51
|
Chibebe Junior J, Sabino CP, Tan X, Junqueira JC, Wang Y, Fuchs BB, Jorge AOC, Tegos GP, Hamblin MR, Mylonakis E. Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella. BMC Microbiol 2013; 13:217. [PMID: 24083556 PMCID: PMC3849975 DOI: 10.1186/1471-2180-13-217] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/17/2013] [Indexed: 02/08/2023] Open
Abstract
Background Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella. Results We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to either treatment alone. Conclusions G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections. The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-resistant Candida strains.
Collapse
Affiliation(s)
- José Chibebe Junior
- Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/UNESP, São José dos Campos, SP 12245000, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrob Agents Chemother 2013; 57:4769-81. [PMID: 23877676 DOI: 10.1128/aac.00477-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Candida tropicalis ranks between third and fourth among Candida species most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives. Candida tropicalis is usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However, C. tropicalis resistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating in C. tropicalis strains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shown in vitro correlated very well with the results obtained in vivo using the model host Galleria mellonella. Using this panel of strains, the G. mellonella model system was validated as a simple, nonmammalian minihost model that can be used to study in vitro-in vivo correlation of antifungals in C. tropicalis. The development in C. tropicalis of antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies.
Collapse
|
53
|
Xu H, Nobile CJ, Dongari-Bagtzoglou A. Glucanase induces filamentation of the fungal pathogen Candida albicans. PLoS One 2013; 8:e63736. [PMID: 23737947 PMCID: PMC3667860 DOI: 10.1371/journal.pone.0063736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen. Many organisms, including C. albicans, secrete glucanases under different environmental conditions. Here, we report a novel role for beta-1, 3- glucanase in inducing Candida albicans to form filaments at 22°C and enhancing filamentation at 37°C in nutrient-rich medium. Quorum sensing, the efg1-signaling and cek1 MAP kinase pathways are involved in this process. Our data suggest that the natural antifungal agent beta–glucanase may support morphologic transformation of Candida albicans at a wide range of ambient temperatures.
Collapse
Affiliation(s)
- Hongbin Xu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | | | | |
Collapse
|
54
|
Abstract
The ASM 6th Conference on Biofilms was held in Miami, Florida, 29 September to 4 October, 2012. The conference provided an opportunity for the exchange of new findings and ideas with regard to biofilm research. A wide range of findings, spanning applied biology, evolution, ecology, physiology, and molecular biology, were presented at the conference. This review summarizes the presentations with regard to emerging biofilm-related themes.
Collapse
|
55
|
Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 2013; 8:e60047. [PMID: 23555877 PMCID: PMC3610750 DOI: 10.1371/journal.pone.0060047] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/20/2013] [Indexed: 12/28/2022] Open
Abstract
The incidence of opportunistic fungal infections has increased in recent decades due to the growing proportion of immunocompromised patients in our society. Candida krusei has been described as a causative agent of disseminated fungal infections in susceptible patients. Although its prevalence remains low among yeast infections (2-5%), its intrinsic resistance to fluconazole makes this yeast important from epidemiologic aspects. Non mammalian organisms are feasible models to study fungal virulence and drug efficacy. In this work we have used the lepidopteran Galleria mellonella and the nematode Caenorhabditis elegans as models to assess antifungal efficacy during infection by C. krusei. This yeast killed G. mellonella at 25, 30 and 37°C and reduced haemocytic density. Infected larvae melanized in a dose-dependent manner. Fluconazole did not protect against C. krusei infection, in contrast to amphotericin B, voriconazole or caspofungin. However, the doses of these antifungals required to obtain larvae protection were always higher during C. krusei infection than during C. albicans infection. Similar results were found in the model host C. elegans. Our work demonstrates that non mammalian models are useful tools to investigate in vivo antifungal efficacy and virulence of C. krusei.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Maria Pilar de Lucas
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Cecilia Mesa-Arango
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Group of Investigative Dermatology, University of Antioquia, Medellín, Colombia
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Encarnación Lozano
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Jose Mendes-Giannini
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
- * E-mail: (MJMG); (OZ)
