51
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Content of testis-specific isoform of Na/K-ATPase (ATP1A4) is increased during bovine sperm capacitation through translation in mitochondrial ribosomes. Cell Tissue Res 2016; 368:187-200. [PMID: 27807702 DOI: 10.1007/s00441-016-2514-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Abstract
Capacitation comprises a series of structural and functional modifications of sperm that confer fertilizing ability. We previously reported that the testis-specific isoform of Na/K-ATPase (ATP1A4) regulated bovine sperm capacitation through signaling mechanisms involving kinases. During subsequent investigations to elucidate mechanisms by which ATP1A4 regulates sperm capacitation, we observed that ATP1A4 was localised in both raft and non-raft fractions of the sperm plasma membrane and that its total content was increased in both membrane fractions during capacitation. The objective of the present study was to investigate mechanism(s) of capacitation-associated increase in the content of ATP1A4. Despite the widely accepted dogma of transcriptional/translational quiescence, incubation of sperm with either ouabain (specific ligand for ATP1A4) or heparin increased ATP1A4 content in raft and non-raft sperm membrane fractions, total sperm protein extracts (immunoblotting) and fixed sperm (flow cytometry), with a concurrent increase in Na/K-ATPase enzyme activity. This capacitation-associated increase in ATP1A4 content was partially decreased by chloramphenicol (mitochondrial translation inhibitor) but not affected by actinomycin D (transcription inhibitor). To demonstrate de novo ATP1A4 synthesis, we evaluated incorporation of bodipy conjugated lysine in this protein during capacitation. A partial decrease in bodipy-lysine incorporation occurred in ATP1A4 from sperm capacitated in the presence of chloramphenicol. Therefore, increased ATP1A4 content during capacitation was attributed to mitochondrial translation of ATP1A4 mRNA present in ejaculated sperm, rather than gene transcription. To our knowledge, this is the first report demonstrating ATP1A4 synthesis during bovine sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
52
|
Singh RP, Shafeeque CM, Sharma SK, Singh R, Mohan J, Sastry KVH, Saxena VK, Azeez PA. Chicken sperm transcriptome profiling by microarray analysis. Genome 2015; 59:185-96. [PMID: 26868024 DOI: 10.1139/gen-2015-0106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been confirmed that mammalian sperm contain thousands of functional RNAs, and some of them have vital roles in fertilization and early embryonic development. Therefore, we attempted to characterize transcriptome of the sperm of fertile chickens using microarray analysis. Spermatozoal RNA was pooled from 10 fertile males and used for RNA preparation. Prior to performing the microarray, RNA quality was assessed using a bioanalyzer, and gDNA and somatic cell RNA contamination was assessed by CD4 and PTPRC gene amplification. The chicken sperm transcriptome was cross-examined by analysing sperm and testes RNA on a 4 × 44K chicken array, and results were verified by RT-PCR. Microarray analysis identified 21,639 predominantly nuclear-encoded transcripts in chicken sperm. The majority (66.55%) of the sperm transcripts were shared with the testes, while surprisingly, 33.45% transcripts were detected (raw signal intensity greater than 50) only in the sperm and not in the testes. The greatest proportion of up-regulated transcripts were responsible for signal transduction (63.20%) followed by embryonic development (56.76%) and cell structure (56.25%). Of the 20 most abundant transcripts, 18 remain uncharacterized, whereas the least abundant genes were mostly associated with the ribosome. These findings lay a foundation for more detailed investigations on sperm RNAs in chickens to identify sperm-based biomarkers for fertility.
Collapse
Affiliation(s)
- R P Singh
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| | - C M Shafeeque
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| | - S K Sharma
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - R Singh
- c Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - J Mohan
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - K V H Sastry
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - V K Saxena
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - P A Azeez
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| |
Collapse
|
53
|
RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genet 2015; 57:199-206. [PMID: 26446669 DOI: 10.1007/s13353-015-0320-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/19/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
RNA sequencing (RNA-seq) by next-generation technology is a powerful tool which creates new possibilities in whole-transcriptome analysis. In recent years, with the use of the RNA-seq method, several studies expanded transcriptional gene profiles to understand interactions between genotype and phenotype, supremely contributing to the field of equine biology. To date, in horses, massive parallel sequencing of cDNA has been successfully used to identify and quantify mRNA levels in several normal tissues, as well as to annotate genes. Moreover, the RNA-seq method has been applied to identify the genetic basis of several diseases or to investigate organism adaptation processes to the training conditions. The use of the RNA-seq approach has also confirmed that horses can be useful as a large animal model for human disease, especially in the field of immune response. The presented review summarizes the achievements of profiling gene expression in horses (Equus caballus).
