51
|
Luo Y, Liu X, Jiang T, Liao P, Fu W. Dual-aptamer-based biosensing of toxoplasma antibody. Anal Chem 2013; 85:8354-60. [PMID: 23899133 DOI: 10.1021/ac401755s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A panel of seven aptamers to antitoxoplasma IgG is first discovered in this report. The aptamers are selected using systematic evolution of ligands by exponential enrichment (SELEX) technology, cloned, and identified by sequencing and affinity assay. Among them, two aptamers (TGA6 and TGA7) with the highest affinities are employed as capture probe and detection probe in developing a quantum dots-labeled dual aptasensor (Q-DAS). In the presence of antitoxoplasma IgG, an aptamer-protein-aptamer sandwich complex (TGA6-IgG-TGA7) is formed and captured on a multiwell microplate, whose fluorescence can be read out using quantum dots as the fluorescence label, ensuring highly sensitive and specific sensing of antitoxoplasma IgG. The operating characteristics of the proposed assay are guaranteed using dual aptamers as the recognizing probes when compared with antibody-based immunoassay. Q-DAS has a linearity within the range of 0.5-500 IU with a lowest detection of 0.1 IU. Receiver operating curves of 212 clinical samples show a 94.8% sensitivity and 95.7% specificity when the cutoff value is set as 6.5 IU, indicating the proposed Q-DAS is a promising assay in large-scale screening of toxoplasmosis.
Collapse
Affiliation(s)
- Yang Luo
- Department of Laboratory Medicine, Southwest Hospital, the Third Military Medical University, Chong Qing 400038, China
| | | | | | | | | |
Collapse
|
52
|
Inhibition of hepatitis C virus infection by DNA aptamer against envelope protein. Antimicrob Agents Chemother 2013; 57:4937-44. [PMID: 23877701 DOI: 10.1128/aac.00897-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) envelope protein (E1E2) is essential for virus binding to host cells. Aptamers have been demonstrated to have strong promising applications in drug development. In the current study, a cDNA fragment encoding the entire E1E2 gene of HCV was cloned. E1E2 protein was expressed and purified. Aptamers for E1E2 were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and the antiviral actions of the aptamers were examined. The mechanism of their antiviral activity was investigated. The data show that selected aptamers for E1E2 specifically recognize the recombinant E1E2 protein and E1E2 protein from HCV-infected cells. CD81 protein blocks the binding of aptamer E1E2-6 to E1E2 protein. Aptamers against E1E2 inhibit HCV infection in an infectious cell culture system although they have no effect on HCV replication in a replicon cell line. Beta interferon (IFN-β) and IFN-stimulated genes (ISGs) are not induced in virus-infected hepatocytes with aptamer treatment, suggesting that E1E2-specific aptamers do not induce innate immunity. E2 protein is essential for the inhibition of HCV infection by aptamer E1E2-6, and the aptamer binding sites are located in E2. Q412R within E1E2 is the major resistance substitution identified. The data indicate that an aptamer against E1E2 exerts its antiviral effects through inhibition of virus binding to host cells. Aptamers against E1E2 can be used with envelope protein to understand the mechanisms of HCV entry and fusion. The aptamers may hold promise for development as therapeutic drugs for hepatitis C patients.
