51
|
Fusion of the genes ataxin 2 like, ATXN2L, and Janus kinase 2, JAK2, in cutaneous CD4 positive T-cell lymphoma. Oncotarget 2017; 8:103775-103784. [PMID: 29262599 PMCID: PMC5732765 DOI: 10.18632/oncotarget.21790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022] Open
Abstract
Acquired mutations were recently described in cutaneous T-cell lymphomas for the JAK1, JAK3, STAT3, and STAT5B genes of the JAK-STAT pathway. In the present study, RNA-sequencing of a primary cutaneous CD4 positive T-cell lymphoma carrying a three-way t(9;13;16)(p24;q34;p11) chromosome translocation showed that JAK2 from chromosome band 9p24 was rearranged and fused to a novel partner gene, ATXN2L, from 16p11. RT-PCR together with Sanger sequencing verified the presence of the ATXN2L-JAK2 fusion transcript. The ATXN2L-JAK2 fusion gene would code for a chimeric protein containing all domains of ATXN2L and the catalytic domain of the JAK2 tyrosine kinase. The ATXN2L-JAK2 chimeric protein could lead to constitutive activation of the downstream JAK-STAT signaling pathway in a manner similar to that seen for other JAK2 fusion proteins.
Collapse
|
52
|
Ngô HM, Zhou Y, Lorenzi H, Wang K, Kim TK, Zhou Y, El Bissati K, Mui E, Fraczek L, Rajagopala SV, Roberts CW, Henriquez FL, Montpetit A, Blackwell JM, Jamieson SE, Wheeler K, Begeman IJ, Naranjo-Galvis C, Alliey-Rodriguez N, Davis RG, Soroceanu L, Cobbs C, Steindler DA, Boyer K, Noble AG, Swisher CN, Heydemann PT, Rabiah P, Withers S, Soteropoulos P, Hood L, McLeod R. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer. Sci Rep 2017; 7:11496. [PMID: 28904337 PMCID: PMC5597608 DOI: 10.1038/s41598-017-10675-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Collapse
Affiliation(s)
- Huân M Ngô
- The University of Chicago, Chicago, IL, 60637, USA.,Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.,BrainMicro LLC, New Haven, CT, 06511, USA
| | - Ying Zhou
- The University of Chicago, Chicago, IL, 60637, USA
| | | | - Kai Wang
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Ernest Mui
- The University of Chicago, Chicago, IL, 60637, USA
| | | | | | | | - Fiona L Henriquez
- The University of Chicago, Chicago, IL, 60637, USA.,FLH, IBEHR School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Alexandre Montpetit
- Genome Quebec, Montréal, QC H3B 1S6, Canada; McGill University, Montréal, QC H3A 0G4, Canada
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.,Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | - Charles Cobbs
- California Pacific Medical Center, San Francisco, CA, 94114, USA
| | - Dennis A Steindler
- JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Kenneth Boyer
- Rush University Medical Center, Chicago, IL, 60612, USA
| | - A Gwendolyn Noble
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Charles N Swisher
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Peter Rabiah
- Northshore University Health System, Evanston, IL, 60201, USA
| | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rima McLeod
- The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
53
|
Harvey R, Dezi V, Pizzinga M, Willis AE. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem Soc Trans 2017; 45:1007-14. [PMID: 28710288 PMCID: PMC5655797 DOI: 10.1042/bst20160364] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/19/2022]
Abstract
The ability of mammalian cells to modulate global protein synthesis in response to cellular stress is essential for cell survival. While control of protein synthesis is mediated by the regulation of eukaryotic initiation and elongation factors, RNA-binding proteins (RBPs) provide a crucial additional layer to post-transcriptional regulation. RBPs bind specific RNA through conserved RNA-binding domains and ensure that the information contained within the genome and transcribed in the form of RNA is exported to the cytoplasm, chemically modified, and translated prior to folding into a functional protein. Thus, this group of proteins, through mediating translational reprogramming, spatial reorganisation, and chemical modification of RNA molecules, have a major influence on the robust cellular response to external stress and toxic injury.
