51
|
Abstract
Even after extended treatment with powerful antiretroviral drugs, HIV is not completely eliminated from infected individuals. Latently infected CD4(+) T cells constitute one reservoir of replication-competent HIV that needs to be eliminated to completely purge virus from antiretroviral drug-treated patients. However, a major limitation in the development of therapies to eliminate this latent reservoir is the lack of relevant in vivo models that can be used to test purging strategies. Here, we show that the humanized BLT (bone marrow-liver-thymus) mouse can be used as both an abundant source of primary latently infected cells for ex vivo latency analysis and also as an in vivo system for the study of latency. We demonstrate that over 2% of human cells recovered from the spleens of HIV-infected BLT mice can be latently infected and that this virus is integrated, activation inducible, and replication competent. The non-tumor-inducing phorbol esters prostratin and 12-deoxyphorbol-13-phenylacetate can each induce HIV ex vivo from these latently infected cells, indicating that this model can be used as a source of primary cells for testing latency activators. Finally, we show activation-inducible virus is still present following suppression of plasma viral loads to undetectable levels by using the antiretroviral drugs zidovudine, indinavir sulfate, and didanosine, demonstrating that this model can also be used to assess the in vivo efficacy of latency-purging strategies. Therefore, the HIV-infected BLT mouse should provide a useful model for assessment of HIV latency activators and approaches to eliminate persistent in vivo HIV reservoirs.
Collapse
|
52
|
Wojcechowskyj JA, Lee JY, Seeholzer SH, Doms RW. Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling. PLoS One 2011; 6:e24918. [PMID: 21949786 PMCID: PMC3176801 DOI: 10.1371/journal.pone.0024918] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation.
Collapse
Affiliation(s)
- Jason A. Wojcechowskyj
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica Y. Lee
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Doms
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
53
|
Lehmann M, Nikolic DS, Piguet V. How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. Viruses 2011; 3:1757-76. [PMID: 21994805 PMCID: PMC3187690 DOI: 10.3390/v3091757] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) infects T cells, macrophages and dendritic cells and can manipulate their cytoskeleton structures at multiple steps during its replication cycle. Based on pharmacological and genetic targeting of cytoskeleton modulators, new imaging approaches and primary cell culture models, important roles for actin and microtubules during entry and cell-to-cell transfer have been established. Virological synapses and actin-containing membrane extensions can mediate HIV-1 transfer from dendritic cells or macrophage cells to T cells and between T cells. We will review the role of the cytoskeleton in HIV-1 entry, cellular trafficking and cell-to-cell transfer between primary cells.
Collapse
Affiliation(s)
- Martin Lehmann
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
| | - Damjan S. Nikolic
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
| | - Vincent Piguet
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine and University Hospital of Wales, Cardiff, Wales, CF144XN, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)-29-20-744721; Fax: +44-(0)-29-20-744312
| |
Collapse
|
54
|
Spinoculation triggers dynamic actin and cofilin activity that facilitates HIV-1 infection of transformed and resting CD4 T cells. J Virol 2011; 85:9824-33. [PMID: 21795326 DOI: 10.1128/jvi.05170-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Centrifugal inoculation, or spinoculation, is widely used in virology research to enhance viral infection. However, the mechanism remained obscure. Using HIV-1 infection of human T cells as a model, we demonstrate that spinoculation triggers dynamic actin and cofilin activity, probably resulting from cellular responses to centrifugal stress. This actin activity also leads to the upregulation of the HIV-1 receptor and coreceptor, CD4 and CXCR4, enhancing viral binding and entry. We also demonstrate that an actin inhibitor, jasplakinolide, diminishes spin-mediated enhancement. In addition, small interfering RNA (siRNA) knockdown of LIMK1, a cofilin kinase, decreases the enhancement. These results suggest that spin-mediated enhancement cannot be explained simply by a virus-concentrating effect; rather, it is coupled with spin-induced cytoskeletal dynamics that promote receptor mobilization, viral entry, and postentry processes. Our results highlight the importance of cofilin and a dynamic cytoskeleton for the initiation of viral infection. Our results also indicate that caution needs to be taken in data interpretation when cells are spinoculated; some of the spin-induced cellular permissiveness may be beyond the natural capacity of an infecting virus.