Collapse
|
53
|
Inhibition of hepatitis C virus infection by DNA aptamer against envelope protein. Antimicrob Agents Chemother 2013. [PMID: 23877701 DOI: 10.1128/aac.00897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) envelope protein (E1E2) is essential for virus binding to host cells. Aptamers have been demonstrated to have strong promising applications in drug development. In the current study, a cDNA fragment encoding the entire E1E2 gene of HCV was cloned. E1E2 protein was expressed and purified. Aptamers for E1E2 were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and the antiviral actions of the aptamers were examined. The mechanism of their antiviral activity was investigated. The data show that selected aptamers for E1E2 specifically recognize the recombinant E1E2 protein and E1E2 protein from HCV-infected cells. CD81 protein blocks the binding of aptamer E1E2-6 to E1E2 protein. Aptamers against E1E2 inhibit HCV infection in an infectious cell culture system although they have no effect on HCV replication in a replicon cell line. Beta interferon (IFN-β) and IFN-stimulated genes (ISGs) are not induced in virus-infected hepatocytes with aptamer treatment, suggesting that E1E2-specific aptamers do not induce innate immunity. E2 protein is essential for the inhibition of HCV infection by aptamer E1E2-6, and the aptamer binding sites are located in E2. Q412R within E1E2 is the major resistance substitution identified. The data indicate that an aptamer against E1E2 exerts its antiviral effects through inhibition of virus binding to host cells. Aptamers against E1E2 can be used with envelope protein to understand the mechanisms of HCV entry and fusion. The aptamers may hold promise for development as therapeutic drugs for hepatitis C patients.
Collapse
|
54
|
Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: molecules of great potential. Biotechnol Adv 2013; 31:1260-74. [PMID: 23632375 DOI: 10.1016/j.biotechadv.2013.04.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/27/2013] [Accepted: 04/19/2013] [Indexed: 01/08/2023]
Abstract
Aptamers emerged over 20 years ago as a class of nucleic acids able to recognize specific targets. Today, aptamer-related studies constitute a large and important field of biotechnology. Functional oligonucleotides have proved to be a versatile tool in biomedical research due to the ease of synthesis, a wide range of potentially recognized molecular targets and the simplicity of selection. Similarly to antibodies, aptamers can be used to detect or isolate specific molecules, as well as to act as targeting and therapeutic agents. In this review we present different approaches to aptamer application in nanobiotechnology, diagnostics and medicine.
Collapse
Affiliation(s)
- Filip Radom
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
55
|
Han CY, Yue LL, Tai LY, Zhou L, Li XY, Xing GH, Yang XG, Sun MS, Pan WS. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro. Int J Nanomedicine 2013; 8:1541-9. [PMID: 23626467 PMCID: PMC3632632 DOI: 10.2147/ijn.s43627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) serves an important function in the proliferation of tumors in humans and is an effective target for the treatment of cancer. In this paper, we studied the targeting characteristics of small peptides (AEYLR, EYINQ, and PDYQQD) that were derived from three major autophosphorylation sites of the EGFR C-terminus domain in vitro. These small peptides were labeled with fluorescein isothiocyanate (FITC) and used the peptide LARLLT as a positive control, which bound to putative EGFR selected from a virtual peptide library by computer-aided design, and the independent peptide RALEL as a negative control. Analyses with flow cytometry and an internalization assay using NCI-H1299 and K562 with high EGFR and no EGFR expression, respectively, indicated that FITC-AEYLR had high EGFR targeting activity. Biotin-AEYLR that was specifically bound to human EGFR proteins demonstrated a high affinity for human non-small-cell lung tumors. We found that AEYLR peptide-conjugated, nanostructured lipid carriers enhanced specific cellular uptake in vitro during a process that was apparently mediated by tumor cells with high-expression EGFR. Analysis of the MTT assay indicated that the AEYLR peptide did not significantly stimulate or inhibit the growth activity of the cells. These findings suggest that, when mediated by EGFR, AEYLR may be a potentially safe and efficient delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy.