Collapse
Affiliation(s)
- Robert Harvey
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K
| | - Veronica Dezi
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K
| | | | - Anne E Willis
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K.
| |
Collapse
|
54
|
Auburger G, Sen NE, Meierhofer D, Başak AN, Gitler AD. Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends Neurosci 2017; 40:507-516. [DOI: 10.1016/j.tins.2017.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
|
55
|
Na I, Meng F, Kurgan L, Uversky VN. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. MOLECULAR BIOSYSTEMS 2017; 12:2798-817. [PMID: 27377881 DOI: 10.1039/c6mb00069j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy.
Collapse
Affiliation(s)
- Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
56
|
Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, Messing J, Kim HJ, Soriano A, Auburger G, Pulst SM, Taylor JP, Rigo F, Gitler AD. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017; 544:367-371. [PMID: 28405022 PMCID: PMC5642042 DOI: 10.1038/nature22038] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 03/02/2017] [Indexed: 11/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.
Collapse
Affiliation(s)
- Lindsay A. Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brenda Huang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregor Bieri
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rosanna Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A. Knowles
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University, 60590, Frankfurt am Main, Germany
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84112 USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
57
|
Carmo-Silva S, Nobrega C, Pereira de Almeida L, Cavadas C. Unraveling the Role of Ataxin-2 in Metabolism. Trends Endocrinol Metab 2017; 28:309-318. [PMID: 28117213 DOI: 10.1016/j.tem.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
Ataxin-2 is a polyglutamine protein implicated in several biological processes such as RNA metabolism and cytoskeleton reorganization. Ataxin-2 is highly expressed in various tissues including the hypothalamus, a brain region that controls food intake and energy balance. Ataxin-2 expression is influenced by nutritional status. Emerging studies discussed here now show that ataxin-2 deficiency correlates with insulin resistance and dyslipidemia, an action mediated via the mTOR pathway, suggesting that ataxin-2 might play key roles in metabolic homeostasis including body weight regulation, insulin sensitivity, and cellular stress responses. In this review we also discuss the relevance of ataxin-2 in the hypothalamic regulation of energy balance, and its potential as a therapeutic target in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clevio Nobrega
- Department of Biomedical Sciences and Medicine, Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
58
|
Cestra G, Rossi S, Di Salvio M, Cozzolino M. Control of mRNA Translation in ALS Proteinopathy. Front Mol Neurosci 2017; 10:85. [PMID: 28386218 PMCID: PMC5362592 DOI: 10.3389/fnmol.2017.00085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Cells robustly reprogram gene expression during stress generated by protein misfolding and aggregation. In this condition, cells assemble the bulk of mRNAs into translationally silent stress granules (SGs), while they sustain the translation of specific mRNAs coding for proteins that are needed to overcome cellular stress. Alterations of this process are deeply associated to neurodegeneration. This is the case of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by a selective loss of motor neurons. Indeed, impairment of protein homeostasis as well as alterations of RNA metabolism are now recognized as major players in the pathogenesis of ALS. In particular, evidence shows that defective mRNA transport and translation are implicated. Here, we provide a review of what is currently known about altered mRNA translation in ALS and how this impacts on the ability of affected cells to cope with proteotoxic stress.
Collapse
Affiliation(s)
- Gianluca Cestra
- Institute of Biology and Molecular Pathology (IBPM), CNRRome, Italy; Department of Biology and Biotechnology Charles Darwin, University of Rome "Sapienza"Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology (IFT), CNR Rome, Italy
| | - Michela Di Salvio
- Institute of Biology and Molecular Pathology (IBPM), CNRRome, Italy; Department of Biology and Biotechnology Charles Darwin, University of Rome "Sapienza"Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology (IFT), CNR Rome, Italy
| |
Collapse
|
59
|
Mahboubi H, Stochaj U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:884-895. [PMID: 28095315 DOI: 10.1016/j.bbadis.2016.12.022] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022]
Abstract
Stress granule (SG) assembly is a conserved cellular strategy to minimize stress-related damage and promote cell survival. Beyond their fundamental role in the stress response, SGs have emerged as key players for human health. As such, SG assembly is associated with cancer, neurodegenerative disorders, ischemia, and virus infections. SGs and granule-related signaling circuits are therefore promising targets to improve therapeutic intervention for several diseases. This is clinically relevant, because pharmacological drugs can affect treatment outcome by modulating SG formation. As membraneless and highly dynamic compartments, SGs regulate translation, ribostasis and proteostasis. Moreover, they serve as signaling hubs that determine cell viability and stress recovery. Various compounds can modulate SG formation and dynamics. Rewiring cell signaling through SG manipulation thus represents a new strategy to control cell fate under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
60
|
Pfeffer M, Gispert S, Auburger G, Wicht H, Korf HW. Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiol Int 2016; 34:129-137. [PMID: 27791392 DOI: 10.1080/07420528.2016.1245666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In Drosophila melanogaster, Ataxin-2 is a crucial activator of Period and is involved in the control of circadian rhythms. However, in mammals the function of Ataxin-2 is unknown despite its involvement in the inherited neurogenerative disease Spinocerebellar Ataxia type 2 in humans. Therefore, we analyzed locomotor behavior of Atxn2-deficient mice and their WT littermates under entrained- and free-running conditions as well as after experimental jet lag. Furthermore, we compared the PER1 and PER2 immunoreaction (IR) in the SCN. Atxn2-/- mice showed an unstable rhythmicity of locomotor activity, but the level of PER1 and PER2 IR in the SCN did not differ between genotypes.
