51
|
Gerami-Nejad M, Zacchi LF, McClellan M, Matter K, Berman J. Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans. MICROBIOLOGY-SGM 2013; 159:565-579. [PMID: 23306673 DOI: 10.1099/mic.0.064097-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans is the most prevalent fungal pathogen of humans. The current techniques used to construct C. albicans strains require integration of exogenous DNA at ectopic locations, which can exert position effects on gene expression that can confound the interpretation of data from critical experiments such as virulence assays. We have identified a large intergenic region, NEUT5L, which facilitates the integration and expression of ectopic genes. To construct and integrate inserts into this novel locus, we re-engineered yeast/bacterial shuttle vectors by incorporating 550 bp of homology to NEUT5L. These vectors allow rapid, facile cloning through in vivo recombination (gap repair) in Saccharomyces cerevisiae and efficient integration of the construct into the NEUT5L locus. Other useful features of these vectors include a choice of three selectable markers (URA3, the recyclable URA3-dpl200 or NAT1), and rare restriction enzyme recognition sites for releasing the insert from the vector prior to transformation into C. albicans, thereby reducing the insert size and preventing integration of non-C. albicans DNA. Importantly, unlike the commonly used RPS1/RP10 locus, integration at NEUT5L has no negative effect on growth rates and allows native-locus expression levels, making it an ideal genomic locus for the integration of exogenous DNA in C. albicans.
Collapse
Affiliation(s)
- Maryam Gerami-Nejad
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucia F Zacchi
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathleen Matter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Berman
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
52
|
Singh-Babak SD, Shekhar T, Smith AM, Giaever G, Nislow C, Cowen LE. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 8:2575-84. [PMID: 22751784 DOI: 10.1039/c2mb25107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fungi rely on regulatory networks to coordinate sensing of environmental stress with initiation of responses crucial for survival. Antifungal drugs are a specific type of environmental stress with broad clinical relevance. Small molecules with antifungal activity are ubiquitous in the environment, and are produced by a myriad of microbes in competitive natural communities. The echinocandins are fungal fermentation products and the most recently developed class of antifungals, with those in clinical use being semisynthetic derivatives that target the fungal cell wall by inhibiting 1,3-β-D-glucan synthase. Recent studies implicate the protein phosphatase calcineurin as a key regulator of cellular stress responses required for fungal survival of echinocandin-induced cell wall stress. Pharmacological inhibition of calcineurin can be achieved using the natural product and immunosuppressive drug cyclosporin A, which inhibits calcineurin by binding to the immunophilin Cpr1. This drug-protein complex inhibits the interaction between the regulatory and catalytic subunits of calcineurin, an interaction necessary for calcineurin function. Here, we report on potent activity of cyclosporin A when combined with the echinocandin micafungin against the model yeast Saccharomyces cerevisiae that is independent of its known mechanism of action of calcineurin inhibition. This calcineurin-independent synergy does not involve any of the 12 immunophilins known in yeast, individually or in combination, and is not mediated by any of the multidrug transporters encoded or controlled by YOR1, SNQ2, PDR5, PDR10, PDR11, YCF1, PDR15, ADP1, VMR1, NFT1, BPT1, YBT1, YNR070w, YOL075c, AUS1, PDR12, PDR1 and/or PDR3. Genome-wide haploinsufficiency profiling (HIP) and homozygous deletion profiling (HOP) strongly implicate the cell wall biosynthesis and integrity pathways as being central to the calcineurin-independent activity of cyclosporin A. Thus, systems level chemical genomic approaches implicate key cellular pathways in a novel mechanism of antifungal drug synergy.
Collapse
Affiliation(s)
- Sheena D Singh-Babak
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 4368, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
53
|
Alfred SE, Surendra A, Le C, Lin K, Mok A, Wallace IM, Proctor M, Urbanus ML, Giaever G, Nislow C. A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis. Genome Biol 2012; 13:R105. [PMID: 23158586 PMCID: PMC3580497 DOI: 10.1186/gb-2012-13-11-r105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/18/2012] [Indexed: 12/12/2022] Open
Abstract
Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds.