Collapse
Affiliation(s)
- Cui-yan Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev 2013; 113:2842-62. [PMID: 23509854 PMCID: PMC5519293 DOI: 10.1021/cr300468w] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Michael J. Donovan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
57
|
Wang R, Zhao J, Jiang T, Kwon YM, Lu H, Jiao P, Liao M, Li Y. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods 2013; 189:362-9. [PMID: 23523887 DOI: 10.1016/j.jviromet.2013.03.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/10/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
Abstract
Aptamers are artificial oligonucleotides (DNA or RNA) that can bind to a broad range of targets. In diagnostic and detection assays, aptamers represent an alternative to antibodies as recognition agents. The objective of this study was to select and characterize DNA aptamers that can specifically bind to avian influenza virus (AIV) H5N1 based on Systematic Evolution of Ligands by EXponential enrichment (SELEX) and surface plasmon resonance (SPR). The selection was started with an ssDNA (single-stranded DNA) library of 10¹⁴ molecules randomized at central 74 t. For the first four selection cycles, purified hemagglutinin (HA) from AIV H5N1 was used as the target protein, and starting from the fifth cycle, entire H5N1 virus was applied in order to improve the specificity. After 13 rounds of selection, DNA aptamers that bind to the H5N1 were isolated and three aptamer sequences were characterized further by sequencing and affinity binding. Dot blot analysis was employed for monitoring the SELEX process and conducting the preliminary tests on the affinity and specificity of aptamers. With the increasing number of selection cycles, a steady increase in the color density was observed, indicating that the aptamers with good binding affinity to the target were enriched. The best aptamer candidate had a dissociation constant (KD) of 4.65 M as determined by SPR, showing a strong binding between the HA and the selected aptamer. The specificity was determined by testing non-target AIV H5N2, H5N3, H5N9, H9N2 and H7N2. Negligible cross-reactivity confirmed the high specificity of selected aptamers. The developed aptamer was then applied for detection of AIV H5N1 in spiked poultry swab samples. The obtained aptamers could open up possibilities for the development of aptamer-based medical diagnostics and detection assays for AIV H5N1. (The H5N1 used in this study was inactivated virus.).
Collapse
Affiliation(s)
- Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Park JH, Jee MH, Kwon OS, Keum SJ, Jang SK. Infectivity of hepatitis C virus correlates with the amount of envelope protein E2: development of a new aptamer-based assay system suitable for measuring the infectious titer of HCV. Virology 2013; 439:13-22. [PMID: 23485371 DOI: 10.1016/j.virol.2013.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/28/2012] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
Abstract
Various forms of hepatitis C virus (HCV)-related particles are produced from HCV-infected cells. Measuring infectivity of a HCV sample with the conventional 'foci counting method' is laborious and time-consuming. Moreover, the infectivity of a HCV sample does not correlate with the amount of viral RNA that can be measured by real-time RT-PCR. Here we report a new assay suitable for quantifying infectious HCV particles using aptamers against HCV E2, which is named 'Enzyme Linked Apto-Sorbent Assay (ELASA)'. The readout value of HCV ELASA linearly correlates with the infectious dose of an HCV sample, but not with the amount of HCV RNA. We also demonstrated that the activities of anti-HCV drugs can be monitored by HCV ELASA. Therefore, HCV ELASA is a quick-and-easy method to quantify infectious units of HCV stocks and to monitor efficacies of potential anti-HCV drugs.
Collapse
Affiliation(s)
- Ji Hoon Park
- Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Science, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
59
|
Kamili S, Drobeniuc J, Araujo AC, Hayden TM. Laboratory diagnostics for hepatitis C virus infection. Clin Infect Dis 2012; 55 Suppl 1:S43-8. [PMID: 22715213 DOI: 10.1093/cid/cis368] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Identification of prevalent infection by hepatitis C virus (HCV) is based serologically on detecting anti-HCV immunoglobulin G, using immunoassays, immunoblot assays, and, more recently, immunochromatography-based rapid tests. None discriminate between active and resolved HCV infection. Tests for detecting HCV RNA identify active HCV infection but are costly. Serologic assays for HCV antigens have been developed and show potential for diagnosis of active HCV infection, and their performance characteristics are undergoing evaluation. The diagnosis of acute HCV infection without the demonstration of seroconversion remains elusive.
