51
|
Hearps S, Seal M, Anderson V, McCarthy M, Connellan M, Downie P, De Luca C. The relationship between cognitive and neuroimaging outcomes in children treated for acute lymphoblastic leukemia with chemotherapy only: A systematic review. Pediatr Blood Cancer 2017; 64:225-233. [PMID: 27696698 DOI: 10.1002/pbc.26188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/07/2016] [Accepted: 07/16/2016] [Indexed: 12/18/2022]
Abstract
Cognitive late-effects have been identified in patients treated with chemotherapy-only protocols for childhood acute lymphoblastic leukemia (ALL), yet the underlying neuropathology is not well understood. This review synthesized recent findings from eight articles investigating the relationship between neurocognitive and neuroimaging outcomes for patients treated for ALL with chemotherapy-only protocols. Reported cognitive domains, imaging methods, and neuroanatomy examined were variable. Despite this, 62.5% (n = 5) of the reviewed studies found a significant relationship between cognitive and imaging outcomes. Greater understanding of the effects of treatment on neuroanatomy and cognitive outcomes is critical for proactively managing ALL cognitive late-effects. Research directions are suggested.
Collapse
Affiliation(s)
- Simone Hearps
- Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Marc Seal
- Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Vicki Anderson
- Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Psychology Service, Royal Children's Hospital, Parkville, Australia.,School of Psychological Science, The University of Melbourne, Parkville, Australia
| | - Maria McCarthy
- Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Australia.,Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Madeleine Connellan
- Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Australia.,Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Peter Downie
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Children's Cancer Centre, Monash Children's Hospital, Clayton, Australia.,Department of Paediatrics, Monash University, Clayton, Australia
| | - Cinzia De Luca
- Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Australia.,Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
52
|
van der Plas E, Schachar RJ, Hitzler J, Crosbie J, Guger SL, Spiegler BJ, Ito S, Nieman BJ. Brain structure, working memory and response inhibition in childhood leukemia survivors. Brain Behav 2017; 7:e00621. [PMID: 28239531 PMCID: PMC5318374 DOI: 10.1002/brb3.621] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Survival rates for children with acute lymphoblastic leukemia (ALL) approach 95%. At the same time, there is growing concern that chemotherapy causes alterations in brain development and cognitive abilities. We performed MRI measurements of white and gray matter volume to explore how variation in brain structure may be related to cognitive abilities in ALL survivors and healthy controls. METHODS The sample included 24 male ALL survivors who had completed contemporary treatment 3-11 years prior, and 21 age- and sex-matched controls. Participants were between 8 and 18 years old. Working memory and motor response inhibition were measured with the N-Back and Stop Signal Tasks (SST), respectively. Participants underwent 3T structural MRI to assess white and gray matter volumes overall, lobe-wise, and in cortical and atlas-identified subcortical structures. Mental health was assessed with the Child Behavioral Checklist. RESULTS ALL survivors performed more poorly on measures of working memory and response inhibition than controls. Frontal and parietal white matter, temporal and occipital gray matter volume, and volumes of subcortical white and gray matter structures were significantly reduced in ALL survivors compared with controls. Significant structure-function correlations were observed between working memory performance and volume of the amygdala, thalamus, striatum, and corpus callosum. Response inhibition was correlated with frontal white matter volume. No differences were found in psychopathology. CONCLUSIONS Compared with controls, a reduction in volume across brain regions and tissue types, was detectable in ALL survivors years after completion of therapy. These structural alterations were correlated with neurocognitive performance, particularly in working memory. Confirming these observations in a larger, more representative sample of the population is necessary. Additionally, establishing the time course of these changes-and the treatment, genetic, and environmental factors that influence them-may provide opportunities to identify at-risk patients, inform the design of treatment modifications, and minimize adverse cognitive outcomes.
