51
|
Lana JF, Huber SC, Purita J, Tambeli CH, Santos GS, Paulus C, Annichino-Bizzacchi JM. Leukocyte-rich PRP versus leukocyte-poor PRP - The role of monocyte/macrophage function in the healing cascade. J Clin Orthop Trauma 2019; 10:S7-S12. [PMID: 31700202 PMCID: PMC6823808 DOI: 10.1016/j.jcot.2019.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
The mechanism of action of Platelet Rich Plasma (PRP) is thought to be related to the biomolecules present in α-granules. However, for the healing process to occur, an inflammatory phase is also deemed necessary. Leukocytes present in the inflammatory phase release both pro- and anti-inflammatory molecules. The latter may play an important role in the process of "inflammatory regeneration". Thus, we propose that in the context of healing, both platelets and leukocytes play an important role, specifically due to the macrophage's plasticity to switch from the M1 to M2 fraction. Therefore, we propose that PRP products derived from the buffy coat may be more beneficial than detrimental from a standpoint of the regenerative potential of PRP.
Collapse
Affiliation(s)
- José Fábio Lana
- Orthopedics, Sports Medicine, Pain Physician, IOC Instituto Do Osso e da Cartilagem, The Bone and Cartilage Institute, Presidente Kennedy Avenue, 1386, 2nd Floor, Room #29, Cidade Nova I, Indaiatuba, SP, Brazil
| | - Stephany Cares Huber
- Biomedical Scientist, Universidade Estadual de Campinas (UNICAMP), The University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Joseph Purita
- Orthopedics, Sports Medicine, Pain Physician, Institute of Regenerative Medicine, 200 Glades Rd Suite 1, Boca Raton, FL, United States
| | - Claudia H Tambeli
- Universidade Estadual de Campinas (UNICAMP), The University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Gabriel Silva Santos
- Biomedical Scientist, IOC Instituto Do Osso e da Cartilagem, The Bone and Cartilage Institute, Presidente Kennedy Avenue, 1386, 2nd Floor, Room #29, Cidade Nova I, Indaiatuba, SP, Brazil
| | - Christian Paulus
- Institute of Regenerative Medicine, 200 Glades Rd Suite 1, Boca Raton, FL, United States
| | - Joyce M Annichino-Bizzacchi
- Universidade Estadual de Campinas (UNICAMP), The University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| |
Collapse
|
52
|
Lana JF, Macedo A, Ingrao ILG, Huber SC, Santos GS, Santana MHA. Leukocyte-rich PRP for knee osteoarthritis: Current concepts. J Clin Orthop Trauma 2019; 10:S179-S182. [PMID: 31700210 PMCID: PMC6823820 DOI: 10.1016/j.jcot.2019.01.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/15/2023] Open
Abstract
Knee osteoarthritis is a major painful and debilitating orthopaedic disease affecting a large number of adult individuals on a global scale. Over the years, this severe condition has been widely studied and while many alternatives have been utilized, platelet-rich plasma (PRP) remains one of the most popular solutions among researchers and clinicians alike. While there are different formulations and techniques involved in the preparation of PRP, produced either manually or via the use of commercial kits, the presence of leukocytes in a PRP mixture is a factor that raises concern due to their well-known pro-inflammatory activity. Although it is reasonable to worry about this, it should be taken into consideration that in order for the healing process to occur, the inflammatory phase is necessary. Leukocytes present in the inflammatory phase release both pro and anti-inflammatory molecules and, when combined with activated platelets, their potential increases. Additionally, due to the macrophage's plasticity to switch from the subtype 1 to subtype 2, it is suggested that the inclusion of the components from the buffy coat layer in a PRP mixture, classifying it as leukocyte-rich platelet-rich plasma or L-PRP, may provide benefits instead of detriments, from a standpoint of the regenerative potential of PRP.
Collapse
Affiliation(s)
- José Fábio Lana
- The Bone and Cartilage Institute, Presidente Kennedy Avenue, 1386 – 2nd floor, Room #29 – Cidade Nova I, Indaiatuba, SP, Brazil
| | - Alex Macedo
- The Bone and Cartilage Institute, Presidente Kennedy Avenue, 1386 – 2nd floor, Room #29 – Cidade Nova I, Indaiatuba, SP, Brazil
| | - Icaro Lanzoni Gallo Ingrao
- The Bone and Cartilage Institute, Presidente Kennedy Avenue, 1386 – 2nd floor, Room #29 – Cidade Nova I, Indaiatuba, SP, Brazil
| | - Stephany Cares Huber
- The University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Gabriel Silva Santos
- The Bone and Cartilage Institute, Presidente Kennedy Avenue, 1386 – 2nd floor, Room #29 – Cidade Nova I, Indaiatuba, SP, Brazil,Corresponding author. Indaiatuba, São Paulo, 13334-170, Brazil.