Collapse
Affiliation(s)
- Saleem Kamili
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
60
|
Aquino-Jarquin G, Toscano-Garibay JD. RNA aptamer evolution: two decades of SELEction. Int J Mol Sci 2011; 12:9155-71. [PMID: 22272125 PMCID: PMC3257122 DOI: 10.3390/ijms12129155] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/16/2022] Open
Abstract
Aptamers are small non-coding RNAs capable of recognizing, with high specificity and affinity, a wide variety of molecules in a manner that resembles antibodies. This class of nucleic acids is the resulting product of applying a well-established screening method known as SELEX. First developed in 1990, the SELEX process has become a powerful tool to select structured oligonucleotides for the recognition of targets, starting with small molecules, going through protein complexes until whole cells. SELEX has also evolved along with new technologies positioning itself as an alternative in the design of a new class of therapeutic agents in modern molecular medicine. This review is an historical follow-up of SELEX method over the two decades since its first appearance.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- Unit of Research on Oncological Disease, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico; E-Mail:
| | - Julia D. Toscano-Garibay
- Regenerative Medicine Laboratory. Research Direction, Mexico’s Juarez Hospital, Mexico City 07760, Mexico
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-55-57477560 ext.7476
| |
Collapse
|
61
|
Advances in binder identification and characterisation: the case of oligonucleotide aptamers. N Biotechnol 2011; 29:550-4. [PMID: 22178698 DOI: 10.1016/j.nbt.2011.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023]
Abstract
Aptamers represent an important class of synthetic protein binders useful for proteome-wide applications. The identification and characterisation of such molecules have been greatly facilitated by the development of Systematic Evolution of Ligands by Exponential Amplification (SELEX). Since then numerous advances and alternatives to improve efficient aptamer discovery have been reported. In the present manuscript we discuss the recent advances performed around the SELEX approach that may help to expand the availability of new aptamers and the subsequent applications that may be developed.
Collapse
|
62
|
Hamula CL, Zhang H, Li F, Wang Z, Chris Le X, Li XF. Selection and analytical applications of aptamers binding microbial pathogens. Trends Analyt Chem 2011; 30:1587-1597. [PMID: 32287535 PMCID: PMC7112775 DOI: 10.1016/j.trac.2011.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA aptamers specifically recognizing microbial cells and viruses have a range of analytical and therapeutic applications. This article describes recent advances in the development of aptamers targeting specific pathogens (e.g., live bacteria, whole viral particles, and virally-infected mammalian cells). Specific aptamers against pathogens have been used as affinity reagents to develop sandwich assays, to label and to image cells, to bind with cells for flow-cytometry analysis, and to act as probes for development of whole-cell biosensors. Future applications of aptamers to pathogens will benefit from recent advances in improved selection and new aptamers containing modified nucleotides, particularly slow off-rate modified aptamers (SOMAmers).
Collapse
Affiliation(s)
| | | | | | | | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
63
|
Cibiel A, Dupont DM, Ducongé F. Methods To Identify Aptamers against Cell Surface Biomarkers. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058655 DOI: 10.3390/ph4091216] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.
Collapse
Affiliation(s)
- Agnes Cibiel
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
| | - Daniel Miotto Dupont
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark; E-Mail: (D.M.D.)
| | - Frédéric Ducongé
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-169-867-766; Fax: +33-169-867-786
| |
Collapse
|
64
|
Ditzler MA, Bose D, Shkriabai N, Marchand B, Sarafianos SG, Kvaratskhelia M, Burke DH. Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Nucleic Acids Res 2011; 39:8237-47. [PMID: 21727088 PMCID: PMC3185408 DOI: 10.1093/nar/gkr381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A detailed understanding of how aptamers recognize biological binding partners is of considerable importance in the development of oligonucleotide therapeutics. For antiviral nucleic acid aptamers, current models predict a correlation between broad-spectrum inhibition of viral proteins and suppression of emerging viral resistance, but there is little understanding of how aptamer structures contribute to recognition specificity. We previously established that two independent single-stranded DNA aptamers, R1T and RT1t49(−5), are potent inhibitors of reverse transcriptases (RTs) from diverse branches of the primate lentiviral family, including HIV-1, HIV-2 and SIV(cpz). In contrast, class 1 RNA pseudoknots, such as aptamer T1.1, are specific for RTs from only a few viral clades. Here, we map the binding interfaces of complexes formed between RT and aptamers R1T, RT1t49(−5) and T1.1, using mass spectrometry-based protein footprinting of RT and hydroxyl radical footprinting of the aptamers. These complementary methods reveal that the broad-spectrum aptamers make contacts throughout the primer-template binding cleft of RT. The double-stranded stems of these aptamers closely mimic natural substrates near the RNase H domain, while their binding within the polymerase domain significantly differs from RT substrates. These results inform our perspective on how sustained, broad-spectrum inhibition of RT can be achieved by aptamers.
