51
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
52
|
Sasvari Z, Gonzalez PA, Rachubinski RA, Nagy PD. Tombusvirus replication depends on Sec39p endoplasmic reticulum-associated transport protein. Virology 2013; 447:21-31. [PMID: 24210096 DOI: 10.1016/j.virol.2013.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/03/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Positive-stranded RNA viruses subvert subcellular membranes to built viral replicases complexes (VRCs) in infected cells. Tombusviruses use peroxisomal membranes for the assembly of their VRCs and they can efficiently switch to the endoplasmic reticulum membrane in the absence of peroxisomes. In this paper, we show that the ER-resident Sec39p vesicular transport protein is critical for the formation of active VRCs in yeast model host. Repression of Sec39p expression in yeast or in plants resulted in greatly reduced tombusvirus accumulation. Moreover, the purified tombusvirus replicase from Sec39p-depleted yeast cells showed low in vitro activity. Also, tombusvirus RNA replication was poor in cell-free extracts or in isolated ER membranes from yeast with repressed Sec39p expression. The tombusvirus p33 replication protein was mislocalized to the ER when Sec39p was depleted in yeast. Overall, Sec39p is the first peroxisomal biogenesis protein characterized that is critical for tombusvirus replication in yeast and plants.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, 201F Plant Science Building, KY 40546, USA
| | | | | | | |
Collapse
|
53
|
Kovalev N, Nagy PD. Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly. J Virol 2013; 87:13330-42. [PMID: 24089553 PMCID: PMC3838255 DOI: 10.1128/jvi.02101-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023] Open
Abstract
Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
54
|
Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of tombusvirus replication in yeast. J Virol 2013; 87:12600-10. [PMID: 24027337 DOI: 10.1128/jvi.00196-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors.
Collapse
|
55
|
Wang Z, Qiu Y, Liu Y, Qi N, Si J, Xia X, Wu D, Hu Y, Zhou X. Characterization of a nodavirus replicase revealed a de novo initiation mechanism of RNA synthesis and terminal nucleotidyltransferase activity. J Biol Chem 2013; 288:30785-801. [PMID: 24019510 DOI: 10.1074/jbc.m113.492728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nodaviruses are a family of positive-stranded RNA viruses with a bipartite genome of RNAs. In nodaviruses, genomic RNA1 encodes protein A, which is recognized as an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for its RNA replication. Although nodaviral RNA replication has been studied in considerable detail, and nodaviruses are well recognized models for investigating viral RNA replication, the mechanism(s) governing the initiation of nodaviral RNA synthesis have not been determined. In this study, we characterized the RdRP activity of Wuhan nodavirus (WhNV) protein A in detail and determined that this nodaviral protein A initiates RNA synthesis via a de novo mechanism, and this RNA synthesis initiation could be independent of other viral or cellular factors. Moreover, we uncovered that WhNV protein A contains a terminal nucleotidyltransferase (TNTase) activity, which is the first time such an activity has been identified in nodaviruses. We subsequently found that the TNTase activity could function in vitro to repair the 3' initiation site, which may be digested by cellular exonucleases, to ensure the efficiency and accuracy of viral RNA synthesis initiation. Furthermore, we determined the cis-acting elements for RdRP or TNTase activity at the 3'-end of positive or negative strand RNA1. Taken together, our data establish the de novo synthesis initiation mechanism and the TNTase activity of WhNV protein A, and this work represents an important advance toward understanding the mechanism(s) of nodaviral RNA replication.
Collapse
Affiliation(s)
- Zhaowei Wang
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.
