51
|
Sadiq FA, Flint S, Li Y, Ou K, Yuan L, He GQ. Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Future Microbiol 2017; 12:1087-1107. [DOI: 10.2217/fmb-2017-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phenotypic changes or phase variation within biofilms is an important feature of bacterial dormant life. Enhanced resistance to antimicrobials is one of the distinct features displayed by a fraction of cells within biofilms. It is believed that persisters are mainly responsible for this phenotypic heterogeneity. However, there is still an unresolved debate on the formation of persisters. In this short review, we highlight all known genomic and proteomic changes encountered by bacterial cells within biofilms. We have also described all phenotypic changes displayed by bacterial cells within biofilms with particular emphasis on enhanced antimicrobial tolerance of biofilms with particular reference to persisters. In addition, all currently known models of persistence have been succinctly discussed.
Collapse
Affiliation(s)
- Faizan A Sadiq
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Steve Flint
- School of Food & Nutrition, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand
| | - YanJun Li
- Research Institute of Food Science, Hangzhou Wahaha Group Co, Ltd, Hangzhou 310018, China
| | - Kai Ou
- Research Institute of Food Science, Hangzhou Wahaha Group Co, Ltd, Hangzhou 310018, China
| | - Lei Yuan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guo Qing He
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
52
|
Berghoff BA, Wagner EGH. RNA-based regulation in type I toxin-antitoxin systems and its implication for bacterial persistence. Curr Genet 2017; 63:1011-1016. [PMID: 28560584 PMCID: PMC5668327 DOI: 10.1007/s00294-017-0710-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/02/2023]
Abstract
Bacterial dormancy is a valuable survival strategy upon challenging environmental conditions. Dormant cells tolerate the consequences of high stress levels and may re-populate the environment upon return to favorable conditions. Antibiotic-tolerant bacteria—termed persisters—regularly cause relapsing infections, increase the likelihood of antibiotic resistance, and, therefore, earn increasing attention. Their generation often depends on toxins from chromosomal toxin–antitoxin systems. Here, we review recent insights concerning RNA-based control of toxin synthesis, and discuss possible implications for persister generation.
Collapse
Affiliation(s)
- Bork A Berghoff
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, 35392, Giessen, Germany.
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
53
|
Sacco SA, Adolfsen KJ, Brynildsen MP. An integrated network analysis identifies how ArcAB enables metabolic oscillations in the nitric oxide detoxification network of Escherichia coli. Biotechnol J 2017; 12. [PMID: 28449226 DOI: 10.1002/biot.201600570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 11/06/2022]
Abstract
The virulences of many pathogens depend on their abilities to detoxify the immune antimicrobial nitric oxide (NO•). The functions of bacterial NO• detoxification machinery depend on oxygen (O2 ), with O2 inhibiting some enzymes, whereas others use it as a substrate. Previously, Escherichia coli NO• detoxification was found to be highly attenuated under microaerobic conditions and metabolic oscillations were observed. The oscillations in [NO•] and [O2 ] were found to result from the inhibitory action of NO• on aerobic respiration, the catalytic inactivation of NO• by Hmp (an NO• dioxygenase), and an imbalanced competition for O2 between Hmp and cytochrome terminal oxidase activity. Here the authors investigated the role of the ArcAB two component system (TCS) in microaerobic NO• detoxification. The authors observed that wild-type, ΔarcA, and ΔarcB had comparable initial NO• clearance times; however, the mutant cultures failed to exhibit [NO•] and [O2 ] oscillations. Using an approach that employed experimentation and computational modeling, the authors found that the loss of oscillations in ΔarcA was due to insufficient induction of cytochrome bd-I expression. Collectively, these results establish ArcAB as a TCS that influences NO• detoxification in E. coli within the physiologically-relevant microaerobic regime.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
54
|
Abstract
There is much controversy about the metabolic state of cells that are tolerant to antibiotics, known as persister cells. In this opinion piece, we offer an explanation for the discrepancy seen: some laboratories are studying metabolically active and growing cell populations (e.g., as a result of nutrient shifts) and attributing the phenotypes that they discern to persister cells while other labs are studying dormant cells. We argue here that the metabolically active cell population should more accurately be considered tolerant cells, while the dormant cells are the true persister population.
