51
|
Surewaard BGJ, Trzciński K, Jacobino SR, Hansen IS, Vughs MM, Sanders EAM, van der Ende A, van Strijp JAG, de Haas CJC. Pneumococcal immune evasion: ZmpC inhibits neutrophil influx. Cell Microbiol 2013; 15:1753-65. [PMID: 23601501 DOI: 10.1111/cmi.12147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022]
Abstract
Neutrophil recruitment is essential in clearing pneumococcal infections. The first step in neutrophil extravasation involves the interaction between P-selectin on activated endothelium and P-Selectin Glycoprotein 1 (PSGL-1) on neutrophils. Here, we identify pneumococcal Zinc metalloproteinase C as a potent inhibitor of PSGL-1. ZmpC degrades the N-terminal domain of PSGL-1, thereby disrupting the initial rolling of neutrophils on activated human umbilical vein endothelial cells. Furthermore, mice infected with wild-type strain in the model of pneumococcal pneumonia showed lower lungs neutrophil infiltration compare to animals infected with ZmpC mutant. In addition, we confirmed the association of zmpC with serotype 8 and 11A and found it to be associated with serotype 33F as well. In conclusion, wereport PSGL-1 as a novel target for ZmpC and show that ZmpC inhibits neutrophil extravasation during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Bas G J Surewaard
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Correia-da-Silva M, Sousa E, Pinto MMM. Emerging sulfated flavonoids and other polyphenols as drugs: nature as an inspiration. Med Res Rev 2013; 34:223-79. [PMID: 23553315 DOI: 10.1002/med.21282] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nature uses sulfation of endogenous and exogenous molecules mainly to avoid potential toxicity. The growing importance of natural sulfated molecules, as modulators of a number of physiological and pathological processes, has inspired the synthesis of non-natural sulfated scaffolds. Until the 1990s, the synthesis of sulfated small molecules was almost restricted to derivatives of flavonoids and aimed mainly at structure elucidation and plant biosynthesis studies. Currently, the synthesis of this type of compounds concerns structurally diverse scaffolds and is aimed at the development of potential drugs and/or exploitation of the biological effects of sulfated metabolites. Some important hit compounds are emerging from sulfated flavonoids and other polyphenols mainly as anticoagulant and antiviral agents. When compared with polymeric macromolecules such as heparins, sulfated small molecules could be of value in therapeutics due to their hydrophobic nature that can contribute to improve the bioavailability. This review highlights the synthetic approaches that were applied to obtain monosulfated or polysulfated phenolic small molecules and compiles the diverse biological activities already reported for this type of derivatives. Toxicity and pharmacokinetic parameters of this emerging class of derivatives will also be considered, emphasizing their value for therapeutic applications.
Collapse
Affiliation(s)
- Marta Correia-da-Silva
- Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
53
|
Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci U S A 2013; 110:5463-7. [PMID: 23509286 DOI: 10.1073/pnas.1222379110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human enterovirus 71 is a picornavirus causing hand, foot, and mouth disease that may progress to fatal encephalitis in infants and small children. As of now, no cure is available for enterovirus 71 infections. Small molecule inhibitors binding into a hydrophobic pocket within capsid viral protein 1 were previously shown to effectively limit infectivity of many picornaviruses. Here we report a 3.2-Å-resolution X-ray structure of the enterovirus 71 virion complexed with the capsid-binding inhibitor WIN 51711. The inhibitor replaced the natural pocket factor within the viral protein 1 pocket without inducing any detectable rearrangements in the structure of the capsid. Furthermore, we show that the compound stabilizes enterovirus 71 virions and limits its infectivity, probably through restricting dynamics of the capsid necessary for genome release. Thus, our results provide a structural basis for development of antienterovirus 71 capsid-binding drugs.