Collapse
|
55
|
Barroso-González J, García-Expósito L, Puigdomènech I, de Armas-Rillo L, Machado JD, Blanco J, Valenzuela-Fernández A. Viral infection: Moving through complex and dynamic cell-membrane structures. Commun Integr Biol 2011; 4:398-408. [PMID: 21966556 DOI: 10.4161/cib.4.4.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/19/2023] Open
Abstract
Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist.
Collapse
Affiliation(s)
- Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Laura García-Expósito
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Isabel Puigdomènech
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - José-David Machado
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Julià Blanco
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| |
Collapse
|
56
|
Micheva-Viteva S, Kobayashi Y, Edelstein LC, Pacchia AL, Lee HLR, Graci JD, Breslin J, Phelan BD, Miller LK, Colacino JM, Gu Z, Ron Y, Peltz SW, Dougherty JP. High-throughput screening uncovers a compound that activates latent HIV-1 and acts cooperatively with a histone deacetylase (HDAC) inhibitor. J Biol Chem 2011; 286:21083-91. [PMID: 21498519 DOI: 10.1074/jbc.m110.195537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current antiretroviral therapy (ART) provides potent suppression of HIV-1 replication. However, ART does not target latent viral reservoirs, so persistent infection remains a challenge. Small molecules with pharmacological properties that allow them to reach and activate viral reservoirs could potentially be utilized to eliminate the latent arm of the infection when used in combination with ART. Here we describe a cell-based system modeling HIV-1 latency that was utilized in a high-throughput screen to identify small molecule antagonists of HIV-1 latency. A more detailed analysis is provided for one of the hit compounds, antiviral 6 (AV6), which required nuclear factor of activated T cells for early mRNA expression while exhibiting RNA-stabilizing activity. It was found that AV6 reproducibly activated latent provirus from different lymphocyte-based clonal cell lines as well as from latently infected primary resting CD4(+) T cells without causing general T cell proliferation or activation. Moreover, AV6 complemented the latency antagonist activity of a previously described histone deacetylase (HDAC) inhibitor. This is a proof of concept showing that a high-throughput screen employing a cell-based model of HIV-1 latency can be utilized to identify new classes of compounds that can be used in concert with other persistent antagonists with the aim of viral clearance.
Collapse
Affiliation(s)
- Sofiya Micheva-Viteva
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Pace MJ, Agosto L, Graf EH, O’Doherty U. HIV reservoirs and latency models. Virology 2011; 411:344-54. [PMID: 21284992 PMCID: PMC3618966 DOI: 10.1016/j.virol.2010.12.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/19/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
The main impediment to a cure for HIV is the existence of long-lasting treatment resistant viral reservoirs. In this review, we discuss what is currently known about reservoirs, including their formation and maintenance, while focusing on latently infected CD4+ T cells. In addition, we compare several different in vivo and in vitro models of latency. We comment on how each model may reflect the properties of reservoirs in vivo, especially with regard to cell phenotype, since recent studies demonstrate that multiple CD4+ T cell subsets contribute to HIV reservoirs and that with HAART and disease progression the relative contribution of different subsets may change. Finally, we focus on the direct infection of resting CD4+ T cells as a source of reservoir formation and as a model of latency, since recent results help explain the misconception that resting CD4+ T cells appeared to be resistant to HIV in vitro.
Collapse
Affiliation(s)
- Matthew J. Pace
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Luis Agosto
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Erin H. Graf
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Una O’Doherty
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| |
Collapse
|
58
|
Jones KL, Smyth RP, Pereira CF, Cameron PU, Lewin SR, Jaworowski A, Mak J. Early events of HIV-1 infection: can signaling be the next therapeutic target? J Neuroimmune Pharmacol 2011; 6:269-83. [PMID: 21373988 DOI: 10.1007/s11481-011-9268-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/23/2011] [Indexed: 01/08/2023]
Abstract
Intracellular signaling events are signposts of biological processes, which govern the direction and action of biological activities. Through millions of years of evolution, pathogens, such as viruses, have evolved to hijack host cell machinery to infect their targets and are therefore dependent on host cell signaling for replication. This review will detail our current understanding of the signaling events that are important for the early steps of HIV-1 replication. More specifically, the therapeutic potential of signaling events associated with chemokine coreceptors, virus entry, viral synapses, and post-entry processes will be discussed. We argue that these pathways may represent novel targets for antiviral therapy.