Collapse
|
57
|
The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs. J Virol 2013; 87:6192-200. [PMID: 23536653 DOI: 10.1128/jvi.03327-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Positive-strand RNA viruses depend on recruited host factors to control critical replication steps. Previously, it was shown that replication of evolutionarily diverse positive-strand RNA viruses, such as hepatitis C virus and brome mosaic virus, depends on host decapping activators LSm1-7, Pat1, and Dhh1 (J. Diez et al., Proc. Natl. Acad. Sci. U. S. A. 97:3913-3918, 2000; A. Mas et al., J. Virol. 80:246 -251, 2006; N. Scheller et al., Proc. Natl. Acad. Sci. U. S. A. 106:13517-13522, 2009). By using a system that allows the replication of the insect Flock House virus (FHV) in yeast, here we show that LSm1-7, Pat1, and Dhh1 control the ratio of subgenomic RNA3 to genomic RNA1 production, a key feature in the FHV life cycle mediated by a long-distance base pairing within RNA1. Depletion of LSM1, PAT1, or DHH1 dramatically increased RNA3 accumulation during replication. This was not caused by differences between RNA1 and RNA3 steady-state levels in the absence of replication. Importantly, coimmunoprecipitation assays indicated that LSm1-7, Pat1, and Dhh1 interact with the FHV RNA genome and the viral polymerase. By using a strategy that allows dissecting different stages of the replication process, we found that LSm1-7, Pat1, and Dhh1 did not affect the early replication steps of RNA1 recruitment to the replication complex or RNA1 synthesis. Furthermore, their function on RNA3/RNA1 ratios was independent of the membrane compartment, where replication occurs and requires ATPase activity of the Dhh1 helicase. Together, these results support that LSm1-7, Pat1, and Dhh1 control RNA3 synthesis. Their described function in mediating cellular mRNP rearrangements suggests a parallel role in mediating key viral RNP transitions, such as the one required to maintain the balance between the alternative FHV RNA1 conformations that control RNA3 synthesis.
Collapse
|
58
|
Qiu Y, Wang Z, Liu Y, Qi N, Miao M, Si J, Xiang X, Cai D, Hu Y, Zhou X. Membrane association of Wuhan nodavirus protein A is required for its ability to accumulate genomic RNA1 template. Virology 2013; 439:140-51. [PMID: 23490047 DOI: 10.1016/j.virol.2013.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 02/13/2013] [Indexed: 01/13/2023]
Abstract
One common feature of positive-strand RNA viruses is the association of viral RNA and viral RNA replicase proteins with specific intracellular membranes to form RNA replication complexes. Wuhan nodavirus (WhNV) encodes protein A, which is the sole viral RNA replicase. Here, we showed that WhNV protein A closely associates with mitochondrial outer membranes and colocalizes with viral RNA replication sites. We further identified the transmembrane domains (N-terminal aa 33-64 and aa 212-254) of protein A for membrane association and mitochondrial localization. Moreover, we found that protein A accumulates genomic RNA by stabilizing the RNA. And our further investigation revealed that the ability of WhNV protein A to associate with membranes is closely linked with its ability for membrane recruitment and stabilization of viral genomic RNA templates. This study represents an advance toward understanding the mechanism of the RNA replication of WhNV and probably other nodaviruses.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
The nonstructural protein 2C of a Picorna-like virus displays nucleic acid helix destabilizing activity that can be functionally separated from its ATPase activity. J Virol 2013; 87:5205-18. [PMID: 23449794 DOI: 10.1128/jvi.00245-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Picorna-like viruses in the Picornavirales order are a large group of positive-strand RNA viruses that include numerous important pathogens for plants, insects, and humans. In these viruses, nonstructural protein 2C is one of the most conserved proteins and contains ATPase activity and putative RNA helicase activity. Here we expressed 2C protein of Ectropis obliqua picorna-like virus (EoV; genus Iflavirus, family Iflaviridae, order Picornavirales) in a eukaryotic expression system and determined that EoV 2C displays ATP-independent nucleic acid helix destabilizing and strand annealing acceleration activity in a concentration-dependent manner, indicating that this picornaviral 2C is more like an RNA chaperone than like the previously predicted RNA helicase. Our further characterization of EoV 2C revealed that divalent metal ions, such as Mg(2+) and Zn(2+), inhibit 2C-mediated helix destabilization to different extents. Moreover, we determined that EoV 2C also contains ATPase activity like that of other picornaviral 2C proteins and further assessed the functional relevance between its RNA chaperone-like and ATPase activities using mutational analysis as well as their responses to Mg(2+). Our data show that, when one of the two 2C activities was dramatically inhibited or almost abolished, the other activity could remain intact, showing that the RNA chaperone-like and ATPase activities of EoV 2C can be functionally separated. This report reveals that a picorna-like virus 2C protein displays RNA helix destabilizing and strand annealing acceleration activity, which may be critical for picornaviral replication and pathogenesis, and should foster our understanding of picorna-like viruses and viral RNA chaperones.
