51
|
Parandhaman DK, Sharma P, Bisht D, Narayanan S. Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis. Life Sci 2014; 109:116-26. [PMID: 24972353 DOI: 10.1016/j.lfs.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 06/09/2014] [Indexed: 01/04/2023]
Abstract
AIMS Serine/threonine protein kinases (STPKs) have prominent roles in the survival mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Previous studies from our laboratory underscored the role of PknE, an STPK in virulence, adaptation and the suppression of host cell apoptosis. In this study, two-dimensional gel electrophoresis was used to study the proteome and phosphoproteome profiles of wild type M. tuberculosis and its isogenic pknE deletion mutant (ΔpknE) during growth in Middlebrook 7H9 and nitric oxide stress. MAIN METHODS Wild-type M. tuberculosis and its isogenic pknE deletion mutant strain were grown in Middlebrook 7H9 as well as subjected to nitric oxide stress using sodium nitroprusside. Whole cell lysates were prepared and analyzed by 2D-gel electrophoresis. Phosphoproteomes were analyzed using phospho serine and phospho threonine antibodies after subjecting the 2D-gels to western blotting. Proteins of interest were identified using mass spectrometry. KEY FINDINGS Our analysis provides insights into the targets that impose pro-apoptotic as well as altered cellular phenotypes on ΔpknE, revealing novel substrates and functions for PknE. SIGNIFICANCE For the first time, our proteome and phosphoproteome data decipher the function of PknE in cell division, virulence, dormancy, suppression of sigma factor B and its regulated genes, suppression of two-component systems and in the metabolic activity of M. tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India; Department of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, 110067,India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India.
| |
Collapse
|
52
|
Parandhaman DK, Narayanan S. Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2014; 4:31. [PMID: 24634891 PMCID: PMC3943388 DOI: 10.3389/fcimb.2014.00031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/17/2014] [Indexed: 01/24/2023] Open
Abstract
Cell death or senescence is a fundamental event that helps maintain cellular homeostasis, shapes the growth of organism, and provides protective immunity against invading pathogens. Decreased or increased cell death is detrimental both in infectious and non-infectious diseases. Cell death is executed both by regulated enzymic reactions and non-enzymic sudden collapse. In this brief review we have tried to summarize various cell death modalities and their impact on the pathogenesis of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India ; Department of Immunology, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India
| |
Collapse
|
53
|
Comparative proteomic analysis of Mycobacterium tuberculosis strain H37Rv versus H37Ra. Int J Mycobacteriol 2013; 2:220-6. [PMID: 26786126 DOI: 10.1016/j.ijmyco.2013.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB) H37Ra is an attenuated tubercle bacillus closely related to the virulent type strain MTB H37Rv. In spite of extensive study, variation in virulence between the MTB H37Rv and MTB H37Ra strains is still to be understood. The difference in protein expression or structure due to mutation may probably be an important factor for the virulence property of MTB H37Rv strain. METHODS In this study, a whole proteome comparison between these two strains was carried out using bioinformatics approaches to elucidate differences in their protein sequences. RESULTS On comparison of whole proteome using NCBI standalone BLAST program between these two strains, 3759 identical proteins in both the strains out of 4003 proteins were revealed in MTB H37Rv and 4034 proteins were revealed in MTB H37Ra; 244 proteins of MTB H37Rv and 260 proteins of MTB H37Ra were found to be non-identical. A total of 172 proteins were identified with mutations (Insertions/deletions/substitutions) in MTB H37Ra while 53 proteins of MTB H37Rv and 85 proteins of MTB H37Ra were found to be distinct. Among 244 non-identical proteins, 19 proteins were reported to have an important biological function; In this study, mutation was shown in these proteins of MTB H37Ra. CONCLUSION This study reports the protein differences with mutations between MTB H37Rv and H37Ra, which may help in better understanding the pathogenesis and virulence properties of MTB H37Rv.