Collapse
|
54
|
McQueen CM, Dindot SV, Foster MJ, Cohen ND. Genetic Susceptibility to Rhodococcus equi. J Vet Intern Med 2015; 29:1648-59. [PMID: 26340305 PMCID: PMC4895676 DOI: 10.1111/jvim.13616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
Rhodococcus equi pneumonia is a major cause of morbidity and mortality in neonatal foals. Much effort has been made to identify preventative measures and new treatments for R. equi with limited success. With a growing focus in the medical community on understanding the genetic basis of disease susceptibility, investigators have begun to evaluate the interaction of the genetics of the foal with R. equi. This review describes past efforts to understand the genetic basis underlying R. equi susceptibility and tolerance. It also highlights the genetic technology available to study horses and describes the use of this technology in investigating R. equi. This review provides readers with a foundational understanding of candidate gene approaches, single nucleotide polymorphism‐based, and copy number variant‐based genome‐wide association studies, and next generation sequencing (both DNA and RNA).
Collapse
Affiliation(s)
- C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - S V Dindot
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX
| | - M J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX
| | - N D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
55
|
Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem 2015; 482:32-9. [DOI: 10.1016/j.ab.2015.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
|
56
|
Miller D. Confrontation, Consolidation, and Recognition: The Oocyte's Perspective on the Incoming Sperm. Cold Spring Harb Perspect Med 2015; 5:a023408. [PMID: 25957313 PMCID: PMC4526728 DOI: 10.1101/cshperspect.a023408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
From the oocyte's perspective, the incoming sperm poses a significant challenge. Despite (usually) arising from a male of the same species, the sperm is a "foreign" body that may carry with it additional, undesirable factors such as transposable elements (mainly retroposons) into the egg. These factors can arise either during spermatogenesis or while the sperm is moving through the epididymis or the female genital tract. Furthermore, in addition to the paternal genome, the sperm also carries its own complex repertoire of RNAs into the egg that includes mRNAs, lncRNAs, and sncRNAs. Last, the paternal genome itself is efficiently packaged into a protamine (nucleo-toroid) and histone (nucleosome)-based chromatin scaffold within which much of the RNA is embedded. Taken together, the sperm delivers a far more complex package to the egg than was originally thought. Understanding this complexity, at both the compositional and structural level, depends largely on investigating sperm chromatin from both the genomic (DNA packaging) and epigenomic (RNA carriage and extant histone modifications) perspectives. Why this complexity has arisen and its likely purpose requires us to look more closely at what happens in the oocyte when the sperm gains entry and the processes that then take place preparing the paternal (and maternal) genomes for syngamy.