Collapse
|
60
|
Sasvari Z, Kovalev N, Nagy PD. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast. J Virol 2013; 87:1800-10. [PMID: 23192874 PMCID: PMC3554144 DOI: 10.1128/jvi.02003-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/19/2012] [Indexed: 11/20/2022] Open
Abstract
Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
61
|
Pathak KB, Jiang Z, Ochanine V, Sharma M, Pogany J, Nagy PD. Characterization of dominant-negative and temperature-sensitive mutants of tombusvirus replication proteins affecting replicase assembly. Virology 2013; 437:48-61. [PMID: 23332599 DOI: 10.1016/j.virol.2012.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/21/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022]
Abstract
The assembly of the viral replicase complex (VRC) on subcellular membranes is a key step in the replication process of plus-stranded RNA viruses. In this work, we have identified lethal and temperature sensitive (ts) point mutations within the essential p33:p33/p92 interaction domain of p33 and p92 replication proteins of Cucumber necrosis virus, a tombusvirus. Mutations within the p33:p33/p92 interaction domain also affected viral RNA recombination in yeast model host. An in vitro approach based on yeast cell free extract demonstrated that several p33 and p92 mutants behaved as dominant-negative during VRC assembly, and they showed reduced binding to the viral (+)RNA and affected activation of the p92 RdRp protein, while they did not directly influence (-) or (+)-strand synthesis. Overall, the presented data provide direct evidence that the p33:p33/p92 interaction domains in p33 and p92 are needed for the early stage of virus replication and also influence viral recombination.
Collapse
Affiliation(s)
- Kunj B Pathak
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
62
|
Mine A, Okuno T. Composition of plant virus RNA replicase complexes. Curr Opin Virol 2012; 2:669-75. [DOI: 10.1016/j.coviro.2012.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/18/2012] [Accepted: 09/27/2012] [Indexed: 01/26/2023]
|
63
|
Nagy PD, Barajas D, Pogany J. Host factors with regulatory roles in tombusvirus replication. Curr Opin Virol 2012; 2:691-8. [PMID: 23122856 DOI: 10.1016/j.coviro.2012.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/02/2012] [Accepted: 10/06/2012] [Indexed: 11/27/2022]
Abstract
Similar to animal viruses, the abundant plant positive-strand RNA viruses replicate in infected cells by exploiting the vast resources of the host. This review focuses on virus-host interactions during tombusvirus replication. The multifunctional tombusvirus p33 replication protein not only interacts with itself, the viral p92(pol) polymerase, and viral RNA, but also with approximately 100 cellular proteins and subcellular membranes. Several negative regulatory host proteins, such as cyclophilins and WW motif containing proteins, also bind to p33 and interfere with p33's functions. To explain how p33 can perform multiple functions, we propose that a variety of interactions involving p33 result in the commitment of p33 molecules to specific tasks. This facilitates tight spatial and temporal organization of viral replication in infected cells.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
64
|
Authentic in vitro replication of two tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes. J Virol 2012; 86:12779-94. [PMID: 22973028 DOI: 10.1128/jvi.00973-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Replication of plus-stranded RNA viruses takes place on membranous structures derived from various organelles in infected cells. Previous works with Tomato bushy stunt tombusvirus (TBSV) revealed the recruitment of either peroxisomal or endoplasmic reticulum (ER) membranes for replication. In case of Carnation Italian ringspot tombusvirus (CIRV), the mitochondrial membranes supported CIRV replication. In this study, we developed ER and mitochondrion-based in vitro tombusvirus replication assays. Using purified recombinant TBSV and CIRV replication proteins, we showed that TBSV could use the purified yeast ER and mitochondrial preparations for complete viral RNA replication, while CIRV preferentially replicated in the mitochondrial membranes. The viral RNA became partly RNase resistant after ∼40 to 60 min of incubation in the purified ER and mitochondrial preparations, suggesting that assembly of TBSV and CIRV replicases could take place in the purified ER and mitochondrial membranes in vitro. Using chimeric and heterologous combinations of replication proteins, we showed that multiple domains within the replication proteins are involved in determining the efficiency of tombusvirus replication in the two subcellular membranes. Altogether, we demonstrated that TBSV is less limited while CIRV is more restricted in utilizing various intracellular membranes for replication. Overall, the current work provides evidence that tombusvirus replication could occur in vitro in isolated subcellular membranes, suggesting that tombusviruses have the ability to utilize alternative organellar membranes during infection that could increase the chance of mixed virus replication and rapid evolution during coinfection.