Collapse
|
55
|
Robinson JL, Jaslove JM, Murawski AM, Fazen CH, Brynildsen MP. An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa. Metab Eng 2017; 41:67-81. [PMID: 28363762 DOI: 10.1016/j.ymben.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/21/2016] [Accepted: 03/27/2017] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2-) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3-) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3-→NO2-→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2-, and NO3- in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3-, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3- was converted to NO2- at near-stoichiometric levels, whereas NO2- consumption did not coincide with NO or NO3- accumulation. Assimilatory NO2- reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
56
|
Renbarger TL, Baker JM, Sattley WM. Slow and steady wins the race: an examination of bacterial persistence. AIMS Microbiol 2017; 3:171-185. [PMID: 31294156 PMCID: PMC6605009 DOI: 10.3934/microbiol.2017.2.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/21/2017] [Indexed: 12/02/2022] Open
Abstract
Bacterial persistence is a state of metabolic dormancy among a small fraction (<1%) of a genetically identical population of cells that, as a result, becomes transiently resistant to environmental stressors. Such cells, called persisters, are able to survive indeterminate periods of exposure to challenging and even hostile environmental conditions, including nutrient deprivation, oxidative stress, or the presence of an antibiotic to which the bacterium would normally be susceptible. Subpopulations of cells having the persister phenotype is also a common feature of biofilms, in which limited space, hypoxia, and nutrient deficiencies all contribute to the onset of persistence. Microbiologists have been aware of bacterial persistence since the early days of antibiotic development. However, in recent years the significance of this phenomenon has been brought into new focus, as persistent bacterial infections that require multiple rounds of antibiotic treatment are becoming a more widespread clinical challenge. Here, we provide an overview of the major features of bacterial persistence, including the various conditions that precipitate persister formation and a discussion of several of the better-characterized molecular mechanisms that trigger this distinctive mode of bacterial dormancy.
Collapse
Affiliation(s)
- Tara L Renbarger
- Division of Natural Sciences, Indiana Wesleyan University, Marion, Indiana 46953, USA
| | - Jennifer M Baker
- Division of Natural Sciences, Indiana Wesleyan University, Marion, Indiana 46953, USA
| | - W Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, Indiana 46953, USA
| |
Collapse
|
57
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
58
|
Berghoff BA, Hoekzema M, Aulbach L, Wagner EGH. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Mol Microbiol 2017; 103:1020-1033. [PMID: 27997707 DOI: 10.1111/mmi.13607] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 01/22/2023]
Abstract
Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity.
Collapse
Affiliation(s)
- Bork A Berghoff
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - Mirthe Hoekzema
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - Lena Aulbach
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 75124, Sweden
| |
Collapse
|
59
|
Zhao J, Seeluangsawat P, Wang Q. Modeling antimicrobial tolerance and treatment of heterogeneous biofilms. Math Biosci 2016; 282:1-15. [DOI: 10.1016/j.mbs.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/23/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
|
60
|
Michiels JE, Van den Bergh B, Verstraeten N, Michiels J. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat 2016; 29:76-89. [PMID: 27912845 DOI: 10.1016/j.drup.2016.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Any bacterial population harbors a small number of phenotypic variants that survive exposure to high concentrations of antibiotic. Importantly, these so-called 'persister cells' compromise successful antibiotic therapy of bacterial infections and are thought to contribute to the development of antibiotic resistance. Intriguingly, drug-tolerant persisters have also been identified as a factor underlying failure of chemotherapy in tumor cell populations. Recent studies have begun to unravel the complex molecular mechanisms underlying persister formation and revolve around stress responses and toxin-antitoxin modules. Additionally, in vitro evolution experiments are revealing insights into the evolutionary and adaptive aspects of this phenotype. Furthermore, ever-improving experimental techniques are stimulating efforts to investigate persisters in their natural, infection-associated, in vivo environment. This review summarizes recent insights into the molecular mechanisms of persister formation, explains how persisters complicate antibiotic treatment of infections, and outlines emerging strategies to combat these tolerant cells.