Collapse
Affiliation(s)
- David Miller
- Institute of Cardiovascular and Metabolic Medicine (LICAMM), LIGHT Laboratories, University of Leeds, Leeds, LS2 9JT West Yorkshire, United Kingdom
| |
Collapse
|
57
|
Pacholewska A, Drögemüller M, Klukowska-Rötzler J, Lanz S, Hamza E, Dermitzakis ET, Marti E, Gerber V, Leeb T, Jagannathan V. The transcriptome of equine peripheral blood mononuclear cells. PLoS One 2015; 10:e0122011. [PMID: 25790166 PMCID: PMC4366165 DOI: 10.1371/journal.pone.0122011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
Complete transcriptomic data at high resolution are available only for a few model organisms with medical importance. The gene structures of non-model organisms are mostly computationally predicted based on comparative genomics with other species. As a result, more than half of the horse gene models are known only by projection. Experimental data supporting these gene models are scarce. Moreover, most of the annotated equine genes are single-transcript genes. Utilizing RNA sequencing (RNA-seq) the experimental validation of predicted transcriptomes has become accessible at reasonable costs. To improve the horse genome annotation we performed RNA-seq on 561 samples of peripheral blood mononuclear cells (PBMCs) derived from 85 Warmblood horses. The mapped sequencing reads were used to build a new transcriptome assembly. The new assembly revealed many alternative isoforms associated to known genes or to those predicted by the Ensembl and/or Gnomon pipelines. We also identified 7,531 transcripts not associated with any horse gene annotated in public databases. Of these, 3,280 transcripts did not have a homologous match to any sequence deposited in the NCBI EST database suggesting horse specificity. The unknown transcripts were categorized as coding and noncoding based on predicted coding potential scores. Among them 230 transcripts had high coding potential score, at least 2 exons, and an open reading frame of at least 300 nt. We experimentally validated 9 new equine coding transcripts using RT-PCR and Sanger sequencing. Our results provide valuable detailed information on many transcripts yet to be annotated in the horse genome.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jolanta Klukowska-Rötzler
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Bern University Hospital, Bern, Switzerland
| | - Simone Lanz
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Eman Hamza
- Clinical Immunology Group, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Eliane Marti
- Clinical Immunology Group, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Vincent Gerber
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
58
|
Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. ACTA ACUST UNITED AC 2015; 21:491-501. [DOI: 10.1093/molehr/gav012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
|
59
|
microRNA profiling in three main stages during porcine spermatogenesis. J Assist Reprod Genet 2015; 32:451-60. [PMID: 25563581 DOI: 10.1007/s10815-014-0406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spermatogenesis is an intricate biological event wherein an undifferentiated spermatogonium develops into mature sperms. MicroRNAs are a type of single strand small non-coding RNA molecule and are implicated in the regulation of many crucial pathways during cell proliferation, apoptosis, and differentiation. METHOD Here, we present a comprehensive comparison of miRNA expression profiling in three main stages during porcine spermatogenesis using high-throughput sequencing. RESULTS We built three small RNA libraries for the testis, the epididymis and the ejaculated sperm from a Landrace boar, and in total obtained 3821 precursor hairpins encoding for 4761 mature miRNAs, of which 23 are miRNA*. Notably, 940 precursor miRNAs produced both the 5'- and 3'- strands as sister pairs, indicating the distinctive expression patterns of germ cell miRNAs. Additionally, 418 out of 710 co-expressed miRNAs were identified as being differentially expressed between libraries (P < 0.001). Apart from the sexual specific X chromosome, many miRNAs were found to be located on chromosome 12, which may play potential roles in spermatogenesis according to the result of synteny analysis with human and mouse. The Gene Ontology and KEGG pathway analysis revealed that the target genes of co-expressed miRNAs were highly involved in the cell cycle process, metal ion binding, modification of plasma membrane, and the p53 signal pathway.
Collapse
|
60
|
Abstract
Sperm RNA has been linked recently to trans-generational, non-Mendelian patterns of inheritance. Originally dismissed as “residual” to spermatogenesis, some sperm RNA may have postfertilization functions including the transmission of acquired characteristics. Sperm RNA may help explain how trans-generational effects are transmitted and it may also have implications for assisted reproductive technologies (ART) where sperm are subjected to considerable, ex vivo manual handling. The presence of sperm RNA was originally a controversial topic because nuclear gene expression is switched off in the mature mammalian spermatozoon. With the recent application of next generation sequencing (NGS), an unexpectedly rich and complex repertoire of RNAs has been revealed in the sperm of several species that makes its residual presence counterintuitive. What follows is a personal survey of the science behind our understanding of sperm RNA and its functional significance based on experimental observations from my laboratory as well as many others who have contributed to the field over the years and are continuing to contribute today. The narrative begins with a historical perspective and ends with some educated speculation on where research into sperm RNA is likely to lead us in the next 10 years or so.