| | | |
Collapse
|
53
|
Mammoli F, Parenti S, Lomiento M, Gemelli C, Atene CG, Grande A, Corradini R, Manicardi A, Fantini S, Zanocco-Marani T, Ferrari S. Physiological expression of miR-130a during differentiation of CD34 + human hematopoietic stem cells results in the inhibition of monocyte differentiation. Exp Cell Res 2019; 382:111445. [PMID: 31152707 DOI: 10.1016/j.yexcr.2019.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, thereby determining their degradation or inhibiting translation. They are involved in processes such as proliferation, differentiation and apoptosis by fine-tuning the expression of genes underlying such events. The expression of specific miRNAs is involved in hematopoietic differentiation and their deregulation contributes to the development of hematopoietic malignancies such as acute myeloid leukemia (AML). miR-130a is over-expressed in AML. Here we show that miR-130a is physiologically expressed in myeloblasts and down-regulated during monocyte differentiation. Gain- and loss-of-function experiments performed on CD34+ human hematopoietic stem cells confirmed that expression of miR-130a inhibits monocyte differentiation by interfering with the expression of key transcription factors HOXA10, IRF8, KLF4, MAFB and PU-1. The data obtained in this study highlight that the correct modulation of miR-130a is necessary for normal differentiation to occur and confirming that deregulation of this miRNA might underlie the differentiation block occurring in AML.
Collapse
Affiliation(s)
- Fabiana Mammoli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Srl - IRCCS, Italy.
| | - Sandra Parenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Mariana Lomiento
- Sant'Orsola Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Claudia Gemelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Claudio Giacinto Atene
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Alexis Grande
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, I-43124 Parma, Italy.
| | - Alex Manicardi
- Department of Organic and Macromolecular Chemistry Organic and Biomimetic Chemistry Research Group (OBCR) Faculty of Sciences - Ghent University Campus Sterre, Krijgslaan, 281 S4 B-9000 Gent, Belgium.
| | - Sebastian Fantini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Tommaso Zanocco-Marani
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Srl - IRCCS, Italy.
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| |
Collapse
|
54
|
Gemelli C, Grande A, Ferrari S, Tomasi A, Cuoghi A. Monocytes-based in vitro assay for a preliminary biocompatibility assessment of blood-contacting devices. EUR J INFLAMM 2019. [DOI: 10.1177/2058739218820479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The biological evaluation of biomaterials is currently defined by the ISO-10993 norm in which parts four and five are dedicated to emo-compatibility and cell toxicity, respectively. Our study will provide a novel in vitro experimental approach for the biocompatibility assessment of biomaterials or medical devices using human primary monocytes as cellular model. In these new settings, human monocytes are exposed to a medium containing the extractable compounds derived from materials or devices; subsequently, cell toxicity and pro-inflammatory effects are analysed through MTT assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA) methodologies. These experimental procedures offer the advantage to use a human and primary cell context belonging to the immune system, in order to accurately predict the nature of blood/device interaction occurring during a clinical application. To validate the reliability of this method, we also reported a comparative study between two different membranes showing a different level of biocompatibility. On the bases of these data, it is possible to state that this new experimental model represents a good approach to investigate the effects induced by a biomaterial on cell death and inflammation using human, primary monocytes.