Collapse
Affiliation(s)
| | | | | | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
61
|
Radzikowski JL, Vedelaar S, Siegel D, Ortega ÁD, Schmidt A, Heinemann M. Bacterial persistence is an active σS stress response to metabolic flux limitation. Mol Syst Biol 2016; 12:882. [PMID: 27655400 PMCID: PMC5043093 DOI: 10.15252/msb.20166998] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While persisters are a health threat due to their transient antibiotic tolerance, little is known about their phenotype and what actually causes persistence. Using a new method for persister generation and high‐throughput methods, we comprehensively mapped the molecular phenotype of Escherichia coli during the entry and in the state of persistence in nutrient‐rich conditions. The persister proteome is characterized by σS‐mediated stress response and a shift to catabolism, a proteome that starved cells tried to but could not reach due to absence of a carbon and energy source. Metabolism of persisters is geared toward energy production, with depleted metabolite pools. We developed and experimentally verified a model, in which persistence is established through a system‐level feedback: Strong perturbations of metabolic homeostasis cause metabolic fluxes to collapse, prohibiting adjustments toward restoring homeostasis. This vicious cycle is stabilized and modulated by high ppGpp levels, toxin/anti‐toxin systems, and the σS‐mediated stress response. Our system‐level model consistently integrates past findings with our new data, thereby providing an important basis for future research on persisters.
Collapse
Affiliation(s)
- Jakub Leszek Radzikowski
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Silke Vedelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - David Siegel
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Álvaro Dario Ortega
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
62
|
The Stringent Response Promotes Antibiotic Resistance Dissemination by Regulating Integron Integrase Expression in Biofilms. mBio 2016; 7:mBio.00868-16. [PMID: 27531906 PMCID: PMC4992968 DOI: 10.1128/mbio.00868-16] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class 1 integrons are genetic systems that enable bacteria to capture and express gene cassettes. These integrons, when isolated in clinical contexts, most often carry antibiotic resistance gene cassettes. They play a major role in the dissemination of antibiotic resistance among Gram-negative bacteria. The key element of integrons is the integrase, which allows gene cassettes to be acquired and shuffled. Planktonic culture experiments have shown that integrase expression is regulated by the bacterial SOS response. In natural settings, however, bacteria generally live in biofilms, which are characterized by strong antibiotic resilience and by increased expression of stress-related genes. Here, we report that under biofilm conditions, the stringent response, which is induced upon starvation, (i) increases basal integrase and SOS regulon gene expression via induction of the SOS response and (ii) exerts biofilm-specific regulation of the integrase via the Lon protease. This indicates that biofilm environments favor integron-mediated acquisition of antibiotic resistance and other adaptive functions encoded by gene cassettes. Multidrug-resistant bacteria are becoming a worldwide health problem. Integrons are bacterial genetic platforms that allow the bacteria to capture and express gene cassettes. In clinical settings, integrons play a major role in the dissemination of antibiotic resistance gene cassettes among Gram-negative bacteria. Cassette capture is catalyzed by the integron integrase, whose expression is induced by DNA damage and controlled by the bacterial SOS response in laboratory planktonic cultures. In natural settings, bacteria usually grow in heterogeneous environments known as biofilms, which have very different conditions than planktonic cultures. Integrase regulation has not been investigated in biofilms. Our results showed that in addition to the SOS response, the stringent response (induced upon starvation) is specifically involved in the regulation of class 1 integron integrases in biofilms. This study shows that biofilms are favorable environments for integron-mediated acquisition/exchange of antibiotic resistance genes by bacteria and for the emergence of multidrug-resistant bacteria.