Collapse
|
54
|
Abstract
Eukaryotic cells undergo death by several different mechanisms: apoptosis, a cell death that prevents inflammatory response; necrosis, when the cell membrane lyses and all the intracellular content is spilled outside; and pyroptosis, a cell death that is accompanied by the release of inflammatory cytokines by the dying cells. Pyroptosis is designed to attract a nonspecific innate response to the site of infection or tumor. In this chapter, we describe the methods used to study pyroptosis in a mammalian cell. The model organism used is Mycobacterium tuberculosis, which suppresses pyroptosis by macrophages, and possibly in dendritic cells.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
55
|
Briken V. Mycobacterium tuberculosis genes involved in regulation of host cell death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:93-102. [PMID: 23468105 DOI: 10.1007/978-1-4614-6111-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The topic of host cell death response upon Mycobacterium tuberculosis (Mtb) infection has been a controversial one [1]. Recent findings demonstrate that one of the important confounding factors was most likely the fact that while Mtb inhibits host cell apoptosis induction early during the infection it clearly induces a necrotic form of cell death during later infection stages [2, 3]. This bi-phasic intracellular lifestyle in regard to host cell death manipulation is emerging as a common theme shared with other facultative and obligate intracellular bacterial pathogens such as Chlamydia and Legionella [4-6]. Accordingly, the list of discovered bacterial proteins involved in host cell apoptosis inhibition is growing [7, 8]. At the same time it is clearly beneficial for the resistance of the host to overcome the bacterial apoptosis block during the early stage of the infection [9-11]. Hence, host cell components have evolved to recognize intracellular pathogens and mediate host cell apoptosis induction if necessary [12]. There have been several reviews on the various aspects of the host cell death response upon Mtb infection [1, 3, 13-15]. Thus in this chapter I will focus on the pathogen side of the equation and describe the tremendous progress that has been made in the identification and characterization of Mtb genes involved in manipulation of host cell death pathways.
Collapse
Affiliation(s)
- Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
56
|
Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2012; 4:3-66. [PMID: 23076359 PMCID: PMC3544749 DOI: 10.4161/viru.22329] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.
Collapse
|
57
|
Kabara E, Coussens PM. Infection of Primary Bovine Macrophages with Mycobacterium avium Subspecies paratuberculosis Suppresses Host Cell Apoptosis. Front Microbiol 2012; 3:215. [PMID: 22833736 PMCID: PMC3400940 DOI: 10.3389/fmicb.2012.00215] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 05/25/2012] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is able to survive intracellularly in macrophages by preventing normal phagosome maturation processes utilized to destroy bacteria. Infected macrophages often undergo apoptotic cell death to efficiently present bacterial antigens to the host adaptive immune system in a process known as efferocytosis. Recent studies with Mycobacterium tuberculosis (MTB) showed that macrophages infected with MTB are less likely to undergo apoptosis than control, uninfected cells. It is proposed that regulation of macrophage apoptosis is an important immune evasion tactic for MTB. Based on the similarity of MAP and MTB, we hypothesized that MAP-infected macrophages would be resistant to apoptosis compared to uninfected cells within the same culture and to cells from uninfected cultures. Our results demonstrate that, indeed, populations of MAP-infected macrophages contain fewer apoptotic cells than similar populations of control cells, and that MAP infection reduces the sensitivity of infected macrophages to induction of apoptosis by H2O2. We further demonstrate that MAP-infected cells contain reduced caspase activity for caspases 3/7, 8, and 9. Reduced caspase activity in MAP-infected macrophages is also maintained after H2O2 induction. This reduction in caspase activity is accompanied by a pronounced reduction in transcription of caspase genes encoding caspases 3, 7, and 8, but not for caspase 9, when compared to control, uninfected cells. Furthermore, MAP infection drastically effects the expression of several host cell proteins important for regulation of apoptosis. Studies using mutant MAP strains demonstrate the importance of bacterial specific factors in the control of host macrophage apoptosis. Together these data demonstrate that MAP specific factors may prevent caspase activity and caspase gene transcription as well as apoptosis signaling protein expression, resulting in decreased spontaneous host cell apoptosis and decreased sensitivity to apoptosis inducing agents.