Collapse
Affiliation(s)
| | - Alexis Grande
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Aldo Tomasi
- Science and Technology Park for Medicine, Mirandola, Italy
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Aurora Cuoghi
- Science and Technology Park for Medicine, Mirandola, Italy
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
55
|
Puchalska P, Huang X, Martin SE, Han X, Patti GJ, Crawford PA. Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments. iScience 2018; 9:298-313. [PMID: 30448730 PMCID: PMC6240706 DOI: 10.1016/j.isci.2018.10.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by 13C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were 13C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of 13C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [13C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [13C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA; Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Xiaojing Huang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Chemistry, Washington University, St. Louis, MO 63110, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shannon E Martin
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Barshop Institute for Longevity and Aging Studies, Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA; Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
56
|
Huaux F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front Immunol 2018; 9:2364. [PMID: 30510551 PMCID: PMC6252316 DOI: 10.3389/fimmu.2018.02364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Fibrosis, cancer, and autoimmunity developing upon particle exposure have been exclusively linked with uncontrolled inflammatory processes. The critical role of inflammation is now challenged by several contradictory observations indicating that the emergence of these chronic disorders may result from non-inflammatory events. A growing number of studies reveals that micro- and nano-particles can cause exaggerated and persistent immunosuppression characterized by the release of potent anti-inflammatory cytokines (IL-10 and TGF-β), and the recruitment of major regulatory immune cells (M2 macrophages, T and B regs, and MDSC). This persistent immunosuppressive environment is initially established to limit early inflammation but contributes later to fibrosis, cancer, and infection. Immunosuppression promotes fibroblast proliferation and matrix element synthesis and subverts innate and adaptive immune surveillance against tumor cells and microorganisms. This review details the contribution of immunosuppressive cells and their derived immunoregulatory mediators and delineates the mutual role of inflammatory vs. immunosuppressive mechanisms in the pathogenesis of chronic diseases induced by particles. The consideration of these new results explains how particle-related diseases can develop independently of chronic inflammation, enriches current bioassays predicting particle toxicity and suggests new clinical strategies for treating patients affected by particle-associated diseases.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
57
|
Rath P, Allen JA, Schneider DS. Predicting position along a looping immune response trajectory. PLoS One 2018; 13:e0200147. [PMID: 30296270 PMCID: PMC6175499 DOI: 10.1371/journal.pone.0200147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
When we get sick, we want to be resilient and recover our original health. To measure resilience, we need to quantify a host's position along its disease trajectory. Here we present Looper, a computational method to analyze longitudinally gathered datasets and identify gene pairs that form looping trajectories when plotted in the space described by these phases. These loops enable us to track where patients lie on a typical trajectory back to health. We analyzed two publicly available, longitudinal human microarray datasets that describe self-resolving immune responses. Looper identified looping gene pairs expressed by human donor monocytes stimulated by immune elicitors, and in YF17D-vaccinated individuals. Using loops derived from training data, we found that we could predict the time of perturbation in withheld test samples with accuracies of 94% in the human monocyte data, and 65-83% within the same cohort and in two independent cohorts of YF17D vaccinated individuals. We suggest that Looper will be useful in building maps of resilient immune processes across organisms.
Collapse
Affiliation(s)
- Poonam Rath
- Department of Microbiology and Immunology, Stanford University, Stanford CA, United States of America
| | - Jessica A. Allen
- Department of Microbiology and Immunology, Stanford University, Stanford CA, United States of America
| | - David S. Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford CA, United States of America
- * E-mail:
| |
Collapse
|
58
|
Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci 2018; 19:ijms19061801. [PMID: 29921749 PMCID: PMC6032107 DOI: 10.3390/ijms19061801] [Citation(s) in RCA: 911] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Experimental models have often been at the origin of immunological paradigms such as the M1/M2 dichotomy following macrophage polarization. However, this clear dichotomy in animal models is not as obvious in humans, and the separating line between M1-like and M2-like macrophages is rather represented by a continuum, where boundaries are still unclear. Indeed, human infectious diseases, are characterized by either a back and forth or often a mixed profile between the pro-inflammatory microenvironment (dominated by interleukin (IL)-1β, IL-6, IL-12, IL-23 and Tumor Necrosis Factor (TNF)-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (dominated by IL-10, Transforming growth factor (TGF)-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). This review brews the complexity of the situation during infectious diseases by stressing on this continuum between M1-like and M2-like extremes. We first discuss the basic biology of macrophage polarization, function, and role in the inflammatory process and its resolution. Secondly, we discuss the relevance of the macrophage polarization continuum during infectious and neglected diseases, and the possibility to interfere with such activation states as a promising therapeutic strategy in the treatment of such diseases.