Collapse
Affiliation(s)
- Kate L Jones
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
59
|
Yoder A, Guo J, Yu D, Cui Z, Zhang XE, Wu Y. Effects of microtubule modulators on HIV-1 infection of transformed and resting CD4 T cells. J Virol 2011; 85:3020-4. [PMID: 21209111 PMCID: PMC3067922 DOI: 10.1128/jvi.02462-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 11/20/2022] Open
Abstract
Previous studies have observed fluorescently labeled HIV particles tracking along microtubule networks for nuclear localization. To provide direct evidence for the involvement of microtubules in early steps of HIV infection of human CD4 T cells, we used multiple microtubule modulators such as paclitaxel (originally called taxol; 1 μM), vinblastine (1 and 10 μM), colchicine (10 and 100 μM), and nocodazole (10 and 100 μM) to disturb microtubule networks in transformed and resting CD4 T cells. Although these drugs disrupted microtubule integrity, almost no inhibition of HIV-1 infection was observed. Our results do not appear to support an essential role for microtubules in the initiation of HIV infection of CD4 T cells.
Collapse
Affiliation(s)
- Alyson Yoder
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Dongyang Yu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Zongqiang Cui
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Xian-En Zhang
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
60
|
Vorster PJ, Guo J, Yoder A, Wang W, Zheng Y, Xu X, Yu D, Spear M, Wu Y. LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection. J Biol Chem 2011; 286:12554-64. [PMID: 21321123 DOI: 10.1074/jbc.m110.182238] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Almost all viral pathogens utilize a cytoskeleton for their entry and intracellular transport. In HIV-1 infection, binding of the virus to blood resting CD4 T cells initiates a temporal course of cortical actin polymerization and depolymerization, a process mimicking the chemotactic response initiated from chemokine receptors. The actin depolymerization has been suggested to promote viral intracellular migration through cofilin-mediated actin treadmilling. However, the role of the virus-mediated actin polymerization in HIV infection is unknown, and the signaling molecules involved remain unidentified. Here we describe a pathogenic mechanism for triggering early actin polymerization through HIV-1 envelope-mediated transient activation of the LIM domain kinase (LIMK), a protein that phosphorylates cofilin. We demonstrate that HIV-mediated LIMK activation is through gp120-triggered transient activation of the Rack-PAK-LIMK pathway, and that knockdown of LIMK through siRNA decreases filamentous actin, increases CXCR4 trafficking, and diminishes viral DNA synthesis. These results suggest that HIV-mediated early actin polymerization may directly regulate the CXCR4 receptor during viral entry and is involved in viral DNA synthesis. Furthermore, we also demonstrate that in resting CD4 T cells, actin polymerization can be triggered through transient treatment with a pharmacological agent, okadaic acid, that activates LIMK and promotes HIV latent infection of resting CD4 T cells. Taken together, our results suggest that HIV hijacks LIMK to control the cortical actin dynamics for the initiation of viral infection of CD4 T cells.
Collapse
Affiliation(s)
- Paul J Vorster
- Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cicala C, Arthos J, Fauci AS. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J Transl Med 2011; 9 Suppl 1:S2. [PMID: 21284901 PMCID: PMC3105502 DOI: 10.1186/1479-5876-9-s1-s2] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well established that HIV-1 infection typically involves an interaction between the viral envelope protein gp120/41 and the CD4 molecule followed by a second interaction with a chemokine receptor, usually CCR5 or CXCR4. In the early stages of an HIV-1 infection CCR5 using viruses (R5 viruses) predominate. In some viral subtypes there is a propensity to switch to CXCR4 usage (X4 viruses). The receptor switch occurs in ~ 40% of the infected individuals and is associated with faster disease progression. This holds for subtypes B and D, but occurs less frequently in subtypes A and C. There are several hypotheses to explain the preferential transmission of R5 viruses and the mechanisms that lead to switching of co-receptor usage; however, there is no definitive explanation for either. One important consideration regarding transmission is that signaling by R5 gp120 may facilitate transmission of R5 viruses by inducing a permissive environment for HIV replication. In the case of sexual transmission, infection by HIV requires the virus to breach the mucosal barrier to gain access to the immune cell targets that it infects; however, the immediate events that follow HIV exposure at genital mucosal sites are not well understood. Upon transmission, the