Collapse
|
61
|
Determining ACTB, ATP5B and RPL32 as optimal reference genes for quantitative RT-PCR studies of cryopreserved stallion semen. Anim Reprod Sci 2014; 149:204-11. [DOI: 10.1016/j.anireprosci.2014.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/12/2014] [Accepted: 08/20/2014] [Indexed: 11/18/2022]
|
62
|
Shafeeque C, Singh R, Sharma S, Mohan J, Sastry K, Kolluri G, Saxena V, Tyagi J, Kataria J, Azeez P. Development of a new method for sperm RNA purification in the chicken. Anim Reprod Sci 2014; 149:259-65. [DOI: 10.1016/j.anireprosci.2014.06.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/25/2023]
|
63
|
Zilli L, Beirão J, Schiavone R, Herraez MP, Gnoni A, Vilella S. Comparative proteome analysis of cryopreserved flagella and head plasma membrane proteins from sea bream spermatozoa: effect of antifreeze proteins. PLoS One 2014; 9:e99992. [PMID: 24941006 PMCID: PMC4062426 DOI: 10.1371/journal.pone.0099992] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/21/2014] [Indexed: 01/19/2023] Open
Abstract
Cryopreservation induces injuries to fish spermatozoa that in turn affect sperm quality in terms of fertilization ability, motility, DNA and protein integrity and larval survival. To reduce the loss of sperm quality due to freezing-thawing, it is necessary to improve these procedures. In the present study we investigated the ability of two antifreeze proteins (AFPI and AFPIII) to reduce the loss of quality of sea bream spermatozoa due to cryopreservation. To do so, we compared viability, motility, straight-line velocity and curvilinear velocity of fresh and (AFPs)-cryopreserved spermatozoa. AFPIII addition to cryopreservation medium improved viability, motility and straight-line velocity with respect to DMSO or DMSO plus AFPI. To clarify the molecular mechanism(s) underlying these findings, the protein profile of two different cryopreserved sperm domains, flagella and head plasma membranes, was analysed. The protein profiles differed between fresh and frozen-thawed semen and results of the image analysis demonstrated that, after cryopreservation, out of 270 proteins 12 were decreased and 7 were increased in isolated flagella, and out of 150 proteins 6 showed a significant decrease and 4 showed a significant increase in head membranes. Mass spectrometry analysis identified 6 proteins (4 from isolated flagella and 2 present both in flagella and head plasma membranes) within the protein spots affected by the freezing-thawing procedure. 3 out of 4 proteins from isolated flagella were involved in the sperm bioenergetic system. Our results indicate that the ability of AFPIII to protect sea bream sperm quality can be, at least in part, ascribed to reducing changes in the sperm protein profile occurring during the freezing-thawing procedure. Our results clearly demonstrated that AFPIII addition to cryopreservation medium improved the protection against freezing respect to DMSO or DMSO plus AFPI. In addition we propose specific proteins of spermatozoa as markers related to the procedures of fish sperm cryopreservation.
Collapse
Affiliation(s)
- Loredana Zilli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- * E-mail:
| | - José Beirão
- Department of Molecular Biology, University of León, León, Spain
| | - Roberta Schiavone
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Sebastiano Vilella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
64
|
Moreton J, Malla S, Aboobaker AA, Tarlinton RE, Emes RD. Characterisation of the horse transcriptome from immunologically active tissues. PeerJ 2014; 2:e382. [PMID: 24860704 PMCID: PMC4017814 DOI: 10.7717/peerj.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/24/2014] [Indexed: 11/20/2022] Open
Abstract
The immune system of the horse has not been well studied, despite the fact that the horse displays several features such as sensitivity to bacterial lipopolysaccharide that make them in many ways a more suitable model of some human disorders than the current rodent models. The difficulty of working with large animal models has however limited characterisation of gene expression in the horse immune system with current annotations for the equine genome restricted to predictions from other mammals and the few described horse proteins. This paper outlines sequencing of 184 million transcriptome short reads from immunologically active tissues of three horses including the genome reference “Twilight”. In a comparison with the Ensembl horse genome annotation, we found 8,763 potentially novel isoforms.