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (MJMG); (OZ)
| |
Collapse
|
56
|
Arvanitis M, Glavis-Bloom J, Mylonakis E. Invertebrate models of fungal infection. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1378-83. [PMID: 23517918 DOI: 10.1016/j.bbadis.2013.03.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
The morbidity, mortality and economic burden associated with fungal infections, together with the emergence of fungal strains resistant to current antimicrobial agents, necessitate broadening our understanding of fungal pathogenesis and discovering new agents to treat these infections. Using invertebrate hosts, especially the nematode Caenorhabditis elegans and the model insects Drosophila melanogaster and Galleria mellonella, could help achieve these goals. The evolutionary conservation of several aspects of the innate immune response between invertebrates and mammals makes the use of these simple hosts an effective and fast screening method for identifying fungal virulence factors and testing potential antifungal compounds. The purpose of this review is to compare several model hosts that have been used in experimental mycology to-date and to describe their different characteristics and contribution to the study of fungal virulence and the detection of compounds with antifungal properties. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Marios Arvanitis
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
57
|
Chibebe Junior J, Fuchs BB, Sabino CP, Junqueira JC, Jorge AOC, Ribeiro MS, Gilmore MS, Rice LB, Tegos GP, Hamblin MR, Mylonakis E. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. PLoS One 2013; 8:e55926. [PMID: 23457486 PMCID: PMC3573038 DOI: 10.1371/journal.pone.0055926] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/03/2013] [Indexed: 01/14/2023] Open
Abstract
Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to study the antimicrobial PDT and to explore combinatorial aPDT-based treatments.
Collapse
Affiliation(s)
- José Chibebe Junior
- Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/UNESP, São José dos Campos, São Paulo, Brazil
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Restorative Dentistry, Faculty of Pindamonhangaba, Pindamonhangaba, São Paulo, Brazil
- * E-mail: (JCJ); (EM)
| | - Beth B. Fuchs
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Caetano P. Sabino
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, São Paulo, Brazil
| | - Juliana C. Junqueira
- Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/UNESP, São José dos Campos, São Paulo, Brazil
| | - Antonio O. C. Jorge
- Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/UNESP, São José dos Campos, São Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, São Paulo, Brazil
| | - Michael S. Gilmore
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Louis B. Rice
- Warren Alpert Medical School, Brown University/Rhode Island and Miriam Hospitals, Providence, Rhode Island, United States of America
| | - George P. Tegos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology and Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Warren Alpert Medical School, Brown University/Rhode Island and Miriam Hospitals, Providence, Rhode Island, United States of America
- * E-mail: (JCJ); (EM)
| |
Collapse
|
58
|
Herrero de Dios C, Román E, Diez C, Alonso-Monge R, Pla J. The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans. Fungal Genet Biol 2012; 50:21-32. [PMID: 23149115 DOI: 10.1016/j.fgb.2012.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/06/2023]
Abstract
MAPK pathways are conserved and complex mechanisms of signaling in eukaryotic cells. These pathways mediate adaptation to different stress conditions by a core kinase cascade that perceives changes in the environment by different upstream elements and mediates adaptation through transcription factors. In the present work, the transmembrane protein Opy2 has been identified and functionally characterized in Candida albicans. This protein is required to trigger Cek1 phosphorylation by different stimuli such as the resumption of growth from stationary phase or the addition of the cell wall disturbing compounds zymolyase and tunicamycin. opy2 mutants display susceptibility to cell wall disturbing compounds like Congo red. However, it does not play a role in the adaptation to high osmolarity or oxidative stress, in close contrast with the situation for the homologous protein in Saccharomyces cerevisiae. The over-expression of Opy2 in a S. cerevisiae opy2ssk1 mutant partially complemented the osmosensitivity on solid medium by a Hog1-independent mechanism as well as the abnormal morphology observed in this mutant under high osmolarity. The electrophoretic pattern of CaOpy2 tagged version in S. cerevisiae suggested similar post-translational modification in both microorganisms. This protein is also involved in pathogenesis as revealed by the fact that opy2 mutants displayed a significantly reduced virulence in the Galleria mellonella model.
Collapse
Affiliation(s)
- Carmen Herrero de Dios
- Departamento de Microbiología II, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, Madrid, Spain
| | | | | | | | | |
Collapse
|