Collapse
|
54
|
St.Onge R, Schlecht U, Scharfe C, Evangelista M. Forward chemical genetics in yeast for discovery of chemical probes targeting metabolism. Molecules 2012; 17:13098-115. [PMID: 23128089 PMCID: PMC3539408 DOI: 10.3390/molecules171113098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/05/2012] [Accepted: 10/30/2012] [Indexed: 12/28/2022] Open
Abstract
The many virtues that made the yeast Saccharomyces cerevisiae a dominant model organism for genetics and molecular biology, are now establishing its role in chemical genetics. Its experimental tractability (i.e., rapid doubling time, simple culture conditions) and the availability of powerful tools for drug-target identification, make yeast an ideal organism for high-throughput phenotypic screening. It may be especially applicable for the discovery of chemical probes targeting highly conserved cellular processes, such as metabolism and bioenergetics, because these probes would likely inhibit the same processes in higher eukaryotes (including man). Importantly, changes in normal cellular metabolism are associated with a variety of diseased states (including neurological disorders and cancer), and exploiting these changes for therapeutic purposes has accordingly gained considerable attention. Here, we review progress and challenges associated with forward chemical genetic screening in yeast. We also discuss evidence supporting these screens as a useful strategy for discovery of new chemical probes and new druggable targets related to cellular metabolism.
Collapse
Affiliation(s)
- Robert St.Onge
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Stanford, CA 94305, USA; (U.S.); (C.S.)
- Author to whom correspondence should be addressed; ; Tel.: +1-650-812-1968; Fax: +1-650-812-1973
| | - Ulrich Schlecht
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Stanford, CA 94305, USA; (U.S.); (C.S.)
| | - Curt Scharfe
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Stanford, CA 94305, USA; (U.S.); (C.S.)
| | - Marie Evangelista
- Molecular Diagnostics and Cancer Cell Biology, Genentech, Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
55
|
Chauvel M, Nesseir A, Cabral V, Znaidi S, Goyard S, Bachellier-Bassi S, Firon A, Legrand M, Diogo D, Naulleau C, Rossignol T, d’Enfert C. A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. PLoS One 2012; 7:e45912. [PMID: 23049891 PMCID: PMC3457969 DOI: 10.1371/journal.pone.0045912] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is the most frequently encountered human fungal pathogen, causing both superficial infections and life-threatening systemic diseases. Functional genomic studies performed in this organism have mainly used knock-out mutants and extensive collections of overexpression mutants are still lacking. Here, we report the development of a first generation C. albicans ORFeome, the improvement of overexpression systems and the construction of two new libraries of C. albicans strains overexpressing genes for components of signaling networks, in particular protein kinases, protein phosphatases and transcription factors. As a proof of concept, we screened these collections for genes whose overexpression impacts morphogenesis or growth rates in C. albicans. Our screens identified genes previously described for their role in these biological processes, demonstrating the functionality of our strategy, as well as genes that have not been previously associated to these processes. This article emphasizes the potential of systematic overexpression strategies to improve our knowledge of regulatory networks in C. albicans. The C. albicans plasmid and strain collections described here are available at the Fungal Genetics Stock Center. Their extension to a genome-wide scale will represent important resources for the C. albicans community.
Collapse
Affiliation(s)
- Murielle Chauvel
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Audrey Nesseir
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Vitor Cabral
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Mélanie Legrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Dorothée Diogo
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Claire Naulleau
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- * E-mail:
| |
Collapse
|
56
|
ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS One 2012; 7:e43012. [PMID: 22900082 PMCID: PMC3416827 DOI: 10.1371/journal.pone.0043012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/17/2012] [Indexed: 11/19/2022] Open
Abstract
High-throughput analysis of genome-wide random transposon mutant libraries is a powerful tool for (conditional) essential gene discovery. Recently, several next-generation sequencing approaches, e.g. Tn-seq/INseq, HITS and TraDIS, have been developed that accurately map the site of transposon insertions by mutant-specific amplification and sequence readout of DNA flanking the transposon insertions site, assigning a measure of essentiality based on the number of reads per insertion site flanking sequence or per gene. However, analysis of these large and complex datasets is hampered by the lack of an easy to use and automated tool for transposon insertion sequencing data. To fill this gap, we developed ESSENTIALS, an open source, web-based software tool for researchers in the genomics field utilizing transposon insertion sequencing analysis. It accurately predicts (conditionally) essential genes and offers the flexibility of using different sample normalization methods, genomic location bias correction, data preprocessing steps, appropriate statistical tests and various visualizations to examine the results, while requiring only a minimum of input and hands-on work from the researcher. We successfully applied ESSENTIALS to in-house and published Tn-seq, TraDIS and HITS datasets and we show that the various pre- and post-processing steps on the sequence reads and count data with ESSENTIALS considerably improve the sensitivity and specificity of predicted gene essentiality.