Collapse
Affiliation(s)
- Joanna Moreton
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus , Loughborough , Leicestershire , UK ; Deep Seq, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre , Nottingham , UK ; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Loughborough , Leicestershire , UK
| | - Sunir Malla
- Deep Seq, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre , Nottingham , UK
| | | | - Rachael E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Loughborough , Leicestershire , UK
| | - Richard D Emes
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus , Loughborough , Leicestershire , UK ; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Loughborough , Leicestershire , UK
| |
Collapse
|
65
|
Ing NH, Forrest DW, Love CC, Varner DD. Dense spermatozoa in stallion ejaculates contain lower concentrations of mRNAs encoding the sperm specific calcium channel 1, ornithine decarboxylase antizyme 3, aromatase, and estrogen receptor alpha than less dense spermatozoa. Theriogenology 2014; 82:347-53. [PMID: 24857629 DOI: 10.1016/j.theriogenology.2014.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 04/16/2014] [Indexed: 01/07/2023]
Abstract
Stallions are unique among livestock in that, like men, they commonly receive medical treatment for subfertility. In both species, about 15% of individuals have normal semen parameters but are subfertile, indicating a need for novel analyses of spermatozoa function. One procedure for improving fertilizing capability of stallions and men is isolation of dense spermatozoa from an ejaculate for use in artificial insemination. In the current study, dense and less dense spermatozoa were purified by density gradient centrifugation from individual ejaculates from seven reproductively normal adult stallions. The RNA isolated from the spermatozoa seemed to be naturally fragmented to an average length of 250 bases, consistent with reports of spermatozoa RNA from other species. The DNAse treatment of RNA prepared from spermatozoa removed any genomic DNA contamination, as assessed by PCR with intron spanning primers for the protamine 1 (PRM1) gene. Concentrations of seven mRNAs in spermatozoa, correlated with the fertility of men and bulls, were quantified by reverse transcription polymerase chain reaction in dense and less dense spermatozoa. Concentrations of four mRNAs were two- to four-fold lower in dense spermatozoa compared with less dense spermatozoa: Encoding the spermatozoa-specific calcium channel (P < 0.03), ornithine decarboxylase antizyme 3 (P < 0.02), aromatase (P < 0.02), and estrogen receptor alpha (P < 0.08). In contrast, concentrations of three other mRNAs, encoding PRM1 and heat shock proteins HSPA8 and DNAJC4, were not different (P > 0.1). These results identify new differences in mRNA concentrations in populations of spermatozoa with dissimilar densities.
Collapse
Affiliation(s)
- N H Ing
- Department of Animal Science, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA.
| | - D W Forrest
- Department of Animal Science, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - C C Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, Texas, USA
| | - D D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
66
|
Luk ACS, Chan WY, Rennert OM, Lee TL. Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction 2014; 147:R131-41. [PMID: 24713396 DOI: 10.1530/rep-13-0594] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spermatogenesis is a complex developmental process in which undifferentiated spermatogonia are differentiated into spermatocytes and spermatids through two rounds of meiotic division and finally giving rise to mature spermatozoa (sperm). These processes involve many testis- or male germ cell-specific gene products that undergo strict developmental regulations. As a result, identifying critical, regulatory genes controlling spermatogenesis provide the clues not only to the regulatory mechanism of spermatogenesis at the molecular level, but also to the identification of candidate genes for infertility or contraceptives development. Despite the biological importance in male germ cell development, the underlying mechanisms of stage-specific gene regulation and cellular transition during spermatogenesis remain largely elusive. Previous genomic studies on transcriptome profiling were largely limited to protein-coding genes. Importantly, protein-coding genes only account for a small percentage of transcriptome; the majority are noncoding transcripts that do not translate into proteins. Although small noncoding RNAs (ncRNAs) such as microRNAs, siRNAs, and Piwi-interacting RNAs are extensively investigated in male germ cell development, the role of long ncRNAs (lncRNAs), commonly defined as ncRNAs longer than 200 bp, is relatively unexplored. Herein, we summarize recent transcriptome studies on spermatogenesis and show examples that a subset of noncoding transcript population, known as lncRNAs, constitutes a novel regulatory target in spermatogenesis.