Collapse
|
63
|
Kaldalu N, Hauryliuk V, Tenson T. Persisters-as elusive as ever. Appl Microbiol Biotechnol 2016; 100:6545-6553. [PMID: 27262568 PMCID: PMC4939303 DOI: 10.1007/s00253-016-7648-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022]
Abstract
Persisters—a drug-tolerant sub-population in an isogenic bacterial culture—have been featured throughout the last decade due to their important role in recurrent bacterial infections. Numerous investigations detail the mechanisms responsible for the formation of persisters and suggest exciting strategies for their eradication. In this review, we argue that the very term “persistence” is currently used to describe a large and heterogeneous set of physiological phenomena that are functions of bacterial species, strains, growth conditions, and antibiotics used in the experiments. We caution against the oversimplification of the mechanisms of persistence and urge for a more rigorous validation of the applicability of these mechanisms in each case.
Collapse
Affiliation(s)
- Niilo Kaldalu
- University of Tartu, Institute of Technology, Nooruse 1, 50411, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411, Tartu, Estonia
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87, Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411, Tartu, Estonia.
| |
Collapse
|
64
|
Rowe SE, Conlon BP, Keren I, Lewis K. Persisters: Methods for Isolation and Identifying Contributing Factors--A Review. Methods Mol Biol 2016; 1333:17-28. [PMID: 26468096 DOI: 10.1007/978-1-4939-2854-5_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Persister cells are phenotypic variants surviving a lethal dose of antibiotic, sufficient to kill the bulk of an exponential phase population. In this chapter we summarize current techniques to isolate persisters and discuss limitations associated with identifying mechanisms of persister formation.
Collapse
Affiliation(s)
- Sarah E Rowe
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Brian P Conlon
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Iris Keren
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave., Boston, MA, 02115, USA.
| |
Collapse
|
65
|
Cattelan N, Villalba MI, Parisi G, Arnal L, Serra DO, Aguilar M, Yantorno O. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation. MICROBIOLOGY-SGM 2015; 162:351-363. [PMID: 26673448 DOI: 10.1099/mic.0.000224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.
Collapse
Affiliation(s)
- Natalia Cattelan
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata),Universidad Nacional de La Plata, La Plata,Argentina
| | - María Inés Villalba
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata),Universidad Nacional de La Plata, La Plata,Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología,Universidad Nacional de Quilmes, Buenos Aires,Argentina
| | - Laura Arnal
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata),Universidad Nacional de La Plata, La Plata,Argentina
| | - Diego Omar Serra
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata),Universidad Nacional de La Plata, La Plata,Argentina
| | - Mario Aguilar
- Facultad de Ciencias Exactas,Instituto de Biotecnología y Biología Molecular (IBBM, CONICET-CCT-La Plata), Universidad Nacional de La Plata, La Plata,Argentina
| | - Osvaldo Yantorno
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata),Universidad Nacional de La Plata, La Plata,Argentina
| |
Collapse
|
66
|
Sandvik EL, Fazen CH, Henry TC, Mok WWK, Brynildsen MP. Non-Monotonic Survival of Staphylococcus aureus with Respect to Ciprofloxacin Concentration Arises from Prophage-Dependent Killing of Persisters. Pharmaceuticals (Basel) 2015; 8:778-92. [PMID: 26593926 PMCID: PMC4695809 DOI: 10.3390/ph8040778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a notorious pathogen with a propensity to cause chronic, non-healing wounds. Bacterial persisters have been implicated in the recalcitrance of S. aureus infections, and this motivated us to examine the persistence of S. aureus to ciprofloxacin, a quinolone antibiotic. Upon treatment of exponential phase S. aureus with ciprofloxacin, we observed that survival was a non-monotonic function of ciprofloxacin concentration. Maximal killing occurred at 1 µg/mL ciprofloxacin, which corresponded to survival that was up to ~40-fold lower than that obtained with concentrations ≥ 5 µg/mL. Investigation of this phenomenon revealed that the non-monotonic response was associated with prophage induction, which facilitated killing of S. aureus persisters. Elimination of prophage induction with tetracycline was found to prevent cell lysis and persister killing. We anticipate that these findings may be useful for the design of quinolone treatments.