Collapse
|
57
|
Abstract
Temperature affects diverse biological processes. In fungi such as the pathogen Candida albicans, temperature governs a morphogenetic switch between yeast and hyphal growth. A new report connects the thermosensor Hsp90 to a CDK-cyclin-transcription factor module that controls morphogenesis.
Collapse
Affiliation(s)
- Wenjie Xu
- 200B Mellon Institute, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
58
|
Venancio TM, Bellieny-Rabelo D, Aravind L. Evolutionary and Biochemical Aspects of Chemical Stress Resistance in Saccharomyces cerevisiae. Front Genet 2012; 3:47. [PMID: 22479268 PMCID: PMC3315702 DOI: 10.3389/fgene.2012.00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/15/2012] [Indexed: 01/03/2023] Open
Abstract
Large-scale chemical genetics screens (chemogenomics) in yeast have been widely used to find drug targets, understand the mechanism-of-action of compounds, and unravel the biochemistry of drug resistance. Chemogenomics is based on the comparison of growth of gene deletants in the presence and absence of a chemical substance. Such studies showed that more than 90% of the yeast genes are required for growth in the presence of at least one chemical. Analysis of these data, using computational approaches, has revealed non-trivial features of the natural chemical tolerance systems. As a result two non-overlapping sets of genes are seen to respectively impart robustness and evolvability in the context of natural chemical resistance. The former is composed of multidrug-resistance genes, whereas the latter comprises genes sharing chemical genetic profiles with many others. Recent publications showing the potential applications chemogenomics in studying the pharmacological basis of various drugs are discussed, as well as the expansion of chemogenomics to other organisms. Finally, integration of chemogenomics with sensitive sequence analysis and ubiquitination/phosphorylation data led to the discovery of a new conserved domain and important post-translational modification pathways involved in stress resistance.
Collapse
Affiliation(s)
- Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro Campos dos Goytacazes, Brazil
| | | | | |
Collapse
|
59
|
Azad MA, Wright GD. Determining the mode of action of bioactive compounds. Bioorg Med Chem 2012; 20:1929-39. [DOI: 10.1016/j.bmc.2011.10.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/14/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022]
|
60
|
Cong F, Cheung AK, Huang SMA. Chemical Genetics–Based Target Identification in Drug Discovery. Annu Rev Pharmacol Toxicol 2012; 52:57-78. [DOI: 10.1146/annurev-pharmtox-010611-134639] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Feng Cong
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139;
| | - Atwood K. Cheung
- Global Discovery Chemistry – Chemogenetics and Proteomics, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Shih-Min A. Huang
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139;
- Current address: Sanofi-Aventis Oncology, Cambridge, Massachusetts 02139
| |
Collapse
|
61
|
Smith AM, Durbic T, Kittanakom S, Giaever G, Nislow C. Barcode sequencing for understanding drug-gene interactions. Methods Mol Biol 2012; 910:55-69. [PMID: 22821592 DOI: 10.1007/978-1-61779-965-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the advent of next-generation sequencing (NGS) technology, methods previously developed for microarrays have been adapted for use by NGS. Here we describe in detail a protocol for Barcode analysis by sequencing (Bar-seq) to assess pooled competitive growth of individually barcoded yeast deletion mutants. This protocol has been optimized on two sequencing platforms: Illumina's Genome Analyzer IIx/HiSeq2000 and Life Technologies SOLiD3/5500. In addition, we provide guidelines for assessment of human knockdown cells using short-hairpin RNAs (shRNA) and an Illumina sequencing readout.