Collapse
Affiliation(s)
- Mark A Ditzler
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Nucleic acid aptamers targeting cell-surface proteins. Methods 2011; 54:215-25. [PMID: 21300154 DOI: 10.1016/j.ymeth.2011.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 12/21/2022] Open
Abstract
Aptamers are chemical antibodies that bind to their targets with high affinity and specificity. These short stretches of nucleic acids are identified using a repetitive in vitro selection and partitioning technology called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since the emergence of this technology, many modifications and variations have been introduced to enable the selection of specific ligands, even for implausible targets. For membrane protein, the selection scheme can be chosen depending upon the availability of the system, the protein characteristics and the application required. Aptamers have been generated for a significant number of disease-associated membrane proteins and have been shown to have considerable diagnostic and therapeutic importance. In this article, we review the SELEX process used for identification of aptamers that target cell-surface proteins and recapitulate their use as therapeutic and diagnostic reagents.
Collapse
|
66
|
Xu GF, Zhang KH. Application of nucleic acid aptamers for digestive disease research. Shijie Huaren Xiaohua Zazhi 2010; 18:3220-3225. [DOI: 10.11569/wcjd.v18.i30.3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid aptamers, selected from a synthesized library of random single-stranded oligonucleotides by systematic evolution of ligands by exponential enrichment (SELEX), are oligonucleotide ligands binding to target molecules with high specificity and affinity. Nucleic acid aptamers have similar functions to antibodies, but possess the advantages of wider range of targets, better stability, easier modification and synthesis, showing promising prospects for diagnosis and treatment of diseases. In terms of digestive diseases, nucleic acid aptamers have been applied in the research of tumor markers, anti-tumor therapy, hepatitis virus C and liver imaging.
Collapse
|
67
|
Bray M, Di Mascio M, de Kok-Mercado F, Mollura DJ, Jagoda E. Radiolabeled antiviral drugs and antibodies as virus-specific imaging probes. Antiviral Res 2010; 88:129-142. [PMID: 20709111 PMCID: PMC7125728 DOI: 10.1016/j.antiviral.2010.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/09/2010] [Indexed: 12/04/2022]
Abstract
A number of small-molecule drugs inhibit viral replication by binding directly to virion structural proteins or to the active site of a viral enzyme, or are chemically modified by a viral enzyme before inhibiting a downstream process. Similarly, antibodies used to prevent or treat viral infections attach to epitopes on virions or on viral proteins expressed on the surface of infected cells. Such drugs and antibodies can therefore be thought of as probes for the detection of viral infections, suggesting that they might be used as radiolabeled tracers to visualize sites of viral replication by single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. A current example of this approach is the PET imaging of herpes simplex virus infections, in which the viral thymidine kinase phosphorylates radiolabeled thymidine analogues, trapping them within infected cells. One of many possible future applications might be the use of a radiolabeled hepatitis C protease inhibitor to image infection in animals or humans and provide a quantitative measure of viral burden. This article reviews the basic features of radionuclide imaging and the characteristics of ideal tracer molecules, and discusses how antiviral drugs and antibodies could be evaluated for their suitability as virus-specific imaging probes. The use of labeled drugs as low-dose tracers would provide an alternative application for compounds that have failed to advance to clinical use because of insufficient in vivo potency, an unsuitable pharmacokinetic profile or hepato- or nephrotoxicity.