Collapse
|
59
|
Surdziel E, Clay I, Nigsch F, Thiemeyer A, Allard C, Hoffman G, Reece-Hoyes JS, Phadke T, Gambert R, Keller CG, Ludwig MG, Baumgarten B, Frederiksen M, Schübeler D, Seuwen K, Bouwmeester T, Fodor BD. Multidimensional pooled shRNA screens in human THP-1 cells identify candidate modulators of macrophage polarization. PLoS One 2017; 12:e0183679. [PMID: 28837623 PMCID: PMC5570424 DOI: 10.1371/journal.pone.0183679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023] Open
Abstract
Macrophages are key cell types of the innate immune system regulating host defense, inflammation, tissue homeostasis and cancer. Within this functional spectrum diverse and often opposing phenotypes are displayed which are dictated by environmental clues and depend on highly plastic transcriptional programs. Among these the 'classical' (M1) and 'alternative' (M2) macrophage polarization phenotypes are the best characterized. Understanding macrophage polarization in humans may reveal novel therapeutic intervention possibilities for chronic inflammation, wound healing and cancer. Systematic loss of function screening in human primary macrophages is limited due to lack of robust gene delivery methods and limited sample availability. To overcome these hurdles we developed cell-autonomous assays using the THP-1 cell line allowing genetic screens for human macrophage phenotypes. We screened 648 chromatin and signaling regulators with a pooled shRNA library for M1 and M2 polarization modulators. Validation experiments confirmed the primary screening results and identified OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) as a novel mediator of M2 polarization in human macrophages. Our approach offers a possible avenue to utilize comprehensive genetic tools to identify novel candidate genes regulating macrophage polarization in humans.
Collapse
Affiliation(s)
- Ewa Surdziel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ieuan Clay
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Anke Thiemeyer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Cyril Allard
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gregory Hoffman
- Novartis Institutes for Biomedical Research, Cambridge, United States of America
| | - John S. Reece-Hoyes
- Novartis Institutes for Biomedical Research, Cambridge, United States of America
| | - Tanushree Phadke
- Novartis Institutes for Biomedical Research, Cambridge, United States of America
| | - Romain Gambert
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | - Dirk Schübeler
- Friedrich Miescher Institute for BioMedical Research, Basel, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Barna D. Fodor
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
60
|
Yin C, Kim Y, Argintaru D, Heit B. Rab17 mediates differential antigen sorting following efferocytosis and phagocytosis. Cell Death Dis 2016; 7:e2529. [PMID: 28005073 PMCID: PMC5261003 DOI: 10.1038/cddis.2016.431] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022]
Abstract
Macrophages engulf and destroy pathogens (phagocytosis) and apoptotic cells (efferocytosis), and can subsequently initiate adaptive immune responses by presenting antigens derived from engulfed materials. Both phagocytosis and efferocytosis share a common degradative pathway in which the target is engulfed into a membrane-bound vesicle, respectively, termed the phagosome and efferosome, where they are degraded by sequential fusion with endosomes and lysosomes. Despite this shared maturation pathway, macrophages are immunogenic following phagocytosis but not efferocytosis, indicating that differential processing or trafficking of antigens must occur. Mass spectrometry and immunofluorescence microscopy of efferosomes and phagosomes in macrophages demonstrated that efferosomes lacked the proteins required for antigen presentation and instead recruited the recycling regulator Rab17. As a result, degraded materials from efferosomes bypassed the MHC class II loading compartment via the recycling endosome - a process not observed in phagosomes. Combined, these results indicate that macrophages prevent presentation of apoptotic cell-derived antigens by preferentially trafficking efferocytosed, but not phagocytosed, materials away from the MHC class II loading compartment via the recycling endosome pathway.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Yohan Kim
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Dean Argintaru
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| | - Bryan Heit
- Department of Microbiology and Immunology and The Centre for Human Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada N6A 5C1
| |
Collapse
|
61
|
Li Y, Italiani P, Casals E, Valkenborg D, Mertens I, Baggerman G, Nelissen I, Puntes VF, Boraschi D. Assessing the Immunosafety of Engineered Nanoparticles with a Novel in Vitro Model Based on Human Primary Monocytes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28437-28447. [PMID: 27670583 DOI: 10.1021/acsami.6b06278] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The possibility that nanomaterials could perturb the normal course of an inflammatory response is a key issue when assessing nanoimmunosafety. The alteration of the normal progress of an inflammatory response may have pathological consequences, since inflammation is a major defensive mechanism and its efficiency maintains the body's health. The immunosafety of engineered nanoparticles at nontoxic concentrations was investigated with the use of a human primary monocyte-based in vitro system, which reproduces in a simplified fashion the full course of the physiological inflammatory response, from initiation and development to resolution. The kinetics of expression and production of inflammatory and anti-inflammatory cytokines and the proteomic profiles were used for describing the inflammatory defensive response. We assessed the ability of gold and silver nanoparticles to trigger inflammation and to interfere with the course of an ongoing defensive reaction. While neither nanoparticle type was able to directly activate monocytes, silver nanoparticles could exacerbate the inflammatory response of monocytes but did not interfere with the resolution of the inflammatory reaction. These findings support the use of human primary monocyte-based in vitro assays for realistically investigating the effects of engineered nanoparticles on human innate immune responses, in order to predict the immunological risk of nanomaterials and implement safe nanoparticle-based applications.