Collapse
Affiliation(s)
- Andrew M Smith
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
62
|
GORDÂN RALUCA, PYNE SAUMYADIPTA, BULYK MARTHAL. Identification of cell cycle-regulated, putative hyphal genes in Candida albicans. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2012:299-310. [PMID: 22174285 PMCID: PMC3331874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Candida albicans, a major fungal pathogen in human, can grow in a variety of morphological forms ranging from budding yeast to pseudohyphae and hyphae, and its ability to transition to true hyphae is critical for virulence in various types of C. albicans infections. Here, we identify 17 putative hyphal genes whose expression peaks during the S/G2 transition of the cell cycle in C. albicans . These genes are Candida-specific (i.e., they do not have orthologs in S.cerevisiae, a related fungal species that does not exhibit hyphal growth and is primarily non-pathogenic), and their promoters are enriched for the DNA binding site motifs of Tec1 and Rfg1, two transcription factors (TFs) known to play important roles in hyphal growth and virulence. For 5 of the 17 genes we found strong evidence in the literature that confirms our hypothesis that these genes are involved in hyphal growth and/or virulence, for 5 additional genes we found suggestive (albeit weak) evidence, while the other genes remain to be tested. It will be interesting to determine in future studies whether these 17 putative hyphal genes, whose expression peaks during the S/G2 transition, are part of a mechanism for this pathogenic fungus to 'turn on' hyphal growth late during the cell cycle, or if these genes are used to sustain hyphal growth and ensure that the cell does not transition back to yeast growth. In either case, the involvement of these genes in hyphal growth makes them putative targets for new antifungal drugs aimed at inhibiting hyphae formation in C. albicans.
Collapse
Affiliation(s)
- RALUCA GORDÂN
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - SAUMYADIPTA PYNE
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,
| | - MARTHA L. BULYK
- Division of Genetics, Department of Medicine, Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA, Harvard-MIT Division of Health Sciences & Technology (HST), Harvard Medical School, Boston, MA 02115, USA,
| |
Collapse
|
63
|
Andrusiak K, Piotrowski JS, Boone C. Chemical-genomic profiling: systematic analysis of the cellular targets of bioactive molecules. Bioorg Med Chem 2011; 20:1952-60. [PMID: 22261022 DOI: 10.1016/j.bmc.2011.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 11/17/2022]
Abstract
Chemical-genomic (CG) profiling of bioactive compounds is a powerful approach for drug target identification and mode of action studies. Within the last decade, research focused largely on the development and application of CG approaches in the model yeast Saccharomyces cerevisiae. The success of these methods has sparked interest in transitioning CG profiling to other biological systems to extend clinical and evolutionary relevance. Additionally, CG profiling has proven to enhance drug-synergy screens for developing combinatorial therapies. Herein, we briefly review CG profiling, focusing on emerging cross-species technologies and novel drug-synergy applications, as well as outlining needs within the field.
Collapse
Affiliation(s)
- Kerry Andrusiak
- Banting and Best Department of Medical Research and Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College St., Toronto, ON, Canada M5S 3E1
| | | | | |
Collapse
|
64
|
Abstract
The serendipitous discovery of penicillin inspired intensive research into how small molecules affect basic cellular processes and their potential to treat disease. Biochemical and genetic approaches have been fundamental for clarifying small-molecule modes of action. Genomic technologies have permitted the use of chemical-genetic strategies that comprehensively study compound-target relationships in the context of a living cell, providing a systems biology view of both the cellular targets and the interdependent networks that respond to chemical stress. These studies highlight the fact that in vitro determinations of mechanism rarely translate into a complete understanding of drug behavior in the cell. Here, we review key discoveries that gave rise to the field of chemical genetics, with particular attention to chemical-genetic strategies developed for bakers' yeast, their extension to clinically relevant microbial pathogens, and the potential of these approaches to affect antimicrobial drug discovery.