Collapse
Affiliation(s)
- Edward Kabara
- Department of Biochemistry, Center for Animal Functional Genomics, Michigan State University East Lansing, MI, USA
| | | |
Collapse
|
58
|
Lamrabet O, Drancourt M. Genetic engineering of Mycobacterium tuberculosis: a review. Tuberculosis (Edinb) 2012; 92:365-76. [PMID: 22789498 DOI: 10.1016/j.tube.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023]
Abstract
Genetic engineering has been used for decades to mutate and delete genes in the Mycobacterium tuberculosis genome with the translational goal of producing attenuated mutants with conserved susceptibility to antituberculous antibiotics. The development of plasmids and mycobacteriophages that can transfer DNA into the M. tuberculosis chromosome has effectively overcome M. tuberculosis slow growth rate and the capsule and mycolic acid wall, which limit DNA uptake. The use of genetic engineering techniques has shed light on many aspects of pathogenesis mechanisms, including cellular growth, mycolic acid biosynthesis, metabolism, drug resistance and virulence. Moreover, such research gave clues to the development of new vaccines or new drugs for routine clinical practice. The use of genetic engineering tools is mainly based on the underlying concept that altering or reducing the M. tuberculosis genome could decrease its virulence. A contrario, recent post-genomic analyses indicated that reduced bacterial genomes are often associated with increased bacterial virulence and that M. tuberculosis acquired genes by lateral genetic exchange during its evolution. Therefore, ancestors utilizing genetic engineering to add genes to the M. tuberculosis genome may lead to new vaccines and the availability of M. tuberculosis isolates with increased susceptibility to antituberculous antibiotics.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, Méditerranée Infection, FRIDMM, Aix-Marseille Université, Marseille, France.
| | | |
Collapse
|
59
|
Macdonald SHF, Woodward E, Coleman MM, Dorris ER, Nadarajan P, Chew WM, McLaughlin AM, Keane J. Networked T cell death following macrophage infection by Mycobacterium tuberculosis. PLoS One 2012; 7:e38488. [PMID: 22675566 PMCID: PMC3366923 DOI: 10.1371/journal.pone.0038488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb) impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS We found that lymphopenia (<1.5 × 10(9) cells/l) was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb) or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s) were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG)- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as interfere with microbial eradication in the granuloma.
Collapse
Affiliation(s)
- Stephen H-F Macdonald
- Department of Clinical Medicine, Trinity Institute of Molecular Medicine, St James's Hospital, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Danelishvili L, Everman JL, McNamara MJ, Bermudez LE. Inhibition of the Plasma-Membrane-Associated Serine Protease Cathepsin G by Mycobacterium tuberculosis Rv3364c Suppresses Caspase-1 and Pyroptosis in Macrophages. Front Microbiol 2012; 2:281. [PMID: 22275911 PMCID: PMC3257866 DOI: 10.3389/fmicb.2011.00281] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/28/2011] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis is a disease associated with the infection of a great part of the world’s population and is responsible for the death of two to three million people annually. Mycobacterium tuberculosis infects macrophages and subverts its mechanisms of killing. The pathogen suppresses macrophage apoptosis by many different mechanisms. We describe that, upon uptake by macrophages, M. tuberculosis overexpresses an operon Rv3361c-Rv3365c and secretes Rv3364c. The Rv3365c knockout strain is deficient in apoptosis inhibition. The Rv3364c protein binds to the serine protease cathepsin G on the membrane, inhibiting its enzymatic activity and the downstream activation of caspase-1-dependent apoptosis. In summary, M. tuberculosis prevents macrophage pyroptosis by a novel mechanism involving cytoplasmic surveillance proteins.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA
| | | | | | | |
Collapse
|
61
|
Obregón-Henao A, Duque-Correa MA, Rojas M, García LF, Brennan PJ, Ortiz BL, Belisle JT. Stable extracellular RNA fragments of Mycobacterium tuberculosis induce early apoptosis in human monocytes via a caspase-8 dependent mechanism. PLoS One 2012; 7:e29970. [PMID: 22253841 PMCID: PMC3253812 DOI: 10.1371/journal.pone.0029970] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/10/2011] [Indexed: 01/24/2023] Open
Abstract
The molecular basis of pathogen-induced host cell apoptosis is well characterized for a number of microorganisms. Mycobacterium tuberculosis is known to induce apoptosis and it was shown that live but not heat killed M. tuberculosis stimulates this biological pathway in monocytes. The dependence of this activity on live bacilli led us to hypothesize that products released or secreted by M. tuberculosis are the primary apoptotic factors for human monocytes. Thus, the culture filtrate of in vitro grown M. tuberculosis strain H37Rv was fractioned by conventional chromatography and the apoptosis-inducing activity of individual fractions was measured on human monocytes. The tests employed included measurement of cell membrane damage, caspase activation, and cytokine release. Small molecular weight RNAs of M. tuberculosis were recognized as the predominant apoptosis inducing factors. The RNA was comprised primarily of tRNA and rRNA fragments that stably accumulate in the culture filtrate during early log-phase growth. The RNA fragments signaled through a caspase-8 dependent, caspase-1 and TNF-α independent pathway that ultimately compromised the human monocytes' ability to control M. tuberculosis infection. These studies provide the first report of bacterial RNA inducing apoptosis. They also provide a foundation to pursue pathways for secretion or release of nucleic acids from M. tuberculosis and the impact of secreted RNA fragments on pathogenesis.