Collapse
Affiliation(s)
- Mike Bray
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702, United States
| | - Michele Di Mascio
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Fabian de Kok-Mercado
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702, United States
| | - Daniel J Mollura
- Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Elaine Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
68
|
Chen F, Zhao Y, Liu M, Li D, Wu H, Chen H, Zhu Y, Luo F, Zhong J, Zhou Y, Qi Z, Zhang XL. Functional selection of hepatitis C virus envelope E2-binding Peptide ligands by using ribosome display. Antimicrob Agents Chemother 2010; 54:3355-64. [PMID: 20479194 PMCID: PMC2916351 DOI: 10.1128/aac.01357-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/07/2009] [Accepted: 04/29/2010] [Indexed: 02/07/2023] Open
Abstract
Small peptides that inhibit the hepatitis C virus (HCV) at the stage of viral entry have the potential to serve as attractive antiviral drugs. Ribosome display is a cell-free system for in vitro selection of peptides from large random peptide libraries. Thus, we utilized a ribosome display library technique for affinity selection of HCV envelope protein E2-binding peptide ligands. Through 13 rounds of selection, the ribosome display system generated high-affinity 12-mer peptides, and the selected peptide PE2D (MARHRNWPLVMV) demonstrated the highest specificity and affinity to the HCV E2 protein. Furthermore, amino acids 489 to 508 (YPPRPCGIVPAKSVCGPVYC) of E2 were identified as crucial for binding to PE2D. The selected peptides, especially PE2D, not only dramatically blocked E2 protein binding to hepatocytes but also dramatically inhibited HCV cell culture (HCVcc) entry into hepatocytes. HCVcc and HCV particles from HCV patient serum samples could also be specifically captured using PE2D. Our study demonstrates that the newly selected peptide ligand PE2D holds great promise for developing a new molecular probe, a therapeutic drug specifically for HCV, or an early-diagnostic reagent for HCV surface envelope antigen E2.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Yinglan Zhao
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Dongqing Li
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Hongyan Wu
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Haidan Chen
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Yongzhe Zhu
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Jin Zhong
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Yidan Zhou
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Zhongtian Qi
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China, Department of Microbiology, Second Military Medical University, Shanghai 200433, People's Republic of China, The Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Shanghai 200025, People's Republic of China, Jianghan University, College of Life Science, Department of Biotechnology, Wuhan 430056, People's Republic of China
| |
Collapse
|
69
|
Balogh Z, Lautner G, Bardóczy V, Komorowska B, Gyurcsányi RE, Mészáros T. Selection and versatile application of virus-specific aptamers. FASEB J 2010; 24:4187-95. [PMID: 20624933 DOI: 10.1096/fj.09-144246] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the significance of molecular diagnostics in routine plant virus detection is rapidly growing, the preferred methods are still antibody-based enzyme immunoassays. In the past decade, aptamers have been demonstrated to be viable alternatives of antibodies in many applications. We set out to select apple stem pitting virus (ASPV)-specific aptamers and to apply them as antibody substitutes in various immunoassay methods. The applied systematic evolution of ligands by exponential enrichment (SELEX) procedure resulted in highly discriminative aptamers selectively binding to the target virus coat protein even in complex protein matrixes. We developed protocols for exploitation of aptamers in diverse plant virus diagnosis methods, such as dot and Western blot analyses and enzyme-linked oligonucleotide assay (ELONA). Our selected aptamers proved to be superior to the available antibody in all aspects. In contrast to the antibody, the aptamers decorate both native and denaturated proteins, and ELONA produces higher signal intensity than traditional enzyme-linked immunosorbent assay (ELISA) with virus-infected plant extract. Summarily, our results present the selection and practical utilization of first plant virus-specific aptamers. Most important, the first application of ELONA for virus detection is demonstrated, which proposes a novel, more flexible, and cost-effective means of virus diagnostics.
Collapse
Affiliation(s)
- Zsófia Balogh
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|