Collapse
|
65
|
Shah Nawaz-ul-Rehman M, Martinez-Ochoa N, Pascal H, Sasvari Z, Herbst C, Xu K, Baker J, Sharma M, Herbst A, Nagy PD. Proteome-wide overexpression of host proteins for identification of factors affecting tombusvirus RNA replication: an inhibitory role of protein kinase C. J Virol 2012; 86:9384-95. [PMID: 22718827 PMCID: PMC3416130 DOI: 10.1128/jvi.00019-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 06/13/2012] [Indexed: 01/08/2023] Open
Abstract
To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts.
Collapse
|
66
|
p33-Independent activation of a truncated p92 RNA-dependent RNA polymerase of Tomato bushy stunt virus in yeast cell-free extract. J Virol 2012; 86:12025-38. [PMID: 22933278 DOI: 10.1128/jvi.01303-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Plus-stranded RNA viruses replicate in membrane-bound structures containing the viral replicase complex (VRC). A key component of the VRC is the virally encoded RNA-dependent RNA polymerase (RdRp), which should be activated and incorporated into the VRC after its translation. To study the activation of the RdRp of Tomato bushy stunt virus (TBSV), a small tombusvirus of plants, we used N-terminal truncated recombinant RdRp, which supported RNA synthesis in a cell-free yeast extract-based assay. The truncated RdRp required a cis-acting RNA replication element and soluble host factors, while unlike the full-length TBSV RdRp, the truncated RdRp did not need the viral p33 replication cofactor or cellular membranes for RNA synthesis. Interestingly, the truncated RdRp used 3'-terminal extension for initiation and terminated prematurely at an internal cis-acting element. However, the truncated RdRp could perform de novo initiation on a TBSV plus-strand RNA template in the presence of the p33 replication cofactor, cellular membranes, and soluble host proteins. Altogether, the data obtained with the truncated RdRp indicate that this RdRp still requires activation, but with the participation of fewer components than with the full-length RdRp, making it suitable for future studies on dissection of the RdRp activation mechanism.
Collapse
|
67
|
Kovalev N, Barajas D, Nagy PD. Similar roles for yeast Dbp2 and Arabidopsis RH20 DEAD-box RNA helicases to Ded1 helicase in tombusvirus plus-strand synthesis. Virology 2012; 432:470-84. [PMID: 22832121 DOI: 10.1016/j.virol.2012.06.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 05/17/2012] [Accepted: 06/28/2012] [Indexed: 01/05/2023]
Abstract
Recruited host factors aid replication of plus-strand RNA viruses. In this paper, we show that Dbp2 DEAD-box helicase of yeast, which is a homolog of human p68 DEAD-box helicase, directly affects replication of Tomato bushy stunt virus (TBSV). We demonstrate that Dbp2 binds to the 3'-end of the viral minus-stranded RNA and enhances plus-strand synthesis by the viral replicase in a yeast-based cell-free TBSV replication assay. In vitro data with wt and an ATPase-deficient Dbp2 mutant indicate that Dbp2 unwinds local secondary structures at the 3'-end of the TBSV (-)RNA. We also show that Dbp2 complements the replication deficiency of TBSV in yeast containing reduced amount of Ded1 DEAD-box helicase, another host factor involved in TBSV replication, suggesting that Dbp2 and Ded1 helicases play redundant roles in TBSV replication. We also show that the orthologous AtRH20 DEAD-box helicase from Arabidopsis can increase tombusvirus replication in vitro and in yeast.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | |
Collapse
|