51
|
Kang X, Hu L, Shen P, Li R, Liu D. SMRT Sequencing Revealed Mitogenome Characteristics and Mitogenome-Wide DNA Modification Pattern in Ophiocordyceps sinensis. Front Microbiol 2017; 8:1422. [PMID: 28798740 PMCID: PMC5529405 DOI: 10.3389/fmicb.2017.01422] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022] Open
Abstract
Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis, with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3, 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A total of 36 sequence sites in rps3 were under positive selection, with dN/dS >1 in the 20 compared fungi. Among them, 16 sites were statistically significant. In addition, the mt genome-wide base modification pattern of O. sinensis was determined in this study, especially DNA methylation. The methylations were located in coding and uncoding regions of mt PCGs in O. sinensis, and might be closely related to the expression of PCGs or the binding affinity of transcription factor A to mtDNA. Consequently, these methylations may affect the enzymatic activity of oxidative phosphorylation and then the mt respiratory rate; or they may influence mt biogenesis. Therefore, methylations in the mitogenome of O. sinensis might be a genetic feature to adapt to the cold and low PO2 environment at high altitude, where O. sinensis is endemic. This is the first report on epigenetic modifications in a fungal mt genome.
Collapse
Affiliation(s)
- Xincong Kang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural UniversityChangsha, China
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Liqin Hu
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Pengyuan Shen
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
| | - Rui Li
- Nextomics BiosciencesWuhan, China
| | - Dongbo Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural UniversityChangsha, China
- Horticulture and Landscape College, Hunan Agricultural UniversityChangsha, China
- State Key Laboratory of Subhealth Intervention TechnologyChangsha, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional IngredientsChangsha, China
| |
Collapse
|
52
|
Bilto IM, Hausner G. The diversity of mtDNA rns introns among strains of Ophiostoma piliferum, Ophiostoma pluriannulatum and related species. SPRINGERPLUS 2016; 5:1408. [PMID: 27610327 PMCID: PMC4995192 DOI: 10.1186/s40064-016-3076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 02/08/2023]
Abstract
Background Based on previous studies, it was suspected that the mitochondrial rns gene within the Ophiostomatales is rich in introns. This study focused on a collection of strains representing Ophiostoma piliferum, Ophiostoma pluriannulatum and related species that cause blue-stain; these fungi colonize the sapwood of trees and impart a dark stain. This reduces the value of the lumber. The goal was to examine the mtDNA rns intron landscape for these important blue stain fungi in order to facilitate future annotation of mitochondrial genomes (mtDNA) and to potentially identify mtDNA introns that can encode homing endonucleases which may have applications in biotechnology. Results Comparative sequence analysis identified five intron insertion sites among the ophiostomatoid fungi examined. Positions mS379 and mS952 harbor group II introns, the mS379 intron encodes a reverse transcriptase, and the mS952 intron encodes a potential homing endonuclease. Positions mS569, mS1224, and mS1247 have group I introns inserted and these encode intact or eroded homing endonuclease open reading frames (ORF). Phylogenetic analysis of the intron ORFs showed that they can be found in the same insertion site in closely and distantly related species. Conclusions Based on the molecular markers examined (rDNA internal transcribed spacers and rns introns), strains representing O. pilifera, O. pluriannulatum and Ophiostoma novae-zelandiae could not be resolved. Phylogenetic studies suggest that introns are gained and lost and that horizontal transfer could explain the presence of related intron in distantly related fungi. With regard to the mS379 group II intron, this study shows that mitochondrial group II introns and their reverse transcriptases may also follow the life cycle previously proposed for group I introns and their homing endonucleases. This consists of intron invasion, decay of intron ORF, loss of intron, and possible reinvasion. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-3076-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iman M Bilto
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
53
|
Xu Z, Huang G, Song N, Wang J, Cao L, Jiang H, Ding T. Complete mitochondrial genome sequence of the phytopathogenic fungi Sclerotinia sclerotiorum JX-21. Mitochondrial DNA B Resour 2016; 1:656-657. [PMID: 33473585 PMCID: PMC7800647 DOI: 10.1080/23802359.2016.1219625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 11/04/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most devastating necrotrophic fungal plant pathogens in agriculture causing diseases in over 400 species of plants including important crops and numerous weeds. In this work, the mitochondrial sequence of S. sclerotiorum with different strain obtained from the infected stems of Brassica campestris L. in Wangjiang County, Anhui Province, China is presented. The mt DNA codes for 14 proteins of the respiratory chain, 1 ribosomal protein, 2 homing endonucleases, 2 rRNAs, 25 tRNAs, and 5 hypothetical proteins ORFs. Phylogenetic analysis with protein-coding gene sequences of reported Ascomycota mt genomes revealed the close relationship of JX-21 with the family of Sclerotiniaceae.