Collapse
Affiliation(s)
- Andrés Obregón-Henao
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - María A. Duque-Correa
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
| | - Luis F. García
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
| | - Patrick J. Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Blanca L. Ortiz
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
62
|
Pujic P, Fournier P, Alloisio N, Hay AE, Maréchal J, Anchisi S, Normand P. Lectin genes in the Frankia alni genome. Arch Microbiol 2011; 194:47-56. [PMID: 22159868 DOI: 10.1007/s00203-011-0770-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Frankia alni strain ACN14a's genome was scanned for the presence of determinants involved in interactions with its host plant, Alnus spp. One such determinant type is lectin, proteins that bind specifically to sugar motifs. The genome of F. alni was found to contain 7 such lectin-coding genes, five of which were of the ricinB-type. The proteins coded by these genes contain either only the lectin domain, or also a heat shock protein or a serine-threonine kinase domain upstream. These lectins were found to have several homologs in Streptomyces spp., and a few in other bacterial genomes among which none in Frankia EAN1pec and CcI3 and two in strain EUN1f. One of these F. alni genes, FRAAL0616, was cloned in E. coli, fused with a reporter gene yielding a fusion protein that was found to bind to both root hairs and to bacterial hyphae. This protein was also found to modify the dynamics of nodule formation in A. glutinosa, resulting in a higher number of nodules per root. Its role could thus be to permit binding of microbial cells to root hairs and help symbiosis to occur under conditions of low Frankia cell counts such as in pioneer situations.
Collapse
Affiliation(s)
- Petar Pujic
- Ecologie Microbienne, UMR5557 CNRS, Universite Lyon, Universite Lyon1, 16 rue Dubois, 69622 Villeurbanne cedex, France.
| | | | | | | | | | | | | |
Collapse
|
63
|
O'Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O'Brien F, Flynn K, Casey PG, Moreno Munoz JA, Kearney B, Houston AM, O'Mahony C, Higgins DG, Shanahan F, Palva A, de Vos WM, Fitzgerald GF, Ventura M, O'Toole PW, van Sinderen D. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 2011; 108:11217-22. [PMID: 21690406 PMCID: PMC3131351 DOI: 10.1073/pnas.1105380108] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated "tad(2003)." Mutational analysis demonstrated that the tad(2003) gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- Bifidobacterium/genetics
- Bifidobacterium/growth & development
- Bifidobacterium/physiology
- Bifidobacterium/ultrastructure
- Comparative Genomic Hybridization
- DNA, Bacterial/genetics
- Female
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/physiology
- Fimbriae, Bacterial/ultrastructure
- Gastrointestinal Tract/microbiology
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Germ-Free Life
- Humans
- Male
- Metagenome
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Multigene Family
- Mutation
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
| | - Aldert Zomer
- Alimentary Pharmabiotic Centre and Departments of
| | - Sinead C. Leahy
- Alimentary Pharmabiotic Centre and Departments of
- Microbiology
| | - Justus Reunanen
- Division of Microbiology and Epidemiology, Department of Basic Veterinary Medicine, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and Departments of
- Microbiology
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology, and Evolution, University of Parma, 43100 Parma, Italy
| | | | | | - Kiera Flynn
- Alimentary Pharmabiotic Centre and Departments of
| | | | | | | | | | | | - Des G. Higgins
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; and
| | - Fergus Shanahan
- Alimentary Pharmabiotic Centre and Departments of
- Medicine, and
| | - Airi Palva
- Division of Microbiology and Epidemiology, Department of Basic Veterinary Medicine, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Willem M. de Vos
