414 DOI: 10.1128/aem.03038-09] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/25/2010] [Indexed: 11/20/2022] Open
Abstract
A significant number of genome sequences of Clostridium botulinum and related species have now been determined. In silico analysis of these data revealed the presence of two distinct agr loci (agr-1 and agr-2) in all group I strains, each encoding putative proteins with similarity to AgrB and AgrD of the well-studied Staphylococcus aureus agr quorum sensing system. In S. aureus, a small diffusible autoinducing peptide is generated from AgrD in a membrane-located processing event that requires AgrB. Here the characterization of both agr loci in the group I strain C. botulinum ATCC 3502 and of their homologues in a close relative, Clostridium sporogenes NCIMB 10696, is reported. In C. sporogenes NCIMB 10696, agr-1 and agr-2 appear to form transcriptional units that consist of agrB, agrD, and flanking genes of unknown function. Several of these flanking genes are conserved in Clostridium perfringens. In agreement with their proposed role in quorum sensing, both loci were maximally expressed during late-exponential-phase growth. Modulation of agrB expression in C. sporogenes was achieved using antisense RNA, whereas in C. botulinum, insertional agrD mutants were generated using ClosTron technology. In comparison to the wild-type strains, these strains exhibited drastically reduced sporulation and, for C. botulinum, also reduced production of neurotoxin, suggesting that both phenotypes are controlled by quorum sensing. Interestingly, while agr-1 appeared to control sporulation, agr-2 appeared to regulate neurotoxin formation.
Collapse
Affiliation(s)
- Clare M. Cooksley
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Ian J. Davis
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Klaus Winzer
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Weng C. Chan
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Michael W. Peck
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Nigel P. Minton
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| |
Collapse
|
67
|
Mallozzi M, Viswanathan VK, Vedantam G. Spore-forming Bacilli and Clostridia in human disease. Future Microbiol 2010; 5:1109-23. [DOI: 10.2217/fmb.10.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Gram-positive spore-forming bacteria in the Firmicute phylum are important members of the human commensal microbiota, which, in rare cases, cause opportunistic infections. Other spore-formers, however, have evolved to become dedicated pathogens that can cause a striking variety of diseases. Despite variations in disease presentation, the etiologic agent is often the spore, with bacterially produced toxins playing a central role in the pathophysiology of infection. This review will focus on the specific diseases caused by spores of the Clostridia and Bacilli.
Collapse
Affiliation(s)
- Michael Mallozzi
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | - VK Viswanathan
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | | |
Collapse
|
68
|
McClane B. Clostridium perfringens type C isolates rapidly upregulate their toxin production upon contact with host cells: new insights into virulence? Virulence 2010; 1:97-100. [PMID: 21178424 PMCID: PMC3265754 DOI: 10.4161/viru.1.2.10679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 11/19/2022] Open
Abstract
Since tetanus was first described by Hippocrates, the devastating diseases caused by pathogenic members of the gram-positive, anaerobic sporeforming genus Clostridium have ranked among the most dreaded afflictions of humans and domestic animals. The quintessential hallmark of all clostridial diseases is the involvement of potent protein toxins. However, except for some foodborne botulism cases, clostridial diseases are not intoxications involving preformed toxins; rather, these illnesses are true infections involving toxin production by bacteria growing inside the host.
Collapse
Affiliation(s)
- Bruce McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
69
|
Uzal FA, Vidal JE, McClane BA, Gurjar AA. Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases. THE OPEN TOXINOLOGY JOURNAL 2010; 2:24-42. [PMID: 24511335 PMCID: PMC3917546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clostridium perfringens is a gram-positive anaerobic rod that is classified into 5 toxinotypes (A, B, C, D, and E) according to the production of 4 major toxins, namely alpha (CPA), beta (CPB), epsilon (ETX) and iota (ITX). However, this microorganism can produce up to 16 toxins in various combinations, including lethal toxins such as perfringolysin O (PFO), enterotoxin (CPE), and beta2 toxin (CPB2). Most diseases caused by this microorganism are mediated by one or more of these toxins. The role of CPA in intestinal disease of mammals is controversial and poorly documented, but there is no doubt that this toxin is essential in the production of gas gangrene of humans and several animal species. CPB produced by C. perfringens types B and C is responsible for necrotizing enteritis and enterotoxemia mainly in neonatal individuals of several animal species. ETX produced by C. perfringens type D is responsible for clinical signs and lesions of enterotoxemia, a predominantly neurological disease of sheep and goats. The role of ITX in disease of animals is poorly understood, although it is usually assumed that the pathogenesis of intestinal diseases produced by C. perfringens type E is mediated by this toxin. CPB2, a necrotizing and lethal toxin that can be produced by all types of C. perfringens, has been blamed for disease in many animal species, but little information is currently available to sustain or rule out this claim. CPE is an important virulence factor for C. perfringens type A gastrointestinal disease in humans and dogs; however, the data implicating CPE in other animal diseases remains ambiguous. PFO does not seem to play a direct role as the main virulence factor for animal diseases, but it may have a synergistic role with CPA-mediated gangrene and ETX-mediated enterotoxemia. The recent improvement of animal models for C. perfringens infection and the use of toxin gene knock-out mutants have demonstrated the specific pathogenic role of several toxins of C. perfringens in animal disease. These research tools are helping us to establish the role of each C. perfringens toxin in animal disease, to investigate the in vivo mechanism of action of these toxins, and to develop more effective vaccines against diseases produced by these microorganisms.
Collapse
Affiliation(s)
- F. A. Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA,Address correspondence to this author at the California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA;
| | - J. E. Vidal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - B. A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA,Department of Molecular Virology and Microbiology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - A. A. Gurjar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
70
|
A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile. Appl Environ Microbiol 2009; 76:1103-9. [PMID: 20023081 DOI: 10.1128/aem.02525-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the molecular basis of Clostridium difficile infection is a prerequisite to the development of effective countermeasures. Although there are methods for constructing gene-specific mutants of C. difficile, currently there is no effective method for generating libraries of random mutants. In this study, we developed a novel mariner-based transposon system for in vivo random mutagenesis of C. difficile R20291, the BI/NAP1/027 epidemic strain at the center of the C. difficile outbreaks in Stoke Mandeville, United Kingdom, in 2003 to 2004 and 2004 to 2005. Transposition occurred at a frequency of 4.5 (+/-0.4) x 10(-4) per cell to give stable insertions at random genomic loci, which were defined only by the nucleotide sequence TA. Furthermore, mutants with just a single transposon insertion were generated in an overwhelming majority (98.3% in this study). Phenotypic screening of a C. difficile R20291 random mutant library yielded a sporulation/germination-defective clone with an insertion in the germination-specific protease gene cspBA and an auxotroph with an insertion in the pyrimidine biosynthesis gene pyrB. These results validate our mariner-based transposon system for use in forward genetic studies of C. difficile.
Collapse
|
71
|
Brinkac LM, Davidsen T, Beck E, Ganapathy A, Caler E, Dodson RJ, Durkin AS, Harkins DM, Lorenzi H, Madupu R, Sebastian Y, Shrivastava S, Thiagarajan M, Orvis J, Sundaram JP, Crabtree J, Galens K, Zhao Y, Inman JM, Montgomery R, Schobel S, Galinsky K, Tanenbaum DM, Resnick A, Zafar N, White O, Sutton G. Pathema: a clade-specific bioinformatics resource center for pathogen research. Nucleic Acids Res 2009; 38:D408-14. [PMID: 19843611 PMCID: PMC2808925 DOI: 10.1093/nar/gkp850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms.
Collapse
|