Collapse
Affiliation(s)
- Yang Li
- Institute of Protein Biochemistry, National Research Council , 80131 Napoli, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry, National Research Council , 80131 Napoli, Italy
| | - Eudald Casals
- Institut Català de Nanotecnologia , Campus of the UAB, 08193 Bellaterra, Spain
| | - Dirk Valkenborg
- Flemish Institute for Technological Research , 2400 Mol, Belgium
- Center for Proteomics, University of Antwerp , 2020 Antwerp, Belgium
| | - Inge Mertens
- Flemish Institute for Technological Research , 2400 Mol, Belgium
- Center for Proteomics, University of Antwerp , 2020 Antwerp, Belgium
| | - Geert Baggerman
- Flemish Institute for Technological Research , 2400 Mol, Belgium
- Center for Proteomics, University of Antwerp , 2020 Antwerp, Belgium
| | - Inge Nelissen
- Flemish Institute for Technological Research , 2400 Mol, Belgium
| | - Victor F Puntes
- Institut Català de Nanotecnologia , Campus of the UAB, 08193 Bellaterra, Spain
- Vall d'Hebron Institute of Research (VHIR) , 08035 Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats, ICREA , 08010 Barcelona, Spain
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council , 80131 Napoli, Italy
| |
Collapse
|
62
|
Grunin M, Hagbi-Levi S, Rinsky B, Smith Y, Chowers I. Transcriptome Analysis on Monocytes from Patients with Neovascular Age-Related Macular Degeneration. Sci Rep 2016; 6:29046. [PMID: 27374485 PMCID: PMC4931446 DOI: 10.1038/srep29046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023] Open
Abstract
Mononuclear phagocytes (MPs), including monocytes/macrophages, play complex roles in age-related macular degeneration (AMD) pathogenesis. We reported altered gene-expression signature in peripheral blood mononuclear cells from AMD patients, and a chemokine receptor signature on AMD monocytes. To obtain comprehensive understanding of MP involvement, particularly in peripheral circulation in AMD, we performed global gene expression analysis in monocytes. We separated monocytes from treatment-naïve neovascular AMD (nvAMD) patients (n = 14) and age-matched controls (n = 15), and performed microarray and bioinformatics analysis. Quantitative real-time PCR was performed on other sets of nvAMD (n = 25), atrophic AMD (n = 21), and controls (n = 28) for validation. This validated microarray genes (like TMEM176A/B and FOSB) tested, including differences between nvAMD and atrophic AMD. We identified 2,165 differentially-expressed genes (P < 0.05), including 79 genes with log2 fold change ≥1.5 between nvAMD and controls. Functional annotation using DAVID and TANGO demonstrated immune response alterations in AMD monocytes (FDR-P <0.05), validated by randomized data comparison (P < 0.0001). GSEA, ISMARA, and MEME analysis found immune enrichment and specific involved microRNAs. Enrichment of differentially-expressed genes in monocytes was found in retina via SAGE data-mining. These genes were enriched in non-classical vs. classical monocyte subsets (P < 0.05). Therefore, global gene expression analysis in AMD monocytes reveals an altered immune-related signature, further implicating systemic MP activation in AMD.
Collapse
Affiliation(s)
- Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shira- Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, Hebrew University, Jerusalem, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
63
|
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016; 173:649-65. [PMID: 25800044 PMCID: PMC4742299 DOI: 10.1111/bph.13139] [Citation(s) in RCA: 1422] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Abstract
Microglia are critical nervous system-specific immune cells serving as tissue-resident macrophages influencing brain development, maintenance of the neural environment, response to injury and repair. As influenced by their environment, microglia assume a diversity of phenotypes and retain the capability to shift functions to maintain tissue homeostasis. In comparison with peripheral macrophages, microglia demonstrate similar and unique features with regards to phenotype polarization, allowing for innate immunological functions. Microglia can be stimulated by LPS or IFN-γ to an M1 phenotype for expression of pro-inflammatory cytokines or by IL-4/IL-13 to an M2 phenotype for resolution of inflammation and tissue repair. Increasing evidence suggests a role of metabolic reprogramming in the regulation of the innate inflammatory response. Studies using peripheral immune cells demonstrate that polarization to an M1 phenotype is often accompanied by a shift in cells from oxidative phosphorylation to aerobic glycolysis for energy production. More recently, the link between polarization and mitochondrial energy metabolism has been considered in microglia. Under these conditions, energy demands would be associated with functional activities and cell survival and thus, may serve to influence the contribution of microglia activation to various neurodegenerative conditions. This review examines the polarization states of microglia and their relationship to mitochondrial metabolism. Additional supporting experimental data are provided to demonstrate mitochondrial metabolic shifts in primary microglia and the BV-2 microglia cell line induced under LPS (M1) and IL-4/IL-13 (M2) polarization.