Collapse
Affiliation(s)
- Zhilan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Guoyu Huang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Nannan Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Limin Cao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Ting Ding
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
54
|
Deng Y, Zhang Q, Ming R, Lin L, Lin X, Lin Y, Li X, Xie B, Wen Z. Analysis of the Mitochondrial Genome in Hypomyces aurantius Reveals a Novel Twintron Complex in Fungi. Int J Mol Sci 2016; 17:ijms17071049. [PMID: 27376282 PMCID: PMC4964425 DOI: 10.3390/ijms17071049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/29/2022] Open
Abstract
Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification.
Collapse
Affiliation(s)
- Youjin Deng
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qihui Zhang
- Gutian Edible Fungal Research and Development Center, Ningde 352200, China.
| | - Ray Ming
- Gutian Edible Fungal Research and Development Center, Ningde 352200, China.
| | - Longji Lin
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiangzhi Lin
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiying Lin
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiao Li
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiqiang Wen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
55
|
Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species. PLoS One 2016; 11:e0156104. [PMID: 27272523 PMCID: PMC4894602 DOI: 10.1371/journal.pone.0156104] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/08/2016] [Indexed: 01/21/2023] Open
Abstract
In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far.
Collapse
|
56
|
Complete Mitochondrial Genome Sequence of the Pezizomycete Pyronema confluens. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00355-16. [PMID: 27174271 PMCID: PMC4866847 DOI: 10.1128/genomea.00355-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complete mitochondrial genome of the ascomycete Pyronema confluens has been sequenced. The circular genome has a size of 191 kb and contains 48 protein-coding genes, 26 tRNA genes, and two rRNA genes. Of the protein-coding genes, 14 encode conserved mitochondrial proteins, and 31 encode predicted homing endonuclease genes.
Collapse
|
57
|
Jelen V, de Jonge R, Van de Peer Y, Javornik B, Jakše J. Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae. PLoS One 2016; 11:e0148525. [PMID: 26839950 PMCID: PMC4739603 DOI: 10.1371/journal.pone.0148525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 01/04/2023] Open
Abstract
Verticillium nonalfalfae is a fungal plant pathogen that causes wilt disease by colonizing the vascular tissues of host plants. The disease induced by hop isolates of V. nonalfalfae manifests in two different forms, ranging from mild symptoms to complete plant dieback, caused by mild and lethal pathotypes, respectively. Pathogenicity variations between the causal strains have been attributed to differences in genomic sequences and perhaps also to differences in their mitochondrial genomes. We used data from our recent Illumina NGS-based project of genome sequencing V. nonalfalfae to study the mitochondrial genomes of its different strains. The aim of the research was to prepare a V. nonalfalfae reference mitochondrial genome and to determine its phylogenetic placement in the fungal kingdom. The resulting 26,139 bp circular DNA molecule contains a full complement of the 14 "standard" fungal mitochondrial protein-coding genes of the electron transport chain and ATP synthase subunits, together with a small rRNA subunit, a large rRNA subunit, which contains ribosomal protein S3 encoded within a type IA-intron and 26 tRNAs. Phylogenetic analysis of this mitochondrial genome placed it in the Verticillium spp. lineage in the Glomerellales group, which is also supported by previous phylogenetic studies based on nuclear markers. The clustering with the closely related Verticillium dahliae mitochondrial genome showed a very conserved synteny and a high sequence similarity. Two distinguishing mitochondrial genome features were also found-a potential long non-coding RNA (orf414) contained only in the Verticillium spp. of the fungal kingdom, and a specific fragment length polymorphism observed only in V. dahliae and V. nubilum of all the Verticillium spp., thus showing potential as a species specific biomarker.