Collapse
Affiliation(s)
- Ellen van der Plas
- Physiology and Experimental Medicine The Hospital for Sick Children Research Institute Toronto ON Canada; Psychiatry Research The Hospital for Sick Children Toronto ON Canada
| | - Russell J Schachar
- Psychiatry Research The Hospital for Sick Children Toronto ON Canada; Department of Psychiatry Faculty of Medicine The University of Toronto Toronto ON Canada
| | - Johann Hitzler
- Department of Pediatrics Faculty of Medicine The University of Toronto Toronto ON Canada; Department of Haematology/Oncology The Hospital for Sick Children Toronto ON Canada
| | - Jennifer Crosbie
- Psychiatry Research The Hospital for Sick Children Toronto ON Canada
| | - Sharon L Guger
- Department of Psychology The Hospital for Sick Children Toronto ON Canada
| | - Brenda J Spiegler
- Department of Pediatrics Faculty of Medicine The University of Toronto Toronto ON Canada; Department of Psychology The Hospital for Sick Children Toronto ON Canada
| | - Shinya Ito
- Physiology and Experimental Medicine The Hospital for Sick Children Research Institute Toronto ON Canada; Clinical Pharmacology and Toxicology The Hospital for Sick Children Toronto ON Canada; Pharmacology and Pharmacy Faculty of Medicine The University of Toronto Toronto ON Canada
| | - Brian J Nieman
- Physiology and Experimental Medicine The Hospital for Sick Children Research Institute Toronto ON Canada; Mouse Imaging Centre (MICe) The Hospital for Sick Children Toronto ON Canada; Ontario Institute for Cancer Research Toronto ON Canada; Department of Medical Biophysics The University of Toronto Toronto ON Canada
| |
Collapse
|
53
|
Frishman-Levy L, Izraeli S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy. Br J Haematol 2016; 176:157-167. [DOI: 10.1111/bjh.14411] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Liron Frishman-Levy
- Childhood Leukaemia Research Section; Department of Paediatric Oncology and the Cancer Research Centre; Safra Children Hospital and Sheba Medical Centre; Tel Hashomer Ramat Gan Israel
- Department of Human Genetics and Biochemistry; Tel Aviv University; Tel Aviv Israel
| | - Shai Izraeli
- Childhood Leukaemia Research Section; Department of Paediatric Oncology and the Cancer Research Centre; Safra Children Hospital and Sheba Medical Centre; Tel Hashomer Ramat Gan Israel
- Department of Human Genetics and Biochemistry; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
54
|
Wardill HR, Mander KA, Van Sebille YZA, Gibson RJ, Logan RM, Bowen JM, Sonis ST. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. Int J Cancer 2016; 139:2635-2645. [PMID: 27367824 DOI: 10.1002/ijc.30252] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity.
Collapse
Affiliation(s)
- Hannah R Wardill
- School of Medicine, University of Adelaide, South Australia. .,Centre for Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia.
| | - Kimberley A Mander
- School of Medicine, University of Adelaide, South Australia.,Adelaide Centre for Neuroscience Research and Discipline of Anatomy and Pathology, University of Adelaide, Adelaide, South Australia
| | | | - Rachel J Gibson
- Division of Health Sciences, University of South Australia, Australia
| | - Richard M Logan
- School of Dentistry, University of Adelaide, Adelaide, South Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, South Australia
| | - Stephen T Sonis
- Brigham and Women's Hospital, Boston, MA.,Biomodels, LLC, Watertown, MA
| |
Collapse
|
55
|
Moxon-Emre I, Bouffet E, Taylor MD, Laperriere N, Sharpe MB, Laughlin S, Bartels U, Scantlebury N, Law N, Malkin D, Skocic J, Richard L, Mabbott DJ. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J Neurosurg Pediatr 2016; 18:29-40. [PMID: 27015518 DOI: 10.3171/2016.1.peds15580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Craniospinal irradiation damages the white matter in children treated for medulloblastoma, but the treatment-intensity effects are unclear. In a cross-sectional retrospective study, the effects of treatment with the least intensive radiation protocol versus protocols that delivered more radiation to the brain, in addition to the effects of continuous radiation dose, on white matter architecture were evaluated. METHODS Diffusion tensor imaging was used to assess fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity. First, regional white matter analyses and tract-based spatial statistics were conducted in 34 medulloblastoma patients and 38 healthy controls. Patients were stratified according to those treated with 1) the least intensive radiation protocol, specifically reduced-dose craniospinal irradiation plus a boost to the tumor bed only (n = 17), or 2) any other dose and boost combination that delivered more radiation to the brain, which was also termed the "all-other-treatments" group (n = 17), and comprised patients treated with standard-dose craniospinal irradiation plus a posterior fossa boost, standard-dose craniospinal irradiation plus a tumor bed boost, or reduced-dose craniospinal irradiation plus a posterior fossa boost. Second, voxel-wise dose-distribution analyses were conducted on a separate cohort of medulloblastoma patients (n = 15). RESULTS The all-other-treatments group, but not the reduced-dose craniospinal irradiation plus tumor bed group, had lower fractional anisotropy and higher radial diffusivity than controls in all brain regions (all p < 0.05). The reduced-dose craniospinal irradiation plus tumor bed boost group had higher fractional anisotropy (p = 0.05) and lower radial diffusivity (p = 0.04) in the temporal region, and higher fractional anisotropy in the frontal region (p = 0.04), than the all-other-treatments group. Linear mixed-effects modeling revealed that the dose and age at diagnosis together 1) better predicted fractional anisotropy in the temporal region than models with either alone (p < 0.005), but 2) did not better predict fractional anisotropy in comparison with dose alone in the occipital region (p > 0.05). CONCLUSIONS Together, the results show that white matter damage has a clear association with increasing radiation dose, and that treatment with reduced-dose craniospinal irradiation plus tumor bed boost appears to preserve white matter in some brain regions.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology.,Pediatric Oncology Group of Ontario, Toronto; and