Collapse
Affiliation(s)
- Ruben Orihuela
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christopher A McPherson
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gaylia Jean Harry
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
64
|
What are the roles of macrophages and monocytes in human pregnancy? J Reprod Immunol 2015; 112:73-80. [DOI: 10.1016/j.jri.2015.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/01/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
|
65
|
Italiani P, Boraschi D. New Insights Into Tissue Macrophages: From Their Origin to the Development of Memory. Immune Netw 2015; 15:167-76. [PMID: 26330802 PMCID: PMC4553254 DOI: 10.4110/in.2015.15.4.167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/25/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Macrophages are the main effector cells of innate immunity and are involved in inflammatory and anti-infective processes. They also have an essential role in maintaining tissue homeostasis, supporting tissue development, and repairing tissue damage. Until few years ago, it was believed that tissue macrophages derived from circulating blood monocytes, which terminally differentiated in the tissue and unable to proliferate. Recent evidence in the biology of tissue macrophages has uncovered a series of immune and ontogenic features that had been neglected for long, despite old observations. These include origin, heterogeneity, proliferative potential (or self-renewal), polarization, and memory. In recent years, the number of publications on tissue resident macrophages has grown rapidly, highlighting the renewed interest of the immunologists for these key players of innate immunity. This mini-review aims to summarizing the new current knowledge in macrophage immunobiology, in order to offer a clear and immediate overview of the field.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples 80131, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples 80131, Italy
| |
Collapse
|
66
|
McCauslin CS, Gunn KE, Pirone D, Staiger J. qPCR for second year undergraduates: A short, structured inquiry to illustrate differential gene expression. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 43:273-282. [PMID: 26148025 DOI: 10.1002/bmb.20870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the NOS2 gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative CT method, students are able determine whether transcriptional activation of NOS2 occurs and to what degree. The exercise is aimed at second year undergraduates who possess basic knowledge of gene expression events. It requires only 4-5 hr of dedicated laboratory time and focuses on use of the primary literature, data analysis, and interpretation. Importantly, this exercise provides a mechanism to introduce the concept of differential gene expression and provides a starting point for development of more complex guided or open inquiry projects for students moving into upper level molecular biology, immunology, and biochemistry course work.
Collapse
Affiliation(s)
| | | | - Dana Pirone
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland
| | - Jennifer Staiger
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland
| |
Collapse
|
67
|
Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol 2014; 5:514. [PMID: 25368618 PMCID: PMC4201108 DOI: 10.3389/fimmu.2014.00514] [Citation(s) in RCA: 1496] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/02/2014] [Indexed: 11/13/2022] Open
Abstract
Studies on monocyte and macrophage biology and differentiation have revealed the pleiotropic activities of these cells. Macrophages are tissue sentinels that maintain tissue integrity by eliminating/repairing damaged cells and matrices. In this M2-like mode, they can also promote tumor growth. Conversely, M1-like macrophages are key effector cells for the elimination of pathogens, virally infected, and cancer cells. Macrophage differentiation from monocytes occurs in the tissue in concomitance with the acquisition of a functional phenotype that depends on microenvironmental signals, thereby accounting for the many and apparently opposed macrophage functions. Many questions arise. When monocytes differentiate into macrophages in a tissue (concomitantly adopting a specific functional program, M1 or M2), do they all die during the inflammatory reaction, or do some of them survive? Do those that survive become quiescent tissue macrophages, able to react as naïve cells to a new challenge? Or, do monocyte-derived tissue macrophages conserve a “memory” of their past inflammatory activation? This review will address some of these important questions under the general framework of the role of monocytes and macrophages in the initiation, development, resolution, and chronicization of inflammation.
Collapse
Affiliation(s)
- Paola Italiani
- Laboratory of Innate Immunity and Cytokines, Institute of Protein Biochemistry, National Research Council , Napoli , Italy
| | - Diana Boraschi
- Laboratory of Innate Immunity and Cytokines, Institute of Protein Biochemistry, National Research Council , Napoli , Italy
| |
Collapse
|