Collapse
|
54
|
Yamayoshi S, Ohka S, Fujii K, Koike S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol 2013; 87:3335-47. [PMID: 23302872 PMCID: PMC3592140 DOI: 10.1128/jvi.02070-12] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022] Open
Abstract
Human scavenger receptor class B, member 2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL1) have been identified to be the cellular receptors for enterovirus 71 (EV71). We compared the EV71 infection efficiencies of mouse L cells that expressed SCARB2 (L-SCARB2) and PSGL1 (L-PSGL1) and the abilities of SCARB2 and PSGL1 to bind to the virus. L-SCARB2 cells bound a reduced amount of EV71 compared to L-PSGL1 cells. However, EV71 could infect L-SCARB2 cells more efficiently than L-PSGL1 cells. The results suggested that the difference in the binding capacities of the two receptors was not the sole determinant of the infection efficiency and that SCARB2 plays an essential role after attaching to virions. Therefore, we examined the viral entry into L-SCARB2 cells and L-PSGL1 cells by immunofluorescence microscopy. In both cells, we detected internalized EV71 virions that colocalized with an early endosome marker. We then performed a sucrose density gradient centrifugation analysis to evaluate viral uncoating. After incubating the EV71 virion with L-SCARB2 cells or soluble SCARB2 under acidic conditions below pH 6.0, we observed that part of the native virion was converted into an empty capsid that lacked both genomic RNA and VP4 capsid proteins. The results suggested that the uncoating of EV71 requires both SCARB2 and an acidic environment and occurs after the internalization of the virus-receptor complex into endosomes. However, the empty capsid formation was not observed after incubation with L-PSGL1 cells or soluble PSGL1 under any of the tested pH conditions. These results indicated that SCARB2 is capable of viral binding, viral internalization, and viral uncoating and that the low infection efficiency of L-PSGL1 cells is due to the inability of PSGL1 to induce viral uncoating. The characterization of SCARB2 as an uncoating receptor greatly contributes to the understanding of the early steps of EV71 infection.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
55
|
Xin KW, Huimin Y, Alonso S. Enterovirus 71: pathogenesis, control and models of disease. Future Virol 2012. [DOI: 10.2217/fvl.12.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enterovirus 71 (EV71) is one of the major agents responsible for hand, foot and mouth disease. The increasing incidence of hand, foot and mouth disease outbreaks, epidemics due to EV71 infection in South East Asia and the propensity of EV71 strains to cause severe neurological complications in young children underscore the need to further our knowledge and understanding of the mechanisms involved in EV71 pathogenesis; such knowledge could then be translated to the identification of biomarkers of disease severity, and the development of effective therapeutics and vaccines. This article reviews the current knowledge of EV71 pathogenesis, control measures and models of infection.
Collapse
Affiliation(s)
- Khong Wei Xin
- Yong Loo Lin School of Medicine, Department of Microbiology, Life Sciences Institute, Immunology Programme, National University of Singapore, Singapore
| | - Yeo Huimin
- Yong Loo Lin School of Medicine, Department of Microbiology, Life Sciences Institute, Immunology Programme, National University of Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, Department of Microbiology, Life Sciences Institute, Immunology Programme, National University of Singapore, Singapore
| |
Collapse
|
56
|
[Early steps of picornavirus infection]. Uirusu 2012; 61:183-91. [PMID: 22916565 DOI: 10.2222/jsv.61.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Picornaviridae is a large family of viruses that cause a variety of infectious diseases in humans and animals. It includes important viruses such as poliovirus, hepatisis A virus and foot and mouth disease virus. Early steps of infection play important roles in determining the host range and the target organs for each virus. Here, I review the recent advances in the studies of cellular receptors for picornaviruses, mechanisms of cell entry and viral uncoating.
Collapse
|
57
|
Lin CH, Lin ES, Su TM, Hung KS, Yang YS. A nano switch mechanism for the redox-responsive sulfotransferase. Biochem Pharmacol 2012; 84:224-31. [DOI: 10.1016/j.bcp.2012.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
58
|
Nishimura Y, Shimizu H. Cellular receptors for human enterovirus species a. Front Microbiol 2012; 3:105. [PMID: 22470371 PMCID: PMC3313065 DOI: 10.3389/fmicb.2012.00105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/02/2012] [Indexed: 12/22/2022] Open
Abstract
Human enterovirus species A (HEV-A) is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are the major causative agents of hand, foot, and mouth disease (HFMD). Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis. Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1) and scavenger receptor class B, member 2 (SCARB2), were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.
Collapse
Affiliation(s)
- Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases Musashimurayama-shi, Tokyo, Japan
| | | |
Collapse
|
59
|
Chen P, Song Z, Qi Y, Feng X, Xu N, Sun Y, Wu X, Yao X, Mao Q, Li X, Dong W, Wan X, Huang N, Shen X, Liang Z, Li W. Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J Biol Chem 2012; 287:6406-20. [PMID: 22219187 PMCID: PMC3307280 DOI: 10.1074/jbc.m111.301622] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/01/2012] [Indexed: 11/06/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the major pathogens that cause hand, foot, and mouth disease outbreaks in young children in the Asia-Pacific region in recent years. Human scavenger receptor class B 2 (SCARB2) is the main cellular receptor for EV71 on target cells. The requirements of the EV71-SCARB2 interaction have not been fully characterized, and it has not been determined whether SCARB2 serves as an uncoating receptor for EV71. Here we compared the efficiency of the receptor from different species including human, horseshoe bat, mouse, and hamster and demonstrated that the residues between 144 and 151 are critical for SCARB2 binding to viral capsid protein VP1 of EV71 and seven residues from the human receptor could convert murine SCARB2, an otherwise inefficient receptor, to an efficient receptor for EV71 viral infection. We also identified that EV71 binds to SCARB2 via a canyon of VP1 around residue Gln-172. Soluble SCARB2 could convert the EV71 virions from 160 S to 135 S particles, indicating that SCARB2 is an uncoating receptor of the virus. The uncoating efficiency of SCARB2 significantly increased in an acidic environment (pH 5.6). These studies elucidated the viral capsid and receptor determinants of enterovirus 71 infection and revealed a possible target for antiviral interventions.