| | | | | | - Normand Laperriere
- Radiation Oncology, and.,Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Michael B Sharpe
- Radiation Oncology, and.,Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | - Nicole Law
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| | - David Malkin
- Divisions of 4 Hematology/Oncology.,Paediatrics, University of Toronto;,Pediatric Oncology Group of Ontario, Toronto; and
| | | | - Logan Richard
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| | - Donald J Mabbott
- Program in Neuroscience and Mental Health and ,Departments of 2 Psychology
| |
Collapse
|
56
|
Kesler SR, Gugel M, Huston-Warren E, Watson C. Atypical Structural Connectome Organization and Cognitive Impairment in Young Survivors of Acute Lymphoblastic Leukemia. Brain Connect 2016; 6:273-82. [PMID: 26850738 PMCID: PMC4876554 DOI: 10.1089/brain.2015.0409] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Survivors of pediatric acute lymphoblastic leukemia (ALL) are at increased risk for cognitive impairments that disrupt everyday functioning and decrease quality of life. The specific biological mechanisms underlying cognitive impairment following ALL remain largely unclear, but previous studies consistently demonstrate significant white matter pathology. We aimed to extend this literature by examining the organization of the white matter connectome in young patients with a history of ALL treated with chemotherapy only. We applied graph theoretical analysis to diffusion tensor imaging obtained from 31 survivors of ALL age 5-19 years and 39 matched healthy controls. Results indicated significantly lower small-worldness (p = 0.007) and network clustering coefficient (p = 0.019), as well as greater cognitive impairment (p = 0.027) in the ALL group. Regional analysis indicated that clustered connectivity in parietal, frontal, hippocampal, amygdalar, thalamic, and occipital regions was altered in the ALL group. Random forest analysis revealed a model of connectome and demographic variables that could automatically classify survivors of ALL as having cognitive impairment or not (accuracy = 0.89, p < 0.0001). These findings provide further evidence of brain injury in young survivors of ALL, even those without a history of central nervous system (CNS) disease or cranial radiation. Efficiency of local information processing, reorganization of hub connectivity, and cognitive reserve may contribute to cognitive outcome in these children. Certain connectome properties showed U-shaped relationships with cognitive impairment suggesting an optimal range of regional connectivity.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meike Gugel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Emily Huston-Warren
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christa Watson
- Department of Neurology, Dyslexia Center and Memory and Aging Center, University of California at San Francisco, San Francisco, California
| |
Collapse
|
57
|
Dietrich J, Prust M, Kaiser J. Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 2015; 309:224-32. [PMID: 26086545 DOI: 10.1016/j.neuroscience.2015.06.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 12/19/2022]
Abstract
Cancer therapies can be associated with significant central nervous system (CNS) toxicity. While radiation-induced brain damage has been long recognized both in pediatric and adult cancer patients, CNS toxicity from chemotherapy has only recently been acknowledged. Clinical studies suggest that the most frequent neurotoxic adverse effects associated with chemotherapy include memory and learning deficits, alterations of attention, concentration, processing speed and executive function. Preclinical studies have started to shed light on how chemotherapy targets the CNS both on cellular and molecular levels to disrupt neural function and brain plasticity. Potential mechanisms include direct cellular toxicity, alterations in cellular metabolism, oxidative stress, and induction of pro-inflammatory processes with subsequent disruption of normal cellular and neurological function. Damage to neural progenitor cell populations within germinal zones of the adult CNS has been identified as one of the key mechanisms by which chemotherapy might exert long-lasting and progressive neurotoxic effects. Based on the important role of the hippocampus for maintenance of brain plasticity throughout life, several experimental studies have focused on the study of chemotherapy effects on hippocampal neurogenesis and associated learning and memory. An increasing body of literature from both animal studies and neuroimaging studies in cancer patients suggests a possible relationship between chemotherapy induced hippocampal damage and the spectrum of neurocognitive deficits and mood alterations observed in cancer patients. This review aims to briefly summarize current preclinical and neuroimaging studies that are providing a potential link between the neurotoxic effects of chemotherapy and hippocampal dysfunction, highlighting challenges and future directions in this field of investigation.