Collapse
Affiliation(s)
- Martina Pfeffer
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Suzana Gispert
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Georg Auburger
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Helmut Wicht
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Horst-Werner Korf
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
61
|
Herpes simplex virus ICP27 regulates alternative pre-mRNA polyadenylation and splicing in a sequence-dependent manner. Proc Natl Acad Sci U S A 2016; 113:12256-12261. [PMID: 27791013 DOI: 10.1073/pnas.1609695113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The herpes simplex virus (HSV) infected cell culture polypeptide 27 (ICP27) protein is essential for virus infection of cells. Recent studies suggested that ICP27 inhibits splicing in a gene-specific manner via an unknown mechanism. Here, RNA-sequencing revealed that ICP27 not only inhibits splicing of certain introns in <1% of cellular genes, but also can promote use of alternative 5' splice sites. In addition, ICP27 induced expression of pre-mRNAs prematurely cleaved and polyadenylated from cryptic polyadenylation signals (PAS) located in intron 1 or 2 of ∼1% of cellular genes. These previously undescribed prematurely cleaved and polyadenylated pre-mRNAs, some of which contain novel ORFs, were typically intronless, <2 Kb in length, expressed early during viral infection, and efficiently exported to cytoplasm. Sequence analysis revealed that ICP27-targeted genes are GC-rich (as are HSV genes), contain cytosine-rich sequences near the 5' splice site, and have suboptimal splice sites in the impacted intron, suggesting that a common mechanism is shared between ICP27-mediated alternative polyadenylation and splicing. Optimization of splice site sequences or mutation of nearby cytosines eliminated ICP27-mediated splicing inhibition, and introduction of C-rich sequences to an ICP27-insensitive splicing reporter conferred this phenotype, supporting the inference that specific gene sequences confer susceptibility to ICP27. Although HSV is the first virus and ICP27 is the first viral protein shown to activate cryptic PASs in introns, we suspect that other viruses and cellular genes also encode this function.
Collapse
|
62
|
Nkiliza A, Mutez E, Simonin C, Leprêtre F, Duflot A, Figeac M, Villenet C, Semaille P, Comptdaer T, Genet A, Sablonnière B, Devos D, Defebvre L, Destée A, Chartier-Harlin MC. RNA-binding disturbances as a continuum from spinocerebellar ataxia type 2 to Parkinson disease. Neurobiol Dis 2016; 96:312-322. [PMID: 27663142 DOI: 10.1016/j.nbd.2016.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 12/13/2022] Open
Abstract
CAG triplet expansions in Ataxin-2 gene (ATXN2) cause spinocerebellar ataxia type 2 and have a role that remains to be clarified in Parkinson's disease (PD). To study the molecular events associated with these expansions, we sequenced them and analyzed the transcriptome from blood cells of controls and three patient groups diagnosed with spinocerebellar ataxia type 2 (herein referred to as SCA2c) or PD with or without ATXN2 triplet expansions (named SCA2p). The transcriptome profiles of these 40 patients revealed three main observations: i) a specific pattern of pathways related to cellular contacts, proliferation and differentiation associated with SCA2p group, ii) similarities between the SCA2p and sporadic PD groups in genes and pathways known to be altered in PD such as Wnt, Ephrin and Leukocyte extravasation signaling iii) RNA metabolism disturbances with "RNA-binding" and "poly(A) RNA-binding" as a common feature in all groups. Remarkably, disturbances of ALS signaling were shared between SCA2p and sporadic PD suggesting common molecular dysfunctions in PD and ALS including CACNA1, hnRNP, DDX and PABPC gene family perturbations. Interestingly, the transcriptome profiles of patients with parkinsonian phenotypes were prevalently associated with alterations of translation while SCA2c and PD patients presented perturbations of splicing. While ATXN2 RNA expression was not perturbed, its protein expression in immortalized lymphoblastoid cells was significantly decreased in SCA2c and SCA2p versus control groups assuming post-transcriptional biological perturbations. In conclusion, the transcriptome data do not exclude the role of ATXN2 mutated alleles in PD but its decrease protein expression in both SCA2c and SCA2p patients suggest a potential involvement of this gene in PD. The perturbations of "RNA-binding" and "poly(A) RNA-binding" molecular functions in the three patient groups as well as gene deregulations of factors not yet described in PD but known to be deleterious in other neurological conditions, suggest the existence of RNA-binding disturbances as a continuum between spinocerebellar ataxia type 2 and Parkinson's disease.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Eugénie Mutez