Collapse
Affiliation(s)
- Pan Chen
- From the Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Zilin Song
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Yonghe Qi
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Xiaofeng Feng
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Naiqing Xu
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Xing Wu
- National Institutes for Food and Drug Control, Number 2 Tiantan Xili, Dongchen, Beijing 100050, China, and
| | - Xin Yao
- National Institutes for Food and Drug Control, Number 2 Tiantan Xili, Dongchen, Beijing 100050, China, and
| | - Qunyin Mao
- National Institutes for Food and Drug Control, Number 2 Tiantan Xili, Dongchen, Beijing 100050, China, and
| | - Xiuling Li
- National Vaccine and Serum Institute, Number 4 Sanjianfang Nanli, Chaoyang, Beijing 100024, China
| | - Wenjuan Dong
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Xiaobo Wan
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Niu Huang
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| | - Xinliang Shen
- National Vaccine and Serum Institute, Number 4 Sanjianfang Nanli, Chaoyang, Beijing 100024, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Number 2 Tiantan Xili, Dongchen, Beijing 100050, China, and
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, Number 7 Science Park Road, ZGC Life Science Park, Changping, Beijing 102206, China
| |
Collapse
|
60
|
Azab AK, Quang P, Azab F, Pitsillides C, Thompson B, Chonghaile T, Patton JT, Maiso P, Monrose V, Sacco A, Ngo HT, Flores LM, Lin CP, Magnani JL, Kung AL, Letai A, Carrasco R, Roccaro AM, Ghobrial IM. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 2012; 119:1468-78. [PMID: 22096244 PMCID: PMC3286211 DOI: 10.1182/blood-2011-07-368050] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/08/2011] [Indexed: 12/23/2022] Open
Abstract
Interactions between multiple myeloma (MM) cells and the BM microenvironment play a critical role in the pathogenesis of MM and in the development of drug resistance by MM cells. Selectins are involved in extravasation and homing of leukocytes to target organs. In the present study, we focused on adhesion dynamics that involve P-selectin glycoprotein ligand-1 (PSGL-1) on MM cells and its interaction with selectins in the BM microenvironment. We show that PSGL-1 is highly expressed on MM cells and regulates the adhesion and homing of MM cells to cells in the BM microenvironment in vitro and in vivo. This interaction involves both endothelial cells and BM stromal cells. Using loss-of-function studies and the small-molecule pan-selectin inhibitor GMI-1070, we show that PSGL-1 regulates the activation of integrins and downstream signaling. We also document that this interaction regulates MM-cell proliferation in coculture with BM microenvironmental cells and the development of drug resistance. Furthermore, inhibiting this interaction with GMI-1070 enhances the sensitization of MM cells to bortezomib in vitro and in vivo. These data highlight the critical contribution of PSGL-1 to the regulation of growth, dissemination, and drug resistance in MM in the context of the BM microenvironment.
Collapse
Affiliation(s)
- Abdel Kareem Azab
- Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Wang G. Post-translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering. ACTA ACUST UNITED AC 2012; 1:72-79. [PMID: 24511461 DOI: 10.2174/2211550111201010072] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Natural antimicrobial peptides (AMPs) are gene-coded defense molecules discovered in all the three life domains: Eubacteria, Archaea, and Eukarya. The latter covers protists, fungi, plants, and animals. It is now recognized that amino acid composition, peptide sequence, and post-translational modifications determine to a large extent the structure and function of AMPs. This article systematically describes post-translational modifications of natural AMPs annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Currently, 1147 out of 1755 AMPs in the database are modified and classified into more than 17 types. Through chemical modifications, the peptides fold into a variety of structural scaffolds that target bacterial surfaces or molecules within cells. Chemical modifications also confer desired functions to a particular peptide. Meanwhile, these modifications modulate other peptide properties such as stability. Elucidation of the relationship between AMP property and chemical modification inspires peptide engineering. Depending on the objective of our design, peptides may be modified in various ways so that the desired features can be enhanced whereas unwanted properties can be minimized. Therefore, peptide design plays an essential role in developing natural AMPs into a new generation of therapeutic molecules.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA,
| |
Collapse
|
62
|
Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 2011; 37:313-27. [PMID: 21651436 DOI: 10.3109/1040841x.2011.580723] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71), a member of the Enterovirus genus in the Picornaviridae family, was first recognized as a dermotrophic virus that usually cause mild, self-limiting hand-foot-and-mouth disease (HFMD). However, EV71 infection can sometimes induce a variety of severe neurological complications and even death. Current large outbreaks of EV71 make this virus being a major public health issue. Intense effort has been made to address its underlying pathogenesis and to develop effective means for combating EV71 infections. Here, we aimed to provide an overview of cellular mechanisms underlying EV71 infection and to assess potential agents for prevention and treatment of EV71 infections.
Collapse
Affiliation(s)
- Lina Yi
- Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|