Collapse
Affiliation(s)
- J Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - M Prust
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J Kaiser
- Institute of Medical Psychology, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany
| |
Collapse
|
58
|
Tamnes CK, Zeller B, Amlien IK, Kanellopoulos A, Andersson S, Due-Tønnessen P, Ruud E, Walhovd KB, Fjell AM. Cortical surface area and thickness in adult survivors of pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2015; 62:1027-34. [PMID: 25597852 DOI: 10.1002/pbc.25386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/12/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND Advances in the treatment of acute lymphoblastic leukemia (ALL) have led to great improvements in survival rates and outcomes, but there is concern about cognitive late effects. We aimed to determine whether ALL survivors have smaller cortical surface area and/or thickness, and test whether this is related to disease and treatment variables and self-reported executive functioning in everyday life. PROCEDURE Magnetic resonance imaging (MRI) scans from 130 adult long-term survivors of childhood ALL (age: 18-46 years; age at diagnosis: 0-16 years; years since diagnosis: 7-40) and 130 healthy controls were assessed to estimate and compare regional cortical surface area and thickness. Information on disease and treatment factors were obtained from patients' records, and executive functioning in survivors was measured using a validated questionnaire (BRIEF-A). RESULTS Smaller cortical surface area was observed in several regions in both cerebral hemispheres in ALL survivors. In these regions, mean surface area was 4.1-5.5% smaller in ALL survivors compared to healthy controls. In contrast, only one region showed lower cortical thickness in ALL survivors. There were no significant associations between cortical surface area/thickness in these regions and disease or treatment variables. In ALL survivors, smaller surface area in prefrontal regions, encompassing parts of the superior frontal gyri and the left anterior cingulate cortex, was associated with problems in executive functioning, specifically with emotional control and self-monitoring. CONCLUSIONS ALL survivors had smaller surface area in several cortical regions and smaller surface area in prefrontal regions was associated with reported problems in executive functioning.
Collapse
Affiliation(s)
- Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Cheung YT, Krull KR. Neurocognitive outcomes in long-term survivors of childhood acute lymphoblastic leukemia treated on contemporary treatment protocols: A systematic review. Neurosci Biobehav Rev 2015; 53:108-20. [PMID: 25857254 PMCID: PMC4425605 DOI: 10.1016/j.neubiorev.2015.03.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 01/13/2023]
Abstract
The intensified administration of chemotherapeutic drugs has gradually replaced cranial radiation therapy (CRT) for the treatment of childhood acute lymphoblastic leukemia (ALL). While CRT is often implicated in neurocognitive impairment in ALL survivors, there is a paucity of the literature that evaluates the persistence of neurocognitive deficits in long-term survivors of pediatric ALL who were treated with contemporary chemotherapy-only protocols. Results from this systematic review concurred to the probable cognitive-sparing effect of chemotherapy-based protocols over CRT in long-term survivors. However, coupled with multiple intrinsic and extrinsic factors, survivors who received chemotherapy treatment still suffered from apparent cognitive impairment, particularly in the attention and executive function domains. Notably, there is evidence to suggest that the late neurotoxic effect of methotrexate on survivors' neurocognitive performance may be dose-related. This review also recommends future pharmacokinetic, neuroimaging and genetic studies to illuminate the multifactorial nature of this subject matter and discusses the potential value of neurochemical, physiological, inflammatory and genetic markers for the prediction of susceptibility to neurocognitive impairment in long-term survivors of childhood ALL.