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Aurélie Duflot
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Martin Figeac
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Céline Villenet
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Pierre Semaille
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Thomas Comptdaer
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Alexandre Genet
- CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - Bernard Sablonnière
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - David Devos
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Luc Defebvre
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Alain Destée
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France.
| |
Collapse
|
63
|
Gnazzo MM, Uhlemann EME, Villarreal AR, Shirayama M, Dominguez EG, Skop AR. The RNA-binding protein ATX-2 regulates cytokinesis through PAR-5 and ZEN-4. Mol Biol Cell 2016; 27:3052-3064. [PMID: 27559134 PMCID: PMC5063614 DOI: 10.1091/mbc.e16-04-0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Cell division is regulated by the conserved RNA-binding protein, ATX-2/Ataxin-2, which facilitates the targeting of ZEN-4 to the spindle midzone by mediating PAR-5. The spindle midzone harbors both microtubules and proteins necessary for furrow formation and the completion of cytokinesis. However, the mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Here we describe a mechanism governed by the conserved RNA-binding protein ATX-2/Ataxin-2, which targets and maintains ZEN-4 at the spindle midzone. ATX-2 does this by regulating the amount of PAR-5 at mitotic structures, particularly the spindle, centrosomes, and midbody. Preventing ATX-2 function leads to elevated levels of PAR-5, enhanced chromatin and centrosome localization of PAR-5–GFP, and ultimately a reduction of ZEN-4–GFP at the spindle midzone. Codepletion of ATX-2 and PAR-5 rescued the localization of ZEN-4 at the spindle midzone, indicating that ATX-2 mediates the localization of ZEN-4 upstream of PAR-5. We provide the first direct evidence that ATX-2 is necessary for cytokinesis and suggest a model in which ATX-2 facilitates the targeting of ZEN-4 to the spindle midzone by mediating the posttranscriptional regulation of PAR-5.
Collapse
Affiliation(s)
- Megan M Gnazzo
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Eva-Maria E Uhlemann
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Alex R Villarreal
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Masaki Shirayama
- Program in Molecular Medicine, RNA Therapeutics Institute, and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Eddie G Dominguez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ahna R Skop
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
64
|
Nóbrega C, Carmo-Silva S, Albuquerque D, Vasconcelos-Ferreira A, Vijayakumar UG, Mendonça L, Hirai H, de Almeida LP. Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 2015; 138:3537-54. [PMID: 26490332 DOI: 10.1093/brain/awv298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023] Open
Abstract
Machado-Joseph disease is a progressive neurodegenerative disorder associated with the polyQ-expanded ataxin-3 (encoded by ATXN3), for which no therapy is available. With the aim of clarifying the mechanism of neurodegeneration, we hypothesized that the abnormally long polyQ tract would interact aberrantly with ataxin-2 (encoded by ATXN2), another polyQ protein whose function has recently been linked to translational regulation. Using patient's samples and cellular and animal's models we found that in Machado-Joseph disease: (i) ataxin-2 levels are reduced; and (ii) its subcellular localization is changed towards the nucleus. Restoring ataxin-2 levels by lentiviral-mediated overexpression: (i) reduced mutant ataxin-3 levels; and (ii) rescued behaviour defects and neuropathology in a transgenic mouse model of Machado-Joseph disease. Conversely (i) mutating the ataxin-2 motif that enables binding to its natural interactor and translation activator poly(A)-binding protein; or (ii) overexpressing poly(A)-binding protein, had opposite effects, increasing mutant ataxin-3 translation and aggregation. This work suggests that in Machado-Joseph disease, mutant ataxin-3 drives an abnormal reduction of ataxin-2 levels, which overactivates poly(A)-binding protein, increases translation of mutant ataxin-3 and other proteins and aggravates Machado-Joseph disease. Re-establishment of ataxin-2 levels reduces mutant ataxin-3 and alleviates Machado-Joseph disease pathogenesis opening a new avenue for therapeutic intervention in this and potentially other polyQ disorders.