HIV quasispecies that is replicating in an infected donor contracts through a “genetic bottleneck”, and often infection results from a single infectious event. Many details surrounding this initial infection remain unresolved. In mucosal tissues, CD4+ T cells express high levels of CCR5, and a subset of these CD4+/CCR5high cells express the integrin α4β7, the gut homing receptor. CD4+/CCR5high/ α4β7high T cells are highly susceptible to infection by HIV-1 and are ideal targets for an efficient productive infection at the point of transmission. In this context we have demonstrated that the HIV-1 envelope protein gp120 binds to α4β7 on CD4+ T cells. On CD4+/CCR5high/ α4β7high T cells, α4β7 is closely associated with CD4 and CCR5. Furthermore, α4β7 is ~3 times the size of CD4 on the cell surface, that makes it a prominent receptor for an efficient virus capture. gp120-α4β7 interactions mediate the activation of the adhesion-associated integrin LFA-1. LFA-1 facilitates the formation of virological synapses and cell-to-cell spread of HIV-1. gp120 binding to α4β7 is mediated by a tripeptide located in the V1/V2 domain of gp120. Of note, the V1/V2 domain of gp120 has been linked to variations in transmission fitness among viral isolates raising the intriguing possibility that gp120-α4β7 interactions may be linked to transmission fitness. Although many details remain unresolved, we hypothesize that gp120-α4β7 interactions play an important role in the very early events following sexual transmission of HIV and may have important implication in the design of vaccine strategies for the prevention of acquisition of HIV infection
Collapse
Affiliation(s)
- Claudia Cicala
- Laboratory of Immunoregulation National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
62
|
Melikyan GB. Membrane fusion mediated by human immunodeficiency virus envelope glycoprotein. CURRENT TOPICS IN MEMBRANES 2011; 68:81-106. [PMID: 21771496 DOI: 10.1016/b978-0-12-385891-7.00004-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gregory B Melikyan
- Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, GA, USA
| |
Collapse
|
63
|
Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML, Hebbeler AM, Greene WC. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 2010; 143:789-801. [PMID: 21111238 PMCID: PMC3026834 DOI: 10.1016/j.cell.2010.11.001] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 05/07/2010] [Accepted: 10/29/2010] [Indexed: 02/07/2023]
Abstract
The mechanism by which CD4 T cells are depleted in HIV-infected hosts remains poorly understood. In ex vivo cultures of human tonsil tissue, CD4 T cells undergo a pronounced cytopathic response following HIV infection. Strikingly, >95% of these dying cells are not productively infected but instead correspond to bystander cells. We now show that the death of these "bystander" cells involves abortive HIV infection. Inhibitors blocking HIV entry or early steps of reverse transcription prevent CD4 T cell death while inhibition of later events in the viral life cycle does not. We demonstrate that the nonpermissive state exhibited by the majority of resting CD4 tonsil T cells leads to accumulation of incomplete reverse transcripts. These cytoplasmic nucleic acids activate a host defense program that elicits a coordinated proapoptotic and proinflammatory response involving caspase-3 and caspase-1 activation. While this response likely evolved to protect the host, it centrally contributes to the immunopathogenic effects of HIV.
Collapse
Affiliation(s)
- Gilad Doitsh
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Marielle Cavrois
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Kara G. Lassen
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Orlando Zepeda
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Zhiyuan Yang
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Mario L. Santiago
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Andrew M. Hebbeler
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
64
|
R5 HIV env and vesicular stomatitis virus G protein cooperate to mediate fusion to naive CD4+ T Cells. J Virol 2010; 85:644-8. [PMID: 20980513 DOI: 10.1128/jvi.01851-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naïve CD4(4) T cells are resistant to both HIV R5 env and vesicular stomatitis virus G protein (VSV-G)-mediated fusion. However, viral particles carrying both HIV R5 env and VSV-G infect naïve cells by an unexplained mechanism. We show that VSV-G-pseudotyped virus cannot fuse to unstimulated cells because the viral particles cannot be endocytosed. However, virions carrying both HIV R5 env and VSV-G can fuse because CD4 binding allows viral uptake. Our findings reveal a unique mechanism by which R5 HIV env and VSV-G cooperate to allow entry to naïve CD4(+) T cells, providing a tool to target naïve CD4(+) T cells with R5 HIV to study HIV coreceptor signaling and latency.