Collapse
Affiliation(s)
- Elizabeth L Sandvik
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Theresa C Henry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
67
|
Mok WWK, Park JO, Rabinowitz JD, Brynildsen MP. RNA Futile Cycling in Model Persisters Derived from MazF Accumulation. mBio 2015; 6:e01588-15. [PMID: 26578677 PMCID: PMC4659464 DOI: 10.1128/mbio.01588-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/19/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Metabolism plays an important role in the persister phenotype, as evidenced by the number of strategies that perturb metabolism to sabotage this troublesome subpopulation. However, the absence of techniques to isolate high-purity populations of native persisters has precluded direct measurement of persister metabolism. To address this technical challenge, we studied Escherichia coli populations whose growth had been inhibited by the accumulation of the MazF toxin, which catalyzes RNA cleavage, as a model system for persistence. Using chromosomally integrated, orthogonally inducible promoters to express MazF and its antitoxin MazE, bacterial populations that were almost entirely tolerant to fluoroquinolone and β-lactam antibiotics were obtained upon MazF accumulation, and these were subjected to direct metabolic measurements. While MazF model persisters were nonreplicative, they maintained substantial oxygen and glucose consumption. Metabolomic analysis revealed accumulation of all four ribonucleotide monophosphates (NMPs). These results are consistent with a MazF-catalyzed RNA futile cycle, where the energy derived from catabolism is dissipated through continuous transcription and MazF-mediated RNA degradation. When transcription was inhibited, oxygen consumption and glucose uptake decreased, and nucleotide triphosphates (NTPs) and NTP/NMP ratios increased. Interestingly, the MazF-inhibited cells were sensitive to aminoglycosides, and this sensitivity was blocked by inhibition of transcription. Thus, in MazF model persisters, futile cycles of RNA synthesis and degradation result in both significant metabolic demands and aminoglycoside sensitivity. IMPORTANCE Metabolism plays a critical role in controlling each stage of bacterial persistence (shutdown, stasis, and reawakening). In this work, we generated an E. coli strain in which the MazE antitoxin and MazF toxin were artificially and independently inducible, and we used this strain to generate model persisters and study their metabolism. We found that even though growth of the model persisters was inhibited, they remained highly metabolically active. We further uncovered a futile cycle driven by continued transcription and MazF-mediated transcript degradation that dissipated the energy derived from carbon catabolism. Interestingly, the existence of this futile cycle acted as an Achilles' heel for MazF model persisters, rendering them vulnerable to killing by aminoglycosides.
Collapse
Affiliation(s)
- Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Junyoung O Park
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
68
|
An ensemble-guided approach identifies ClpP as a major regulator of transcript levels in nitric oxide-stressed Escherichia coli. Metab Eng 2015; 31:22-34. [DOI: 10.1016/j.ymben.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/21/2015] [Accepted: 06/15/2015] [Indexed: 11/23/2022]
|
69
|
Ren H, He X, Zou X, Wang G, Li S, Wu Y. Gradual increase in antibiotic concentration affects persistence of Klebsiella pneumoniae. J Antimicrob Chemother 2015; 70:3267-72. [PMID: 26311842 DOI: 10.1093/jac/dkv251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Sublethal bactericidal antibiotics promote the formation of multidrug-tolerant persisters. Clinically, serum drug concentration increases gradually and reaches the peak level with high killing efficiency some time after administration. This study aimed to investigate if the initial low antibiotic concentration would promote persister formation in Klebsiella pneumoniae, an increasingly important nosocomial pathogen. METHODS Time-dependent killings of K. pneumoniae by different types of bactericidal antibiotics were conducted to determine the existence of multidrug-tolerant K. pneumoniae persisters. Killing experiments with antibiotic gradient feeding were then conducted for a K. pneumoniae laboratory strain (ATCC 10031) and a clinical isolate (YWSCU-03) by adding antibiotics step by step until the drug peak serum concentration was attained. RESULTS Multidrug-tolerant persisters indeed existed in K. pneumoniae and the persistence decreased with increasing drug concentrations or prolonged treatments. Antibiotic gradient feeding, to simulate a gradual increase in serum drug concentration, not only significantly elevated the persistence of ATCC 10031 and YWSCU-03, but also increased the frequency of drug-resistant mutant formation in YWSCU-03. CONCLUSIONS After administration, the initial low serum drug concentration could promote the formation of multidrug-tolerant bacterial persisters, which could survive the lethal drug concentrations attained later and potentially render the antibiotic treatment fruitless. Therefore, antibiotic treatments should be based on the comprehensive analysis of, not only drug pharmacokinetics, but also the synergistic effect between pharmacokinetics and persister formation.
