51
|
Maezato Y, Daugherty A, Dana K, Soo E, Cooper C, Tachdjian S, Kelly RM, Blum P. VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. RNA (NEW YORK, N.Y.) 2011; 17:1381-1392. [PMID: 21622901 PMCID: PMC3138573 DOI: 10.1261/rna.2679911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
The phylum Crenarchaeota includes hyperthermophilic micro-organisms subjected to dynamic thermal conditions. Previous transcriptomic studies of Sulfolobus solfataricus identified vapBC6 as a heat-shock (HS)-inducible member of the Vap toxin-antitoxin gene family. In this study, the inactivation of the vapBC6 operon by targeted gene disruption produced two recessive phenotypes related to fitness, HS sensitivity and a heat-dependent reduction in the rate of growth. In-frame vapBC6 deletion mutants were analyzed to examine the respective roles of each protein. Since vapB6 transcript abundance was elevated in the vapC6 deletion, the VapC6 toxin appears to regulate abundance of its cognate antitoxin. In contrast, vapC6 transcript abundance was reduced in the vapB6 deletion. A putative intergenic terminator may underlie these observations by coordinating vapBC6 expression. As predicted by structural modeling, recombinant VapC6 produced using chaperone cosynthesis exhibited heat-dependent ribonucleolytic activity toward S. solfataricus total RNA. This activity could be blocked by addition of preheated recombinant VapB6. In vivo transcript targets were identified by assessing the relative expression of genes that naturally respond to thermal stress in VapBC6-deficient cells. Preferential increases were observed for dppB-1 and tetR, and preferential decreases were observed for rpoD and eIF2 gamma. Specific VapC6 ribonucleolytic action could also be demonstrated in vitro toward RNAs whose expression increased in the VapBC6-deficient strain during heat shock. These findings provide a biochemical mechanism and identify cellular targets underlying VapBC6-mediated control over microbial growth and survival at temperature extremes.
Collapse
Affiliation(s)
- Yukari Maezato
- Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | - Amanda Daugherty
- Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | - Karl Dana
- Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | - Edith Soo
- Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | - Charlotte Cooper
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Sabrina Tachdjian
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Paul Blum
- Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| |
Collapse
|
52
|
Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H, Naismith JH, Sdano M, Peng N, She Q, Copié V, Young MJ, White MF, Lawrence CM. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem 2011; 286:21643-56. [PMID: 21507944 PMCID: PMC3122221 DOI: 10.1074/jbc.m111.238485] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 04/08/2011] [Indexed: 12/26/2022] Open
Abstract
In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea.
Collapse
Affiliation(s)
| | - Melina Kerou
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom, and
| | - Susan K. Brumfield
- From the Thermal Biology Institute
- Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Shirley Graham
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom, and
| | - Huanting Liu
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom, and
| | - James H. Naismith
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom, and
| | - Matthew Sdano
- From the Thermal Biology Institute
- Departments of Chemistry and Biochemistry and
| | - Nan Peng
- the Department of Biology, Archaea Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Qunxin She
- the Department of Biology, Archaea Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Valérie Copié
- From the Thermal Biology Institute
- Departments of Chemistry and Biochemistry and
| | - Mark J. Young
- From the Thermal Biology Institute
- Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Malcolm F. White
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom, and
| | - C. Martin Lawrence
- From the Thermal Biology Institute
- Departments of Chemistry and Biochemistry and
| |
Collapse
|
53
|
Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011; 35:577-608. [PMID: 21265868 DOI: 10.1111/j.1574-6976.2011.00265.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
54
|
Jolley CC, Douglas T. Ion accumulation in a protein nanocage: finding noisy temporal sequences using a genetic algorithm. Biophys J 2011; 99:3385-93. [PMID: 21081087 DOI: 10.1016/j.bpj.2010.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022] Open
Abstract
Many pathogenic bacteria are able to survive attack by the host's immune system because of antioxidant systems that mitigate the effects of reactive oxygen species. Dps is a hollow 12-subunit protein nanocage that prevents oxidative damage by oxidizing and sequestering intracellular Fe(2+); the resulting Fe(3+) forms an iron oxyhydroxide nanoparticle in the cage interior. Charged sites on the protein nanocage create an electrostatic gradient that guides ions through well-defined pores that connect the cage interior with the surrounding solution and toward nucleation sites on the cage interior. In this study, we use all-atom molecular dynamics to simulate the motion of simple cations into the dodecameric cage formed by the Dps protein from Listeria monocytogenes. Ion trajectories are analyzed by using a novel, to our knowledge, genetic algorithm to determine the temporal sequence of ion-protein interactions. Ions enter Dps through well-defined pores at the ferritinlike C(3) axes, with negatively-charged residues on the outside of the cage forming a fairly well-defined entrance pathway. This method of trajectory analysis may be broadly applicable in situations where the spatial localization of ions or other small molecules is electrostatically driven by a biomolecule.