Collapse
Affiliation(s)
- Clévio Nóbrega
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Sara Carmo-Silva
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - David Albuquerque
- 3 Faculty of Sciences and Technology, University of Coimbra, 3004- 517 Coimbra, Portugal
| | - Ana Vasconcelos-Ferreira
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Udaya-Geetha Vijayakumar
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Liliana Mendonça
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Hirokazu Hirai
- 4 Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Luís Pereira de Almeida
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
65
|
Ayache J, Bénard M, Ernoult-Lange M, Minshall N, Standart N, Kress M, Weil D. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol Biol Cell 2015; 26:2579-95. [PMID: 25995375 PMCID: PMC4501357 DOI: 10.1091/mbc.e15-03-0136] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 01/04/2023] Open
Abstract
P-bodies are cytoplasmic ribonucleoprotein granules involved in posttranscriptional regulation. DDX6 is a key component of their assembly in human cells. This DEAD-box RNA helicase is known to be associated with various complexes, including the decapping complex, the CPEB repression complex, RISC, and the CCR4/NOT complex. To understand which DDX6 complexes are required for P-body assembly, we analyzed the DDX6 interactome using the tandem-affinity purification methodology coupled to mass spectrometry. Three complexes were prominent: the decapping complex, a CPEB-like complex, and an Ataxin2/Ataxin2L complex. The exon junction complex was also found, suggesting DDX6 binding to newly exported mRNAs. Finally, some DDX6 was associated with polysomes, as previously reported in yeast. Despite its high enrichment in P-bodies, most DDX6 is localized out of P-bodies. Of the three complexes, only the decapping and CPEB-like complexes were recruited into P-bodies. Investigation of P-body assembly in various conditions allowed us to distinguish required proteins from those that are dispensable or participate only in specific conditions. Three proteins were required in all tested conditions: DDX6, 4E-T, and LSM14A. These results reveal the variety of pathways of P-body assembly, which all nevertheless share three key factors connecting P-body assembly to repression.
Collapse
Affiliation(s)
- Jessica Ayache
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Marianne Bénard
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Michèle Ernoult-Lange
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Michel Kress
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Dominique Weil
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| |
Collapse
|
66
|
Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, Vogel C. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins. Biomolecules 2015; 5:1441-66. [PMID: 26184334 PMCID: PMC4598758 DOI: 10.3390/biom5031441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/24/2022] Open
Abstract
DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely conserved across eukaryotes.
Collapse
Affiliation(s)
- Rebecca Bish
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Nerea Cuevas-Polo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Zhe Cheng
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Dolores Hambardzumyan
- The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Mathias Munschauer
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Markus Landthaler
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
67
|
Deregulation of protein translation control, a potential game-changing hypothesis for Parkinson's disease pathogenesis. Trends Mol Med 2015; 21:466-72. [PMID: 26091824 DOI: 10.1016/j.molmed.2015.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Protein translation is one of the most fundamental and exquisitely controlled processes in biology, and is energetically demanding. The deregulation of this process is deleterious to cells, as demonstrated by several diseases caused by mutations in protein translation machinery. Emerging evidence now points to a role for protein translation in the pathogenesis of Parkinson's disease (PD); a debilitating neurodegenerative movement disorder. In this paper, we propose a hypothesis that protein translation machinery, PD-associated proteins and PD pathology are connected in a functional network linking cell survival to protein translation control. This hypothesis is a potential game changer in the field of the molecular pathogenesis of PD, with implications for the development of PD diagnostics and disease-modifying therapies.