Collapse
Affiliation(s)
- Huan Ren
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Xin He
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoli Zou
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Guoqing Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Shuhua Li
- No.4 West China Teaching Hospital, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Yanxia Wu
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
70
|
Orman MA, Brynildsen MP. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat Commun 2015; 6:7983. [PMID: 26246187 PMCID: PMC4530465 DOI: 10.1038/ncomms8983] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/02/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial persisters are rare phenotypic variants that temporarily tolerate high antibiotic concentrations. Persisters have been hypothesized to underlie the recalcitrance of biofilm infections, and strategies to eliminate these cells have the potential to improve treatment outcomes for many hospital-treated infections. Here we investigate the role of stationary phase metabolism in generation of type I persisters in Escherichia coli, which are those that are formed by passage through stationary phase. We find that persisters are unlikely to derive from bacteria with low redox activity, and that inhibition of respiration during stationary phase reduces persister levels by up to ∼1,000-fold. Loss of stationary phase respiratory activity prevents digestion of endogenous proteins and RNA, which yields bacteria that are more capable of translation, replication and concomitantly cell death when exposed to antibiotics. These findings establish bacterial respiration as a prime target for reducing the number of persisters formed in nutrient-depleted, non-growing populations. A few bacterial cells within a genetically homogeneous population can become ‘persisters', or temporarily tolerant to antibiotics. Here Orman and Brynildsen show that development of persisters among growth-arrested E. coli cells can be prevented by inhibiting bacterial respiration.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersy 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersy 08544, USA
| |
Collapse
|
71
|
Amato S, Brynildsen M. Persister Heterogeneity Arising from a Single Metabolic Stress. Curr Biol 2015; 25:2090-8. [DOI: 10.1016/j.cub.2015.06.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
|
72
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
73
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
74
|
Oh YT, Lee KM, Bari W, Raskin DM, Yoon SS. (p)ppGpp, a Small Nucleotide Regulator, Directs the Metabolic Fate of Glucose in Vibrio cholerae. J Biol Chem 2015; 290:13178-90. [PMID: 25882848 DOI: 10.1074/jbc.m115.640466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/20/2022] Open
Abstract
When V. cholerae encounters nutritional stress, it activates (p)ppGpp-mediated stringent response. The genes relA and relV are involved in the production of (p)ppGpp, whereas the spoT gene encodes an enzyme that hydrolyzes it. Herein, we show that the bacterial capability to produce (p)ppGpp plays an essential role in glucose metabolism. The V. cholerae mutants defective in (p)ppGpp production (i.e. ΔrelAΔrelV and ΔrelAΔrelVΔspoT mutants) lost their viability because of uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ΔrelAΔspoT mutant, a (p)ppGpp overproducer strain, exhibited better growth in the presence of the same glucose concentration. An RNA sequencing analysis demonstrated that transcriptions of genes consisting of an operon for acetoin biosynthesis were markedly elevated in N16961, a seventh pandemic O1 strain, but not in its (p)ppGpp(0) mutant during glucose-stimulated growth. Transposon insertion in acetoin biosynthesis gene cluster resulted in glucose-induced loss of viability of the ΔrelAΔspoT mutant, further suggesting the crucial role of acetoin production in balanced growth under glucose-rich environments. Additional deletion of the aphA gene, encoding a negative regulator for acetoin production, failed to rescue the (p)ppGpp(0) mutant from the defective glucose-mediated growth, suggesting that (p)ppGpp-mediated acetoin production occurs independent of the presence of AphA. Overall, our results reveal that (p)ppGpp, in addition to its well known role as a stringent response mediator, positively regulates acetoin production that contributes to the successful glucose metabolism and consequently the proliferation of V. cholerae cells under a glucose-rich environment, a condition that may mimic the human intestine.