Collapse
Affiliation(s)
- Vid Jelen
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ronnie de Jonge
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Gent University, Gent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Gent University, Gent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052 Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Branka Javornik
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
58
|
Huchon D, Szitenberg A, Shefer S, Ilan M, Feldstein T. Mitochondrial group I and group II introns in the sponge orders Agelasida and Axinellida. BMC Evol Biol 2015; 15:278. [PMID: 26653218 PMCID: PMC4676843 DOI: 10.1186/s12862-015-0556-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022] Open
Abstract
Background Self-splicing introns are present in the mitochondria of members of most eukaryotic lineages. They are divided into Group I and Group II introns, according to their secondary structure and splicing mechanism. Being rare in animals, self-splicing introns were only described in a few sponges, cnidarians, placozoans and one annelid species. In sponges, three types of mitochondrial Group I introns were previously described in two demosponge families (Tetillidae, and Aplysinellidae) and in the homoscleromorph family Plakinidae. These three introns differ in their insertion site, secondary structure and in the sequence of the LAGLIDADG gene they encode. Notably, no group II introns have been previously described in sponges. Results We report here the presence of mitochondrial introns in the cytochrome oxidase subunit 1 (COI) gene of three additional sponge species from three different families: Agelas oroides (Agelasidae, Agelasida), Cymbaxinellapverrucosa (Hymerhabdiidae, Agelasida) and Axinella polypoides (Axinellidae, Axinellida). We show, for the first time, that sponges can also harbour Group II introns in their COI gene, whose presence in animals’ mitochondria has so far been described in only two phyla, Placozoa and Annelida. Surprisingly, two different Group II introns were discovered in the COI gene of C. verrucosa. Phylogenetic analysis indicates that the Group II introns present in C. verrucosa are related to red algae (Rhodophyta) introns. Conclusions The differences found among intron secondary structures and the phylogenetic inferences support the hypothesis that the introns originated from independent horizontal gene transfer events. Our results thus suggest that self-splicing introns are more diverse in the mitochondrial genome of sponges than previously anticipated. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0556-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorothée Huchon
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Amir Szitenberg
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Current address: School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK.
| | - Sigal Shefer
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Tamar Feldstein
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
59
|
Badet T, Peyraud R, Raffaele S. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:776. [PMID: 26442085 DOI: 10.3389/fpls.2015.00776issn=1664-462x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| |
Collapse
|
60
|
Complete mitochondrial genome of the medicinal fungus Ophiocordyceps sinensis. Sci Rep 2015; 5:13892. [PMID: 26370521 PMCID: PMC4570212 DOI: 10.1038/srep13892] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
As part of a genome sequencing project for Ophiocordyceps sinensis, strain 1229, a complete mitochondrial (mt) genome was assembled as a single circular dsDNA of 157,510 bp, one of the largest reported for fungi. Conserved genes including the large and small rRNA subunits, 27 tRNA and 15 protein-coding genes, were identified. In addition, 58 non-conserved open reading frames (ncORFs) in the intergenic and intronic regions were also identified. Transcription analyses using RNA-Seq validated the expression of most conserved genes and ncORFs. Fifty-two introns (groups I and II) were found within conserved genes, accounting for 68.5% of the genome. Thirty-two homing endonucleases (HEs) with motif patterns LAGLIDADG (21) and GIY-YIG (11) were identified in group I introns. The ncORFs found in group II introns mostly encoded reverse transcriptases (RTs). As in other hypocrealean fungi, gene contents and order were found to be conserved in the mt genome of O. sinensis, but the genome size was enlarged by longer intergenic regions and numerous introns. Intergenic and intronic regions were composed of abundant repetitive sequences usually associated with mobile elements. It is likely that intronic ncORFs, which encode RTs and HEs, may have contributed to the enlarged mt genome of O. sinensis.
Collapse
|
61
|
Wu B, Buljic A, Hao W. Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast. Mol Biol Evol 2015; 32:2559-70. [PMID: 26018571 DOI: 10.1093/molbev/msv127] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes.
Collapse
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences, Wayne State University
| | - Adnan Buljic
- Department of Biological Sciences, Wayne State University
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
62
|
Badet T, Peyraud R, Raffaele S. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:776. [PMID: 26442085 PMCID: PMC4585107 DOI: 10.3389/fpls.2015.00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 05/04/2023]
Abstract
Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
- *Correspondence: Sylvain Raffaele, Laboratoire des Interactions Plante Micro-organismes, 24 Chemin de Borde Rouge – Auzeville, 31326 Castanet Tolosan, France
| |
Collapse
|