Collapse
|
65
|
Bharucha N, Chabrier-Roselló Y, Xu T, Johnson C, Sobczynski S, Song Q, Dobry CJ, Eckwahl MJ, Anderson CP, Benjamin AJ, Kumar A, Krysan DJ. A large-scale complex haploinsufficiency-based genetic interaction screen in Candida albicans: analysis of the RAM network during morphogenesis. PLoS Genet 2011; 7:e1002058. [PMID: 22103005 PMCID: PMC3084211 DOI: 10.1371/journal.pgen.1002058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The morphogenetic transition between yeast and filamentous forms of the human
fungal pathogen Candida albicans is regulated by a variety of
signaling pathways. How these pathways interact to orchestrate morphogenesis,
however, has not been as well characterized. To address this question and to
identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM)
pathway during filamentation, we report the first large-scale genetic
interaction screen in C. albicans. Our strategy for this screen
was based on the concept of complex haploinsufficiency (CHI). A heterozygous
mutant of CBK1
(cbk1Δ/CBK1), a key RAM pathway
protein kinase, was subjected to transposon-mediated, insertional mutagenesis.
The resulting double heterozygous mutants (6,528 independent strains) were
screened for decreased filamentation on Spider Medium (SM). From the 441 mutants
showing altered filamentation, 139 transposon insertion sites were sequenced,
yielding 41 unique CBK1-interacting genes. This gene set was
enriched in transcriptional targets of Ace2 and, strikingly, the cAMP-dependent
protein kinase A (PKA) pathway, suggesting an interaction between these two
pathways. Further analysis indicates that the RAM and PKA pathways co-regulate a
common set of genes during morphogenesis and that hyper-activation of the PKA
pathway may compensate for loss of RAM pathway function. Our data also indicate
that the PKA–regulated transcription factor Efg1 primarily localizes to
yeast phase cells while the RAM–pathway regulated transcription factor
Ace2 localizes to daughter nuclei of filamentous cells, suggesting that Efg1 and
Ace2 regulate a common set of genes at separate stages of morphogenesis. Taken
together, our observations indicate that CHI–based screening is a useful
approach to genetic interaction analysis in C. albicans and
support a model in which these two pathways regulate a common set of genes at
different stages of filamentation. Candida albicans is the most common cause of fungal infections
in humans. As a diploid yeast without a classical sexual cycle, many genetic
approaches developed for large-scale genetic interaction studies in the model
yeast Saccharomyces cerevisiae cannot be applied to C.
albicans. Genetic interaction studies have proven to be powerful
genetic tools for the analysis of complex biological processes. Here, we
demonstrate that libraries of C. albicans strains containing
heterozygous mutations in two different genes can be generated and used to study
genetic interactions in C. albicans on a large scale. Double
heterozygous mutants that show more severe phenotypes than strains with single
heterozygous mutations are indicative of genetic interactions through a
phenomenon referred to as complex haploinsufficiency (CHI). We applied this
approach to the study of the RAM (Regulation of Ace2 and Morphogenesis)
signaling network during the morphogenetic transition of C.
albicans from yeast to filamentous growth. Among the genes that
interacted with CBK1, the key signaling kinase of the RAM
pathway, were transcriptional targets of the RAM pathway and the protein kinase
A pathway. Further analysis supports a model in which these two pathways
co-regulate a common set of genes at different stages of filamentation.