Collapse
|
68
|
Kaehler C, Guenther A, Uhlich A, Krobitsch S. PRMT1-mediated arginine methylation controls ATXN2L localization. Exp Cell Res 2015; 334:114-25. [PMID: 25748791 DOI: 10.1016/j.yexcr.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 01/02/2023]
Abstract
Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine-glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory.
Collapse
Affiliation(s)
- Christian Kaehler
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Anika Guenther
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Anja Uhlich
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
| |
Collapse
|
69
|
DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 2015; 26:569-82. [PMID: 25428989 PMCID: PMC4310746 DOI: 10.1091/mbc.e14-06-1088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 01/22/2023] Open
Abstract
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Bryan D Badal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - J Brady Evans
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Joseph F Anderson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
70
|
Interaction of amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated fused-in-sarcoma with proteins involved in metabolic and protein degradation pathways. Neurobiol Aging 2014; 36:527-35. [PMID: 25192599 DOI: 10.1016/j.neurobiolaging.2014.07.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
Fused-in-sarcoma (FUS) is a nuclear protein linked to amyotrophic lateral sclerosis and frontotemporal dementia. Under pathologic conditions, FUS frequently is accumulated in cytosoplasm, but how this altered distribution affects the protein interaction pattern of FUS is unclear. Using dual-tag affinity purification and mass spectrometry, we compared the interactome of the wild-type FUS and the P525 L mutant, which causes juvenile amyotrophic lateral sclerosis with the most severe phenotypes. The mutant FUS retained the ability to bind proteins involved in RNA metabolism. We found significant increased binding of P525 L to many metabolic enzymes. Furthermore, we identified and confirmed some novel interactions between FUS and proteins involved in neurodegenerative diseases and/or ubiquitin proteasome pathway, such as VCP/p97, PSF, UBA 1, and 26S proteosome non-ATPase regulatory subunit 12 (PSMD12/Rpn5). Accordingly, we have observed significantly reduced ATP levels and increased accumulation of poly-ubiquitinated proteins in cells with FUS accumulation. Therefore, our study suggested new mechanisms whereby FUS accumulation leads to defective energy metabolism and protein degradation by directly interacting with key regulators in these pathways.
Collapse
|
71
|
Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci 2014; 34:8083-97. [PMID: 24920614 DOI: 10.1523/jneurosci.0543-14.2014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the PFN1 gene encoding profilin 1 are a rare cause of familial amyotrophic lateral sclerosis (ALS). Profilin 1 is a well studied actin-binding protein but how PFN1 mutations cause ALS is unknown. The budding yeast, Saccharomyces cerevisiae, has one PFN1 ortholog. We expressed the ALS-linked profilin 1 mutant proteins in yeast, demonstrating a loss of protein stability and failure to restore growth to profilin mutant cells, without exhibiting gain-of-function toxicity. This model provides for simple and rapid screening of novel ALS-linked PFN1 variants. To gain insight into potential novel roles for profilin 1, we performed an unbiased, genome-wide synthetic lethal screen with yeast cells lacking profilin (pfy1Δ). Unexpectedly, deletion of several stress granule and processing body genes, including pbp1Δ, were found to be synthetic lethal with pfy1Δ. Mutations in ATXN2, the human ortholog of PBP1, are a known ALS genetic risk factor and ataxin 2 is a stress granule component in mammalian cells. Given this genetic interaction and recent evidence linking stress granule dynamics to ALS pathogenesis, we hypothesized that profilin 1 might also associate with stress granules. Here we report that profilin 1 and related protein profilin 2 are novel stress granule-associated proteins in mouse primary cortical neurons and in human cell lines and that ALS-linked mutations in profilin 1 alter stress granule dynamics, providing further evidence for the potential role of stress granules in ALS pathogenesis.