Collapse
Affiliation(s)
- Craig C Jolley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| | | |
Collapse
|
55
|
Pedone E, Limauro D, D’Ambrosio K, De Simone G, Bartolucci S. Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cell Mol Life Sci 2010; 67:3797-814. [PMID: 20625793 PMCID: PMC11115506 DOI: 10.1007/s00018-010-0449-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
The Thioredoxin (Trx) fold is a versatile protein scaffold consisting of a four-stranded β-sheet surrounded by three α-helices. Various insertions are possible on this structural theme originating different proteins, which show a variety of functions and specificities. During evolution, the assembly of different Trx fold domains has been used many times to build new multi-domain proteins able to perform a large number of catalytic functions. To clarify the interaction mode of the different Trx domains within a multi-domain structure and how their combination can affect catalytic performances, in this review, we report on a structural and functional analysis of the most representative proteins containing more than one catalytically active Trx domain: the eukaryotic protein disulfide isomerases (PDIs), the thermophilic protein disulfide oxidoreductases (PDOs) and the hybrid peroxiredoxins (Prxs).
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Katia D’Ambrosio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Simonetta Bartolucci
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| |
Collapse
|
56
|
Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20885930 PMCID: PMC2946596 DOI: 10.1155/2010/842639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/26/2010] [Indexed: 11/18/2022]
Abstract
The general importance of the Fe-S cluster prosthetic groups in biology is primarily attributable to specific features of iron and sulfur chemistry, and the assembly and interplay of the Fe-S cluster core with the surrounding protein is the key to in-depth understanding of the underlying mechanisms. In the aerobic and thermoacidophilic archaea, zinc-containing ferredoxin is abundant in the cytoplasm, functioning as a key electron carrier, and many Fe-S enzymes are produced to participate in the central metabolic and energetic pathways. De novo formation of intracellular Fe-S clusters does not occur spontaneously but most likely requires the operation of a SufBCD complex of the SUF machinery, which is the only Fe-S cluster biosynthesis system conserved in these archaea. In this paper, a brief introduction to the buildup and maintenance of the intracellular Fe-S world in aerobic and hyperthermoacidophilic crenarchaeotes, mainly Sulfolobus, is given in the biochemical, genetic, and evolutionary context.
Collapse
|
57
|
Robinson MW, Hutchinson AT, Dalton JP, Donnelly S. Peroxiredoxin: a central player in immune modulation. Parasite Immunol 2010; 32:305-13. [PMID: 20500659 DOI: 10.1111/j.1365-3024.2010.01201.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxiredoxins (Prx) are a family of anti-oxidants that protect cells from metabolically produced reactive oxygen species (ROS). The presence of these enzymes in the secretomes of many parasitic helminths suggests they provide protection against ROS released by host immune effector cells. However, we recently reported that helminth-secreted Prx also contribute to the development of Th2-responses via a mechanism involving the induction of alternatively activated macrophages. In this review, we discuss the role helminth Prx may play in modulating the immune responses of their hosts.