Collapse
Affiliation(s)
- Yin Ting Cheung
- Epidemiology and Cancer Control, St. Jude Children's Research Hospital, USA
| | - Kevin R Krull
- Epidemiology and Cancer Control, St. Jude Children's Research Hospital, USA.
| |
Collapse
|
60
|
Wengenroth L, Rueegg CS, Michel G, Gianinazzi ME, Essig S, von der Weid NX, Grotzer M, Kuehni CE. Concentration, working speed and memory: cognitive problems in young childhood cancer survivors and their siblings. Pediatr Blood Cancer 2015; 62:875-82. [PMID: 25645276 PMCID: PMC5916869 DOI: 10.1002/pbc.25396] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/19/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cognitive problems can have a negative effect on a person's education, but little is known about cognitive problems in young childhood cancer survivors (survivors). This study compared cognitive problems between survivors and their siblings, determined if cognitive problems decreased during recent treatment periods and identified characteristics associated with the presence of a cognitive problem in survivors. METHODS As part of the Swiss Childhood Cancer Survivor Study, a questionnaire was sent to all survivors, aged 8-20 years, registered in the Swiss Childhood Cancer Registry, diagnosed at age <16 years, who had survived ≥ 5 years. Parent-reported (aged 8-15 years) and self-reported (aged 16-20 years) cognitive problems (concentration, working speed, memory) were compared between survivors and siblings. Multivariable logistic regression was used to identify characteristics associated with cognitive problems in survivors. RESULTS Data from 840 survivors and 247 siblings were analyzed. More often than their siblings, survivors reported problems with concentration (12% vs. 6%; P = 0.020), slow working speed (20% vs. 8%; P = 0.001) or memory (33% vs. 15%; P < 0.001). Survivors from all treatment periods were more likely to report a cognitive problem than were siblings. Survivors of CNS tumors (OR = 2.82 compared to leukemia survivors, P < 0.001) and those who had received cranial irradiation (OR = 2.10, P = 0.010) were most severely affected. CONCLUSION Childhood cancer survivors, even those treated recently (2001-2005), remain at risk to develop cognitive problems, suggesting a need to improve therapies. Survivors with cognitive problems should be given the opportunity to enter special education programs.
Collapse
Affiliation(s)
- L. Wengenroth
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - C. S. Rueegg
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Switzerland
- Department of Health Sciences and Health Policy, University of Lucerne, Switzerland
| | - G. Michel
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Switzerland
- Department of Health Sciences and Health Policy, University of Lucerne, Switzerland
| | - M. E. Gianinazzi
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Switzerland
- Department of Health Sciences and Health Policy, University of Lucerne, Switzerland
| | - S. Essig
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Switzerland
- Institute of Primary and Community Care, Lucerne, Switzerland
- Swiss Paraplegic Research, Nottwil, Switzerland
| | - N. X. von der Weid
- Pediatric Hematology/Oncology Unit, University Children’s Hospital Basel (UKBB), University of Basel, Switzerland
| | - M. Grotzer
- Department of Oncology, University Children’s Hospital Zurich, Switzerland
| | - Claudia E. Kuehni
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Switzerland
| |
Collapse
|
61
|
Central nervous system acute lymphoblastic leukemia: role of natural killer cells. Blood 2015; 125:3420-31. [PMID: 25896649 DOI: 10.1182/blood-2014-08-595108] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/17/2015] [Indexed: 02/06/2023] Open
Abstract
Central nervous system acute lymphoblastic leukemia (CNS-ALL) is a major clinical problem. Prophylactic therapy is neurotoxic, and a third of the relapses involve the CNS. Increased expression of interleukin 15 (IL-15) in leukemic blasts is associated with increased risk for CNS-ALL. Using in vivo models for CNS leukemia caused by mouse T-ALL and human xenografts of ALL cells, we demonstrate that expression of IL-15 in leukemic cells is associated with the activation of natural killer (NK) cells. This activation limits the outgrowth of leukemic cells in the periphery, but less in the CNS because NK cells are excluded from the CNS. Depletion of NK cells in NOD/SCID mice enabled combined systemic and CNS leukemia of human pre-B-ALL. The killing of human leukemia lymphoblasts by NK cells depended on the expression of the NKG2D receptor. Analysis of bone marrow (BM) diagnostic samples derived from children with subsequent CNS-ALL revealed a significantly high expression of the NKG2D and NKp44 receptors. We suggest that the CNS may be an immunologic sanctuary protected from NK-cell activity. CNS prophylactic therapy may thus be needed with emerging NK cell-based therapies against hematopoietic malignancies.