Collapse
|
65
|
Permanyer M, Ballana E, Esté JA. Endocytosis of HIV: anything goes. Trends Microbiol 2010; 18:543-51. [PMID: 20965729 DOI: 10.1016/j.tim.2010.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/10/2010] [Accepted: 09/24/2010] [Indexed: 10/18/2022]
Abstract
The major pathway for HIV internalization in CD4+ T cells has been thought to be the direct fusion of virus and cell membranes, because the cell surface is the point of entry of infectious particles. However, the exact contribution of endocytic pathways to the infection of CD4+ T lymphocytes is unknown, and the mechanisms involved in endocytosis of HIV particles are unclear. Recent evidence suggests that endocytosis of cell-free and cell-associated virus particles could lead to effective virus entry and productive infections. Such observations have, in turn, spurred a debate on the relevance of endosomal entry as a mechanism of escape from the immune system and HIV entry inhibitors. In this paper, we review the endocytosis of HIV and discuss its role in HIV infection and pathogenesis.
Collapse
Affiliation(s)
- Marc Permanyer
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, 08916 Barcelona, Spain
| | | | | |
Collapse
|
66
|
Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A 2010; 107:16934-9. [PMID: 20837531 DOI: 10.1073/pnas.1002894107] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4(+) T cells. We now show that HIV-1 latency can be established in resting CD4(+) T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4(+) T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4(+) T cells during normal chemokine-directed recirculation of CD4(+) T cells between blood and tissue.
Collapse
|
67
|
Harmon B, Campbell N, Ratner L. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog 2010; 6:e1000956. [PMID: 20585556 PMCID: PMC2887473 DOI: 10.1371/journal.ppat.1000956] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 05/19/2010] [Indexed: 11/18/2022] Open
Abstract
Entry of human immunodeficiency virus type 1 (HIV-1) commences with binding of the envelope glycoprotein (Env) to the receptor CD4, and one of two coreceptors, CXCR4 or CCR5. Env-mediated signaling through coreceptor results in Galphaq-mediated Rac activation and actin cytoskeleton rearrangements necessary for fusion. Guanine nucleotide exchange factors (GEFs) activate Rac and regulate its downstream protein effectors. In this study we show that Env-induced Rac activation is mediated by the Rac GEF Tiam-1, which associates with the adaptor protein IRSp53 to link Rac to the Wave2 complex. Rac and the tyrosine kinase Abl then activate the Wave2 complex and promote Arp2/3-dependent actin polymerization. Env-mediated cell-cell fusion, virus-cell fusion and HIV-1 infection are dependent on Tiam-1, Abl, IRSp53, Wave2, and Arp3 as shown by attenuation of fusion and infection in cells expressing siRNA targeted to these signaling components. HIV-1 Env-dependent cell-cell fusion, virus-cell fusion and infection were also inhibited by Abl kinase inhibitors, imatinib, nilotinib, and dasatinib. Treatment of cells with Abl kinase inhibitors did not affect cell viability or surface expression of CD4 and CCR5. Similar results with inhibitors and siRNAs were obtained when Env-dependent cell-cell fusion, virus-cell fusion or infection was measured, and when cell lines or primary cells were the target. Using membrane curving agents and fluorescence microscopy, we showed that inhibition of Abl kinase activity arrests fusion at the hemifusion (lipid mixing) step, suggesting a role for Abl-mediated actin remodeling in pore formation and expansion. These results suggest a potential utility of Abl kinase inhibitors to treat HIV-1 infected patients.
Collapse
Affiliation(s)
- Brooke Harmon
- Division of Molecular Oncology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | | | | |
Collapse
|
68
|
Bukong TN, Hall WW, Jacqué JM. Lentivirus-associated MAPK/ERK2 phosphorylates EMD and regulates infectivity. J Gen Virol 2010; 91:2381-92. [PMID: 20463147 DOI: 10.1099/vir.0.019604-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of a cell by lentiviruses, such as human immunodeficiency virus type 1 or feline immunodeficiency virus, results in the formation of a reverse transcription complex, the pre-integration complex (PIC), where viral DNA is synthesized. In non-dividing cells, efficient nuclear translocation of the PIC requires the presence of the inner nuclear lamina protein emerin (EMD). Here, we demonstrate that EMD phosphorylation is induced early after infection in primary non-dividing cells. Furthermore, we demonstrate that EMD phosphorylation is dependent on virion-associated mitogen-activated protein kinase (MAPK). Specific inhibition of MAPK activity with kinase inhibitors markedly reduced EMD phosphorylation and resulted in decreased integration of the proviral DNA into chromatin. Similarly, when a MEK1 kinase-inactive mutant was expressed in virus-producer cells, virus-induced phosphorylation of EMD was impaired and viral integration reduced during the subsequent infection. Expression of constitutively active MEK1 kinase in producer cells did not result in modulation of EMD phosphorylation or viral integration during subsequent infection. These studies demonstrate that, in addition to phosphorylating components of the PICs at an early step of infection, virion-associated MAPK plays a role in facilitating cDNA integration after nuclear translocation through phosphorylation of target-cell EMD.