Collapse
Affiliation(s)
- Alfred Chun-Shui Luk
- School of Biomedical Sciences, Room 622A, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | |
Collapse
|
67
|
Kim MC, Lee SW, Ryu DY, Cui FJ, Bhak J, Kim Y. Identification and characterization of microRNAs in normal equine tissues by Next Generation Sequencing. PLoS One 2014; 9:e93662. [PMID: 24695583 PMCID: PMC3973549 DOI: 10.1371/journal.pone.0093662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/04/2014] [Indexed: 12/31/2022] Open
Abstract
The role of microRNAs (miRNAs) as a post-transcriptional gene regulator has been elucidated in a broad range of organisms including domestic animals. Characterization of miRNAs in normal tissues is an important step to investigate the functions of miRNAs in various physiological and pathological conditions. Using Illumina Next Generation Sequencing (NGS) technology, we identified a total of 292 known and 329 novel miRNAs in normal horse tissues including skeletal muscle, colon and liver. Distinct sets of miRNAs were differentially expressed in a tissue-specific manner. The miRNA genes were distributed across all the chromosomes except chromosomes 29 and 31 in the horse reference genome. In some chromosomes, multiple miRNAs were clustered and considered to be polycistronic transcript. A base composition analysis showed that equine miRNAs had a higher frequency of A+U than G+C. Furthermore, U tended to be more frequent at the 5′ end of miRNA sequences. This is the first experimental study that identifies and characterizes the global miRNA expression profile in normal horse tissues. The present study enriches the horse miRNA database and provides useful information for further research dissecting biological functions of miRNAs in horse.
Collapse
Affiliation(s)
- Myung-Chul Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung-Woo Lee
- Laboratory of Environmental Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Doug-Young Ryu
- Laboratory of Environmental Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Feng-Ji Cui
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jong Bhak
- Theragen Bio Institute, Suwon-city, Gyeonggi-do, Republic of Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
68
|
Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013; 19:604-24. [PMID: 23856356 DOI: 10.1093/humupd/dmt031] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spermatozoa are highly differentiated, transcriptionally inert cells characterized by a compact nucleus with minimal cytoplasm. Nevertheless they contain a suite of unique RNAs that are delivered to oocyte upon fertilization. They are likely integrated as part of many different processes including genome recognition, consolidation-confrontation, early embryonic development and epigenetic transgenerational inherence. Spermatozoal RNAs also provide a window into the developmental history of each sperm thereby providing biomarkers of fertility and pregnancy outcome which are being intensely studied. METHODS Literature searches were performed to review the majority of spermatozoal RNA studies that described potential functions and clinical applications with emphasis on Next-Generation Sequencing. Human, mouse, bovine and stallion were compared as their distribution and composition of spermatozoal RNAs, using these techniques, have been described. RESULTS Comparisons highlighted the complexity of the population of spermatozoal RNAs that comprises rRNA, mRNA and both large and small non-coding RNAs. RNA-seq analysis has revealed that only a fraction of the larger RNAs retain their structure. While rRNAs are the most abundant and are highly fragmented, ensuring a translationally quiescent state, other RNAs including some mRNAs retain their functional potential, thereby increasing the opportunity for regulatory interactions. Abundant small non-coding RNAs retained in spermatozoa include miRNAs and piRNAs. Some, like miR-34c are essential to the early embryo development required for the first cellular division. Others like the piRNAs are likely part of the genomic dance of confrontation and consolidation. Other non-coding spermatozoal RNAs include transposable elements, annotated lnc-RNAs, intronic retained elements, exonic elements, chromatin-associated RNAs, small-nuclear ILF3/NF30 associated RNAs, quiescent RNAs, mse-tRNAs and YRNAs. Some non-coding RNAs are known to act as epigenetic modifiers, inducing histone modifications and DNA methylation, perhaps playing a role in transgenerational epigenetic inherence. Transcript profiling holds considerable potential for the discovery of fertility biomarkers for both agriculture and human medicine. Comparing the differential RNA profiles of infertile and fertile individuals as well as assessing species similarities, should resolve the regulatory pathways contributing to male factor infertility. CONCLUSIONS Dad delivers a complex population of RNAs to the oocyte at fertilization that likely influences fertilization, embryo development, the phenotype of the offspring and possibly future generations. Development is continuing on the use of spermatozoal RNA profiles as phenotypic markers of male factor status for use as clinical diagnostics of the father's contribution to the birth of a healthy child.
Collapse
Affiliation(s)
- Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
69
|
Østrup O, Olbricht G, Østrup E, Hyttel P, Collas P, Cabot R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS One 2013; 8:e61547. [PMID: 23637850 PMCID: PMC3639270 DOI: 10.1371/journal.pone.0061547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA). While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism), different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos showed striking overlap in functional annotation of transcripts during the EGA, suggesting conserved basic mechanisms regulating establishment of totipotency in mammalian development.
Collapse
Affiliation(s)
- Olga Østrup
- Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo and Norwegian Center for Stem Cell Research, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|