Collapse
|
62
|
Edelmann MN, Krull KR, Liu W, Glass JO, Ji Q, Ogg RJ, Sabin ND, Srivastava DK, Robison LL, Hudson MM, Reddick WE. Diffusion tensor imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia. Brain 2014; 137:2973-83. [PMID: 25125614 PMCID: PMC4208463 DOI: 10.1093/brain/awu230] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 11/13/2022] Open
Abstract
Survivors of childhood acute lymphoblastic leukaemia are at risk for neurocognitive impairment, though little information is available on its association with brain integrity, particularly for survivors treated without cranial radiation therapy. This study compares neurocognitive function and brain morphology in long-term adult survivors of childhood acute lymphoblastic leukaemia treated with chemotherapy alone (n = 36) to those treated with cranial radiation therapy (n = 39) and to healthy control subjects (n = 23). Mean (standard deviation) age at evaluation was 24.9 (3.6) years for the chemotherapy group and 26.7 (3.4) years for the cranial radiation therapy group, while time since diagnosis was 15.0 (1.7) and 23.9 (3.1) years, respectively. Brain grey and white matter volume and diffusion tensor imaging was compared between survivor groups and to 23 healthy controls with a mean (standard deviation) age of 23.1 (2.6) years. Survivors treated with chemotherapy alone had higher fractional anisotropy in fibre tracts within the left (P < 0.05), but not in the right, hemisphere when compared to controls. Survivors of acute lymphoblastic leukaemia, regardless of treatment, had a lower ratio of white matter to intracranial volume in frontal and temporal lobes (P < 0.05) compared with control subjects. Survivors of acute lymphoblastic leukaemia treated with chemotherapy alone performed worse in processing speed (P < 0.001), verbal selective reminding (P = 0.01), and academics (P < 0.05) compared to population norms and performed better than survivors treated with cranial radiation therapy on verbal selective reminding (P = 0.02), processing speed (P = 0.05) and memory span (P = 0.009). There were significant associations between neurocognitive performance and brain imaging, particularly for frontal and temporal white and grey matter volume. Survivors of acute lymphoblastic leukaemia treated with chemotherapy alone demonstrated significant long-term differences in neurocognitive function and altered neuroanatomical integrity. These results suggest substantial region-specific white matter alterations in survivors of acute lymphoblastic leukaemia possibly resulting in restricted radial diffusion due to the compaction of neuronal fibres.
Collapse
Affiliation(s)
- Michelle N Edelmann
- 1 Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN 38105-3678, USA
| | - Kevin R Krull
- 1 Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN 38105-3678, USA
| | - Wei Liu
- 2 Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 768, Memphis, TN 38105-3678, USA
| | - John O Glass
- 3 Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 220, Memphis, TN 38105-3678, USA
| | - Qing Ji
- 3 Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 220, Memphis, TN 38105-3678, USA
| | - Robert J Ogg
- 3 Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 220, Memphis, TN 38105-3678, USA
| | - Noah D Sabin
- 3 Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 220, Memphis, TN 38105-3678, USA
| | - Deo Kumar Srivastava
- 2 Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 768, Memphis, TN 38105-3678, USA
| | - Leslie L Robison
- 1 Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN 38105-3678, USA
| | - Melissa M Hudson
- 1 Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN 38105-3678, USA 4 Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN 38105-3678, USA
| | - Wilburn E Reddick
- 3 Department of Radiological Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 220, Memphis, TN 38105-3678, USA
| |
Collapse
|