Collapse
Affiliation(s)
- Terence N Bukong
- University College Dublin, Centre for Research in Infectious Diseases, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
69
|
Gerlier D, Grigorov B. New insights into measles virus propagation: from entry to shedding. Future Virol 2010. [DOI: 10.2217/fvl.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The last decade of research on measles virus entry has provided new clues and concepts on the molecular mechanisms that drive virus entry in distinct tissues, virus propagation in vivo throughout multiple organs and virus exit to ensure epidemic propagation. Novel biochemical and structural information on viral glycoproteins have shed light on how a genotypically variable RNA virus with error-prone RNA polymerase can behave as an immunologically invariant virus for over half a century worldwide. Moreover, the viral attachment protein was found to support efficient retargeting to unnatural cellular receptors, and this led to the design of the first class of retargeted viral vectors possessing an envelope.
Collapse
Affiliation(s)
| | - Boyan Grigorov
- Tour CERVI, INSERM U758, 21 Avenue Tony Garnier, 69007, Lyon, France
| |
Collapse
|
70
|
Abstract
Viral infections spread based on the ability of viruses to overcome multiple barriers and move from cell to cell, tissue to tissue, and person to person and even across species. While there are fundamental differences between these types of transmissions, it has emerged that the ability of viruses to utilize and manipulate cell-cell contact contributes to the success of viral infections. Central to the excitement in the field of virus cell-to-cell transmission is the idea that cell-to-cell spread is more than the sum of the processes of virus release and entry. This implies that virus release and entry are efficiently coordinated to sites of cell-cell contact, resulting in a process that is distinct from its individual components. In this review, we will present support for this model, illustrate the ability of viruses to utilize and manipulate cell adhesion molecules, and discuss the mechanism and driving forces of directional spreading. An understanding of viral cell-to-cell spreading will enhance our ability to intervene in the efficient spreading of viral infections.
Collapse
|
71
|
Jones KL, Roche M, Gantier MP, Begum NA, Honjo T, Caradonna S, Williams BRG, Mak J. X4 and R5 HIV-1 have distinct post-entry requirements for uracil DNA glycosylase during infection of primary cells. J Biol Chem 2010; 285:18603-14. [PMID: 20371602 DOI: 10.1074/jbc.m109.090126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is approximately 10-20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations.
Collapse
Affiliation(s)
- Kate L Jones
- Centre for Virology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Could CD4 capture by CD8+ T cells play a role in HIV spreading? J Biomed Biotechnol 2010; 2010:907371. [PMID: 20368790 PMCID: PMC2846356 DOI: 10.1155/2010/907371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/15/2010] [Indexed: 11/17/2022] Open
Abstract
CD8(+) T cells have been shown to capture plasma membrane fragments from target cells expressing their cognate antigen, a process termed "trogocytosis". Here, we report that human CD4, the Human Immunodeficiency Virus (HIV) receptor, can be found among the proteins transferred by trogocytosis. CD4 is expressed in a correct orientation after its capture by CD8(+) T cells as shown by its detection using conformational antibodies and its ability to allow HIV binding on recipient CD8(+) T cells. Although we could not find direct evidence for infection of CD8(+) T cells having captured CD4 by HIV, CD4 was virologically functional on these cells as it conferred on them the ability to undergo syncytia formation induced by HIV-infected MOLT-4 cells. Our results show that acquisition of CD4 by CD8(+) T cells via trogocytosis could play a previously unappreciated role for CD8(+) T cells in HIV spreading possibly without leading to their infection.
Collapse
|