Collapse
Affiliation(s)
- M W Robinson
- Institute for the Biotechnology of Infectious Diseases (IBID), University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
58
|
Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 2010; 28:839-48. [PMID: 20627124 DOI: 10.1016/j.biotechadv.2010.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes.
Collapse
Affiliation(s)
- Alvaro Orell
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, and Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
59
|
Lemire J, Milandu Y, Auger C, Bignucolo A, Appanna VP, Appanna VD. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiol Lett 2010; 309:170-7. [PMID: 20597986 DOI: 10.1111/j.1574-6968.2010.02034.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The role of alpha-ketoglutarate (KG) in the detoxification of reactive oxygen species (ROS) has only recently begun to be appreciated. This ketoacid neutralizes ROS in an NADPH-independent manner with the concomitant formation of succinate and CO(2). To further probe this intriguing attribute of KG in living systems, we have evaluated the significance of histidine metabolism in the model organism, Pseudomonas fluorescens, challenged by hydrogen peroxide (H(2)O(2)). Here, we show that this amino acid does contribute to KG homeostasis and appears to be earmarked for the production of KG during oxidative stress. Both the NAD- and the NADP-dependent glutamate dehydrogenases were upregulated in the stressed cells despite the sharp decline in the activities of numerous enzymes mediating the tricarboxylic acid cycle and oxidative phosphorylation. Enzymes such as isocitrate dehydrogenase-NAD dependent, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, Complex I, and Complex IV were severely affected in the P. fluorescens grown in the presence of H(2)O(2). Studies with fluorocitrate, a potent inhibitor of citrate metabolism, clearly revealed that histidine was preferentially utilized in the production of KG in the H(2)O(2)-challenged cells. Regulation experiments also helped confirm that the metabolic reprogramming, resulting in the enhanced production of KG was induced by H(2)O(2) stress. These data further establish the pivotal role that KG plays in antioxidative defense.
Collapse
Affiliation(s)
- Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | | | | | | | | |
Collapse
|
60
|
Selective depletion of Sulfolobus solfataricus transcription factor E under heat shock conditions. J Bacteriol 2010; 192:2887-91. [PMID: 20363950 DOI: 10.1128/jb.01534-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaeal transcriptional machinery is similar to that of eukaryotes. We studied the fates of various components of the Sulfolobus solfataricus transcriptional apparatus under different stresses and found that in cells incubated at 90 degrees C for 1 h, transcription factor E (TFE) is selectively depleted, but its mRNA levels are increased. We discuss the implications of these findings.
Collapse
|
61
|
Berkner S, Wlodkowski A, Albers SV, Lipps G. Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 2010; 14:249-59. [PMID: 20221889 PMCID: PMC2858796 DOI: 10.1007/s00792-010-0304-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/05/2010] [Indexed: 11/28/2022]
Abstract
Central to genetic work in any organism are the availability of a range of inducible and constitutive promoters. In this work we studied several promoters for use in the hyperthermophilic archaeon Sulfolobus acidocaldarius. The promoters were tested with the aid of an E. coli-Sulfolobus shuttle vector in reporter gene experiments. As the most suitable inducible promoter a maltose inducible promoter was identified. It comprises 266 bp of the sequence upstream of the gene coding for the maltose/maltotriose binding protein (mbp, Saci_1165). Induction is feasible with either maltose or dextrin at concentrations of 0.2-0.4%. The highest increase in expression (up to 17-fold) was observed in late exponential and stationary phase around 30-50 h after addition of dextrin. Whereas in the presence of glucose and xylose higher basal activity and reduced inducibility with maltose is observed, sucrose can be used in the growth medium additionally without affecting the basal activity or the inducibility. The minimal promoter region necessary could be narrowed down to 169 bp of the upstream sequence. The ABCE1 protein from S. solfataricus was successfully expressed under control of the inducible promoter with the shuttle vector pC and purified from the S. acidocaldarius culture with a yield of about 1 mg L(-1) culture. In addition we also determined the promoter strength of several constitutive promoters.
Collapse
Affiliation(s)
- Silvia Berkner
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | | | | | | |
Collapse
|