- Division of Microbiology and Epidemiology, Department of Basic Veterinary Medicine, University of Helsinki, FIN-00014, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, 6703 HB, Wageningen, The Netherlands
| | - Gerald F. Fitzgerald
- Alimentary Pharmabiotic Centre and Departments of
- Microbiology
- Food and Nutritional Sciences, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology, and Evolution, University of Parma, 43100 Parma, Italy
| | - Paul W. O'Toole
- Alimentary Pharmabiotic Centre and Departments of
- Microbiology
| | | |
Collapse
|
64
|
Welin A, Eklund D, Stendahl O, Lerm M. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS One 2011; 6:e20302. [PMID: 21637850 PMCID: PMC3102687 DOI: 10.1371/journal.pone.0020302] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/29/2011] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.
Collapse
Affiliation(s)
- Amanda Welin
- Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
65
|
Exogenous control of the expression of Group I CD1 molecules competent for presentation of microbial nonpeptide antigens to human T lymphocytes. Clin Dev Immunol 2011; 2011:790460. [PMID: 21603161 PMCID: PMC3095450 DOI: 10.1155/2011/790460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.
Collapse
|
66
|
Modulation of cell death by M. tuberculosis as a strategy for pathogen survival. Clin Dev Immunol 2011; 2011:678570. [PMID: 21253484 PMCID: PMC3022200 DOI: 10.1155/2011/678570] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/27/2010] [Indexed: 12/28/2022]
Abstract
It has been clearly demonstrated that in vitro, virulent M. tuberculosis can favor necrosis over apoptosis in infected macrophages, and this has been suggested as a mechanism for evading the host immune response. We recently reported that an effect consistent with this hypothesis could be observed in cells from the blood of TB patients, and in this paper, we review what is known about evasion strategies employed by M. tuberculosis and in particular consider the possible interaction of the apoptosis-inhibiting effects of M. tuberculosis infection with another factor (IL-4) whose expression is thought to play a role in the failure to control M. tuberculosis infection. It has been noted that IL-4 may exacerbate TNF-α-induced pathology, though the mechanism remains unexplained. Since pathology in TB typically involves inflammatory aggregates around infected cells, where TNF-α plays an important role, we predicted that IL-4 would inhibit the ability of cells to remove M. tuberculosis by apoptosis of infected cells, through the extrinsic pathway, which is activated by TNF-α. Infection of human monocytic cells with mycobacteria in vitro, in the presence of IL-4, appears to promote necrosis over apoptosis in infected cells—a finding consistent with its suggested role as a factor in pathology during M. tuberculosis infection.
Collapse
|
67
|
Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol 2010; 2011:814943. [PMID: 21234341 PMCID: PMC3017943 DOI: 10.1155/2011/814943] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/28/2010] [Indexed: 01/22/2023]
Abstract
Phagocytosis of tubercle bacilli by antigen-presenting cells in human lung alveoli initiates a complex infection process by Mycobacterium tuberculosis and a potentially protective immune response by the host. M. tuberculosis has devoted a large part of its genome towards functions that allow it to successfully establish latent or progressive infection in the majority of infected individuals. The failure of immune-mediated clearance is due to multiple strategies adopted by M. tuberculosis that blunt the microbicidal mechanisms of infected immune cells and formation of distinct granulomatous lesions that differ in their ability to support or suppress the persistence of viable M. tuberculosis. In this paper, current understanding of various immune processes that lead to the establishment of latent M. tuberculosis infection, bacterial spreading, persistence, reactivation, and waning or elimination of latent infection as well as new diagnostic approaches being used for identification of latently infected individuals for possible control of tuberculosis epidemic are described.
Collapse
|