Collapse
|
72
|
Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 2014; 436:45-58. [PMID: 24835919 DOI: 10.1016/j.cca.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Environmental stresses threatening cell homeostasis trigger various cellular responses ranging from the activation of survival pathways to eliciting programmed cell death. Cellular stress response highly depends on the nature and level of the insult as well as the cell type. Notably, the interplay among all these responses will ultimately determine the fate of the stressed cell. Human DExD/H RNA helicases are ubiquitous molecular motors rearranging RNA secondary structure in an ATP-dependent fashion. These highly conserved enzymes participate in nearly all aspects of cellular process involving RNA metabolism. Although numerous functions of DExD/H RNA helicases are well documented, their importance in stress response is only just becoming evident. This review outlines our current knowledge on major mechanistic themes of human DExD/H RNA helicases in response to stressful stimuli, especially on emerging molecular models for the functional roles of these enzymes in the stress survival regulation.
Collapse
|
73
|
Kaehler C, Isensee J, Hucho T, Lehrach H, Krobitsch S. 5-Fluorouracil affects assembly of stress granules based on RNA incorporation. Nucleic Acids Res 2014; 42:6436-47. [PMID: 24728989 PMCID: PMC4041438 DOI: 10.1093/nar/gku264] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antimetabolite 5-fluorouracil is a widely used chemotherapeutic for the treatment of several solid cancers. However, resistance to 5-fluorouracil remains a major drawback in its clinical use. In this study we report that treatment of HeLa cells with 5-fluorouracil resulted in de novo assembly of stress granules. Moreover, we revealed that stress granule assembly under stress conditions as well as disassembly is altered in cells treated with 5-fluorouracil. Notably, we discovered that RACK1, a protein mediating cell survival and apoptosis, is a component of 5-fluorouracil-induced stress granules. To explore the mode of action of 5-fluorouracil accountable for de novo stress granule assembly, we analyzed 5-fluorouracil metabolites and noticed that stress granule assembly is caused by RNA, not DNA incorporating 5-fluorouracil metabolites. Interestingly, we observed that other RNA incorporating drugs also cause assembly of stress granules. Thus, our results suggest that incorporation of chemotherapeutics into RNA may result in stress granule assembly with potential significance in chemoresistance.
Collapse
Affiliation(s)
- Christian Kaehler
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Jörg Isensee
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany University Hospital Cologne, Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, 50931 Cologne, Germany
| | - Tim Hucho
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany University Hospital Cologne, Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, 50931 Cologne, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany Dahlem Centre for Genome Research and Medical Systems Biology, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
74
|
Taking a risk: a therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis? Trends Mol Med 2014; 20:25-35. [DOI: 10.1016/j.molmed.2013.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/03/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
|
75
|
Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 2013; 38:494-506. [PMID: 24029419 DOI: 10.1016/j.tibs.2013.07.004] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Abstract
Stress granules (SGs) contain translationally-stalled mRNAs, associated preinitiation factors, and specific RNA-binding proteins. In addition, many signaling proteins are recruited to SGs and/or influence their assembly, which is transient, lasting only until the cells adapt to stress or die. Beyond their role as mRNA triage centers, we posit that SGs constitute RNA-centric signaling hubs analogous to classical multiprotein signaling domains such as transmembrane receptor complexes. As signaling centers, SG formation communicates a 'state of emergency', and their transient existence alters multiple signaling pathways by intercepting and sequestering signaling components. SG assembly and downstream signaling functions may require a cytosolic phase transition facilitated by intrinsically disordered, aggregation-prone protein regions shared by RNA-binding and signaling proteins.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | |
Collapse
|
76
|
Li YR, King OD, Shorter J, Gitler AD. Stress granules as crucibles of ALS pathogenesis. ACTA ACUST UNITED AC 2013; 201:361-72. [PMID: 23629963 PMCID: PMC3639398 DOI: 10.1083/jcb.201302044] [Citation(s) in RCA: 702] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal human neurodegenerative disease affecting primarily motor neurons. Two RNA-binding proteins, TDP-43 and FUS, aggregate in the degenerating motor neurons of ALS patients, and mutations in the genes encoding these proteins cause some forms of ALS. TDP-43 and FUS and several related RNA-binding proteins harbor aggregation-promoting prion-like domains that allow them to rapidly self-associate. This property is critical for the formation and dynamics of cellular ribonucleoprotein granules, the crucibles of RNA metabolism and homeostasis. Recent work connecting TDP-43 and FUS to stress granules has suggested how this cellular pathway, which involves protein aggregation as part of its normal function, might be coopted during disease pathogenesis.
Collapse
Affiliation(s)
- Yun R Li
- Medical Scientist Training Program and, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|