Collapse
Affiliation(s)
- Young Taek Oh
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science and
| | - Kang-Mu Lee
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science and
| | - Wasimul Bari
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science and
| | - David M Raskin
- the Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Sang Sun Yoon
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science and the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea and
| |
Collapse
|
75
|
Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proc Natl Acad Sci U S A 2015; 112:5171-6. [PMID: 25848049 DOI: 10.1073/pnas.1423536112] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The model organism Escherichia coli codes for at least 11 type II toxin-antitoxin (TA) modules, all implicated in bacterial persistence (multidrug tolerance). Ten of these encode messenger RNA endonucleases (mRNases) inhibiting translation by catalytic degradation of mRNA, and the 11th module, hipBA, encodes HipA (high persister protein A) kinase, which inhibits glutamyl tRNA synthetase (GltX). In turn, inhibition of GltX inhibits translation and induces the stringent response and persistence. Previously, we presented strong support for a model proposing (p)ppGpp (guanosine tetra and penta-phosphate) as the master regulator of persistence. Stochastic variation of [(p)ppGpp] in single cells induced TA-encoded mRNases via a pathway involving polyphosphate and Lon protease. Polyphosphate activated Lon to degrade all known type II antitoxins of E. coli. In turn, the activated mRNases induced persistence and multidrug tolerance. However, even though it was known that activation of HipA stimulated (p)ppGpp synthesis, our model did not explain how hipBA induced persistence. Here we show that, in support of and consistent with our initial model, HipA-induced persistence depends not only on (p)ppGpp but also on the 10 mRNase-encoding TA modules, Lon protease, and polyphosphate. Importantly, observations with single cells convincingly show that the high level of (p)ppGpp caused by activation of HipA does not induce persistence in the absence of TA-encoded mRNases. Thus, slow growth per se does not induce persistence in the absence of TA-encoded toxins, placing these genes as central effectors of bacterial persistence.
Collapse
|
76
|
Abstract
The model organism Escherichia coli codes for at least 11 type II toxin-antitoxin (TA) modules, all implicated in bacterial persistence (multidrug tolerance). Ten of these encode messenger RNA endonucleases (mRNases) inhibiting translation by catalytic degradation of mRNA, and the 11th module, hipBA, encodes HipA (high persister protein A) kinase, which inhibits glutamyl tRNA synthetase (GltX). In turn, inhibition of GltX inhibits translation and induces the stringent response and persistence. Previously, we presented strong support for a model proposing (p)ppGpp (guanosine tetra and penta-phosphate) as the master regulator of persistence. Stochastic variation of [(p)ppGpp] in single cells induced TA-encoded mRNases via a pathway involving polyphosphate and Lon protease. Polyphosphate activated Lon to degrade all known type II antitoxins of E. coli. In turn, the activated mRNases induced persistence and multidrug tolerance. However, even though it was known that activation of HipA stimulated (p)ppGpp synthesis, our model did not explain how hipBA induced persistence. Here we show that, in support of and consistent with our initial model, HipA-induced persistence depends not only on (p)ppGpp but also on the 10 mRNase-encoding TA modules, Lon protease, and polyphosphate. Importantly, observations with single cells convincingly show that the high level of (p)ppGpp caused by activation of HipA does not induce persistence in the absence of TA-encoded mRNases. Thus, slow growth per se does not induce persistence in the absence of TA-encoded toxins, placing these genes as central effectors of bacterial persistence.