Collapse
Affiliation(s)
- Nike Bharucha
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Yeissa Chabrier-Roselló
- Department of Pediatrics, University of
Rochester School of Medicine and Dentistry, Rochester, New York, United States
of America
| | - Tao Xu
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Cole Johnson
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Sarah Sobczynski
- Department of Microbiology/Immunology,
University of Rochester School of Medicine and Dentistry, Rochester, New York,
United States of America
| | - Qingxuan Song
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Craig J. Dobry
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Matthew J. Eckwahl
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Christopher P. Anderson
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Andrew J. Benjamin
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
- * E-mail: (DJK); (AK)
| | - Damian J. Krysan
- Department of Pediatrics, University of
Rochester School of Medicine and Dentistry, Rochester, New York, United States
of America
- Department of Microbiology/Immunology,
University of Rochester School of Medicine and Dentistry, Rochester, New York,
United States of America
- * E-mail: (DJK); (AK)
| |
Collapse
|
66
|
Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. EUKARYOTIC CELL 2011; 11:98-108. [PMID: 22158711 DOI: 10.1128/ec.05238-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications of proteins drive a wide variety of cellular processes in eukaryotes, regulating cell growth and division as well as adaptive and developmental processes. With regard to the fungal kingdom, most information about posttranslational modifications has been generated through studies of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, where, for example, the roles of protein phosphorylation, glycosylation, acetylation, ubiquitination, sumoylation, and neddylation have been dissected. More recently, information has begun to emerge for the medically important fungal pathogens Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, highlighting the relevance of posttranslational modifications for virulence. We review the available literature on protein modifications in fungal pathogens, focusing in particular upon the reversible peptide modifications sumoylation, ubiquitination, and neddylation.
Collapse
|
67
|
Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2011; 2012:713687. [PMID: 22187560 PMCID: PMC3236459 DOI: 10.1155/2012/713687] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
Collapse
|
68
|
Deutschbauer A, Price MN, Wetmore KM, Shao W, Baumohl JK, Xu Z, Nguyen M, Tamse R, Davis RW, Arkin AP. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 2011; 7:e1002385. [PMID: 22125499 PMCID: PMC3219624 DOI: 10.1371/journal.pgen.1002385] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/30/2011] [Indexed: 11/21/2022] Open
Abstract
Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. Many computationally predicted gene annotations in bacteria are incomplete or wrong. Consequently, experimental methods to systematically determine gene function in bacteria are required. Here, we describe a genetic approach to meet this challenge. We constructed a large transposon mutant library in the metal-reducing bacterium Shewanella oneidensis MR-1 and profiled the fitness of this collection in more than 100 diverse experimental conditions. In addition to identifying a phenotype for more than 2,000 genes, we demonstrate that mutant fitness profiles can be used to assign “evidence-based” gene annotations for enzymes, signaling proteins, transporters, and transcription factors, a subset of which we verify experimentally.
Collapse
Affiliation(s)
- Adam Deutschbauer
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kelly M. Wetmore
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wenjun Shao
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jason K. Baumohl
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Zhuchen Xu
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Michelle Nguyen
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Raquel Tamse
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Ronald W. Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Adam P. Arkin
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
69
|
Finkel JS, Yudanin N, Nett JE, Andes DR, Mitchell AP. Application of the systematic "DAmP" approach to create a partially defective C. albicans mutant. Fungal Genet Biol 2011; 48:1056-61. [PMID: 21820070 PMCID: PMC3185220 DOI: 10.1016/j.fgb.2011.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022]
Abstract
An understanding of gene function often relies upon creating multiple kinds of alleles. Functional analysis in Candida albicans, a major fungal pathogen, has generally included characterization of mutant strains with insertion or deletion alleles and over-expression alleles. Here we use in C. albicans another type of allele that has been employed effectively in the model yeast Saccharomyces cerevisiae, a "Decreased Abundance by mRNA Perturbation" (DAmP) allele (Yan et al., 2008). DAmP alleles are created systematically through replacement of 30 noncoding regions with nonfunctional heterologous sequences, and thus are broadly applicable. We used a DAmP allele to probe the function of Sun41, a surface protein with roles in cell wall integrity, cell-cell adherence, hyphal formation, and biofilm formation that has been suggested as a possible therapeutic target (Firon et al., 2007; Hiller et al., 2007; Norice et al., 2007). A SUN41-DAmP allele results in approximately 10-fold reduced levels of SUN41 RNA, and yields intermediate phenotypes in most assays. We report that a sun41Δ/Δ mutant is defective in biofilm formation in vivo, and that the SUN41-DAmP allele complements that defect. This finding argues that Sun41 may not be an ideal therapeutic target for biofilm inhibition, since a 90% decrease in activity has little effect on biofilm formation in vivo. We anticipate that DAmP alleles of C. albicans genes will be informative for analysis of other prospective drug targets, including essential genes.