Collapse
|
77
|
Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 2015; 78:510-43. [PMID: 25184564 DOI: 10.1128/mmbr.00013-14] [Citation(s) in RCA: 836] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
Collapse
|
78
|
Abstract
E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States; BEACON Center for the Study of Evolution in Action, East Lansing, United States
| |
Collapse
|
79
|
Impacts of global transcriptional regulators on persister metabolism. Antimicrob Agents Chemother 2015; 59:2713-9. [PMID: 25712354 DOI: 10.1128/aac.04908-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
Bacterial persisters are phenotypic variants with an extraordinary capacity to tolerate antibiotics, and they are hypothesized to be a main cause of chronic and relapsing infections. Recent evidence has suggested that the metabolism of persisters can be targeted to develop therapeutic countermeasures; however, knowledge of persister metabolism remains limited due to difficulties associated with isolating these rare and transient phenotypic variants. By using a technique to measure persister catabolic activity, which is based on the ability of metabolites to enable aminoglycoside (AG) killing of persisters, we investigated the role of seven global transcriptional regulators (ArcA, Cra, cyclic AMP [cAMP] receptor protein [CRP], DksA, FNR, Lrp, and RpoS) on persister metabolism. We found that removal of CRP resulted in a loss of AG potentiation in persisters for all metabolites tested. These results highlight a central role for cAMP/CRP in persister metabolism, as its perturbation can significantly diminish the metabolic capabilities of persisters and effectively eliminate the ability of AGs to eradicate these troublesome bacteria.
Collapse
|
80
|
Bugrysheva JV, Pappas CJ, Terekhova DA, Iyer R, Godfrey HP, Schwartz I, Cabello FC. Characterization of the RelBbu Regulon in Borrelia burgdorferi Reveals Modulation of Glycerol Metabolism by (p)ppGpp. PLoS One 2015; 10:e0118063. [PMID: 25688856 PMCID: PMC4331090 DOI: 10.1371/journal.pone.0118063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response. We have previously shown that the B. burgdorferi stringent response is mediated by a single enzyme, RelBbu, with both (p)ppGpp synthase and hydrolase activities, and that a B. burgdorferi 297 relBbu null deletion mutant was defective in adapting to stationary phase, incapable of down-regulating synthesis of rRNA and could not infect mice. We have now used this deletion mutant and microarray analysis to identify genes comprising the rel regulon in B. burgdorferi cultured at 34°C, and found that transcription of genes involved in glycerol metabolism is induced by relBbu. Culture of the wild type parental strain, the relBbu deletion mutant and its complemented derivative at 34°C and 25°C in media containing glucose or glycerol as principal carbon sources revealed a growth defect in the mutant, most evident at the lower temperature. Transcriptional analysis of the glp operon for glycerol uptake and metabolism in these three strains confirmed that relBbu was necessary and sufficient to increase transcription of this operon in the presence of glycerol at both temperatures. These results confirm and extend previous findings regarding the stringent response in B. burgdorferi. They also demonstrate that the stringent response regulates glycerol metabolism in this organism and is likely crucial for its optimal growth in ticks.
Collapse
Affiliation(s)
- Julia V. Bugrysheva
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Christopher J. Pappas
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Darya A. Terekhova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Henry P. Godfrey
- Department of Pathology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
| | - Felipe C. Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, 10595, United States of America
- * E-mail:
| |
Collapse
|
81
|
Persister Cells in Biofilm Associated Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 831:1-9. [DOI: 10.1007/978-3-319-09782-4_1] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
82
|
Conlon BP. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease. Bioessays 2014; 36:991-6. [PMID: 25100240 DOI: 10.1002/bies.201400080] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen capable of causing a variety of diseases including osteomyelitis, endocarditis, infections of indwelling devices and wound infections. These infections are often chronic and highly recalcitrant to antibiotic treatment. Persister cells appear to be central to this recalcitrance. A multitude of factors contribute to S. aureus virulence and high levels of treatment failure. These include its ability to colonize the skin and nares of the host, its ability to evade the host immune system and its development of resistance to a variety of antibiotics. Less understood is the phenomenon of persister cells and their role in S. aureus infections and treatment outcome. Persister cells occur as a sub-population of phenotypic variants that are tolerant to antibiotic treatment. This review examines the importance of persisters in chronic and relapsing S. aureus infections and proposes methods for their eradication.
Collapse
Affiliation(s)
- Brian P Conlon
- Antimicrobial Discovery Center, Northeastern University, Boston, MA, USA
| |
Collapse
|