Collapse
Affiliation(s)
- JS Finkel
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - N Yudanin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - JE Nett
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin 53792 USA
| | - DR Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin 53792 USA
| | - AP Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
70
|
Vandeputte P, Ischer F, Sanglard D, Coste AT. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization. PLoS One 2011; 6:e26962. [PMID: 22073120 PMCID: PMC3205040 DOI: 10.1371/journal.pone.0026962] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022] Open
Abstract
The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.
Collapse
Affiliation(s)
- Patrick Vandeputte
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Françoise Ischer
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
71
|
Smith AM, Durbic T, Oh J, Urbanus M, Proctor M, Heisler LE, Giaever G, Nislow C. Competitive genomic screens of barcoded yeast libraries. J Vis Exp 2011:2864. [PMID: 21860376 PMCID: PMC3211125 DOI: 10.3791/2864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000-1,000,000 gene-gene and drug-gene interactions in a single experiment.
Collapse
Affiliation(s)
- Andrew M Smith
- Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Febrer M, McLay K, Caccamo M, Twomey KB, Ryan RP. Advances in bacterial transcriptome and transposon insertion-site profiling using second-generation sequencing. Trends Biotechnol 2011; 29:586-94. [PMID: 21764162 DOI: 10.1016/j.tibtech.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/25/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
The arrival of second-generation sequencing has revolutionized the study of bacteria within a short period. The sequence information generated from these platforms has helped in our understanding of bacterial development, adaptation and diversity and how bacteria cause disease. Furthermore, these technologies have quickly been adapted for high-throughput studies that were previously performed using DNA cloning or microarray-based applications. This has facilitated a more comprehensive study of bacterial transcriptomes through RNA sequencing (RNA-Seq) and the systematic determination of gene function by 'transposon monitoring'. In this review, we provide an outline of these powerful tools and the in silico analyses used in their application, and also highlight the biological questions being addressed in these approaches.
Collapse
Affiliation(s)
- Melanie Febrer
- The Genome Analysis Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
73
|
Samaranayake DP, Hanes SD. Milestones in Candida albicans gene manipulation. Fungal Genet Biol 2011; 48:858-65. [PMID: 21511047 DOI: 10.1016/j.fgb.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/02/2011] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
In the United States, candidemia is one of the most common hospital-acquired infections and is estimated to cause 10,000 deaths per year. The species Candida albicans is responsible for the majority of these cases. As C. albicans is capable of developing resistance against the currently available drugs, understanding the molecular basis of drug resistance, finding new cellular targets, and further understanding the overall mechanism of C. albicans pathogenesis are important goals. To study this pathogen it is advantageous to manipulate its genome. Numerous strategies of C. albicans gene manipulation have been introduced. This review evaluates a majority of these strategies and should be a helpful guide for researchers to identify gene targeting strategies to suit their requirements.
Collapse
Affiliation(s)
- Dhanushki P Samaranayake
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA.
| | | |
Collapse
|
74
|
Oh J, Nislow C. Signature-tagged mutagenesis to characterize genes through competitive selection of bar-coded genome libraries. Methods Mol Biol 2011; 765:225-52. [PMID: 21815096 DOI: 10.1007/978-1-61779-197-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The availability of collections of genome-wide deletion mutants greatly accelerates systematic analyses of gene function. However, each of the thousands of genes that comprise a genome must be phenotyped individually unless they can be assayed in parallel and subsequently deconvolved. To this end, unique molecular identifiers have been developed for a variety of microbes. Specifically, the addition of DNA "tags," or "bar codes," to each mutant allows all mutants in a collection to be pooled and phenotyped in parallel, greatly increasing experimental throughput. In this chapter, we provide an overview of current methodologies used to create such tagged mutant collections and outline how they can be applied to understand gene function, gene-gene interactions, and drug-gene interactions. Finally, we present a methodology that uses universal TagModules, capable of bar coding a wide range of microorganisms, and demonstrate its reduction to practice by creating tagged mutant collections in the pathogenic yeast Candida albicans.
Collapse
Affiliation(s)
- Julia Oh
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | | |
Collapse
|