51
|
Pathogen receptor discovery with a microfluidic human membrane protein array. Proc Natl Acad Sci U S A 2016; 113:4344-9. [PMID: 27044079 DOI: 10.1073/pnas.1518698113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.
Collapse
|
52
|
Yamauchi Y, Greber UF. Principles of Virus Uncoating: Cues and the Snooker Ball. Traffic 2016; 17:569-92. [PMID: 26875443 PMCID: PMC7169695 DOI: 10.1111/tra.12387] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/17/2022]
Abstract
Viruses are spherical or complex shaped carriers of proteins, nucleic acids and sometimes lipids and sugars. They are metastable and poised for structural changes. These features allow viruses to communicate with host cells during entry, and to release the viral genome, a process known as uncoating. Studies have shown that hundreds of host factors directly or indirectly support this process. The cell provides molecules that promote stepwise virus uncoating, and direct the virus to the site of replication. It acts akin to a snooker player who delivers accurate and timely shots (cues) to the ball (virus) to score. The viruses, on the other hand, trick (snooker) the host, hijack its homeostasis systems, and dampen innate immune responses directed against danger signals. In this review, we discuss how cellular cues, facilitators, and built‐in viral mechanisms promote uncoating. Cues come from receptors, enzymes and chemicals that act directly on the virus particle to alter its structure, trafficking and infectivity. Facilitators are defined as host factors that are involved in processes which indirectly enhance entry or uncoating. Unraveling the mechanisms of virus uncoating will continue to enhance understanding of cell functions, and help counteracting infections with chemicals and vaccines.
Collapse
Affiliation(s)
- Yohei Yamauchi
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
53
|
Roberts JD, Thapaliya A, Martínez-Lumbreras S, Krysztofinska EM, Isaacson RL. Structural and Functional Insights into Small, Glutamine-Rich, Tetratricopeptide Repeat Protein Alpha. Front Mol Biosci 2015; 2:71. [PMID: 26734616 PMCID: PMC4683186 DOI: 10.3389/fmolb.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/29/2015] [Indexed: 11/21/2022] Open
Abstract
The small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA) is an emerging player in the quality control of secretory and membrane proteins mislocalized to the cytosol, with established roles in tail-anchored (TA) membrane protein biogenesis. SGTA consists of three structural domains with individual functions, an N-terminal dimerization domain that assists protein sorting pathways, a central tetratricopeptide repeat (TPR) domain that mediates interactions with heat-shock proteins, proteasomal, and hormonal receptors, and viral proteins, and a C-terminal glutamine rich region that binds hydrophobic substrates. SGTA has been linked to viral lifecycles and hormone receptor signaling, with implications in the pathogenesis of various disease states. Thus far, a range of biophysical techniques have been employed to characterize SGTA structure in some detail, and to investigate its interactions with binding partners in different biological contexts. A complete description of SGTA structure, together with further investigation into its function as a co-chaperone involved quality control, could provide us with useful insights into its role in maintaining cellular proteostasis, and broaden our understanding of mechanisms underlying associated pathologies. This review describes how some structural features of SGTA have been elucidated, and what this has uncovered about its cellular functions. A brief background on the structure and function of SGTA is given, highlighting its importance to biomedicine and related fields. The current level of knowledge and what remains to be understood about the structure and function of SGTA is summarized, discussing the potential direction of future research.
Collapse
|
54
|
Abstract
ER-associated degradation (ERAD) is a protein clearance mechanism by which misfolded, misassembled, or metabolically regulated proteins are specifically dislocated from the ER into the cytosol and degraded by the ubiquitin proteasome system. ERAD very likely evolved to maintain proteostasis and sterol homeostasis in the ER. However, the ironic truth is that membrane-penetrating transportation and protein degradation machineries in ERAD are preferably hijacked by exogenous pathogens such as viruses and toxins for their invasion and evasion from immunological surveillance. In this Review, we provide an overview of our current understanding of the pathogenic hijacking of the host cell ERAD, in which pathogens exploit the complex ERAD machinery in a variety of manners for their own use, suggesting flexibility and plasticity of the molecular machinery of ERAD.
Collapse
|
55
|
You J, O’Hara SD, Velupillai P, Castle S, Levery S, Garcea RL, Benjamin T. Ganglioside and Non-ganglioside Mediated Host Responses to the Mouse Polyomavirus. PLoS Pathog 2015; 11:e1005175. [PMID: 26474471 PMCID: PMC4608836 DOI: 10.1371/journal.ppat.1005175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
Gangliosides serve as receptors for internalization and infection by members of the polyomavirus family. Specificity is determined by recognition of carbohydrate moieties on the ganglioside by the major viral capsid protein VP1. For the mouse polyomavirus (MuPyV), gangliosides with terminal sialic acids in specific linkages are essential. Although many biochemical and cell culture experiments have implicated gangliosides as MuPyV receptions, the role of gangliosides in the MuPyV-infected mouse has not been investigated. Here we report results of studies using ganglioside-deficient mice and derived cell lines. Knockout mice lacking complex gangliosides were completely resistant to the cytolytic and pathogenic effects of the virus. Embryo fibroblasts from these mice were likewise resistant to infection, and supplementation with specific gangliosides restored infectibility. Although lacking receptors for viral infection, cells from ganglioside-deficient mice retained the ability to respond to the virus. Ganglioside-deficient fibroblasts responded rapidly to virus exposure with a transient induction of c-fos as an early manifestation of a mitogenic response. Additionally, splenocytes from ganglioside-deficient mice responded to MuPyV by secretion of IL-12, previously recognized as a key mediator of the innate immune response. Thus, while gangliosides are essential for infection in the animal, gangliosides are not required for mitogenic responses and innate immune responses to the virus. Biological and structural studies have combined to give a detailed understanding of how the mouse polyomavirus binds to sialyloligosaccharides, how polymorphisms in the sialic acid binding pocket of the major virus capsid protein constitute important determinants of pathogenicity, and how gangliosides function as receptors for cell entry and infection by the virus. We used mice with knockouts in defined ganglioside biosynthetic pathways to determine whether gangliosides alone suffice to mediate lethal infection in the intact host and whether non-gangliosides are also recognized by the virus and utilized for important physiological responses. We confirmed the requirement of specific gangliosides for infection and determined that not all gangliosides that bind in vitro serve as receptors in vivo. Results also revealed two physiologically important responses that do not require MuPyV-ganglioside interactions: i) rapid induction of c-fos in fibroblasts as an early step in cell cycle progression on which the virus depends for its own replication, and ii). activation of cytokine secretion by antigen presenting cells as a critical innate immune response to the virus. We infer that these responses are mediated by non-ganglioside receptors bearing sialic acid. These results serve to illustrate the multiplicity of MuPyV receptors and the complexity of virus-cell surface interactions.
Collapse
Affiliation(s)
- John You
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samantha D. O’Hara
- BioFrontiers Institute and the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Palanivel Velupillai
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sherry Castle
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Steven Levery
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Robert L. Garcea
- BioFrontiers Institute and the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| | - Thomas Benjamin
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
56
|
He K, Ravindran MS, Tsai B. A bacterial toxin and a nonenveloped virus hijack ER-to-cytosol membrane translocation pathways to cause disease. Crit Rev Biochem Mol Biol 2015; 50:477-88. [PMID: 26362261 DOI: 10.3109/10409238.2015.1085826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A dedicated network of cellular factors ensures that proteins translocated into the endoplasmic reticulum (ER) are folded correctly before they exit this compartment en route to other cellular destinations or for secretion. When proteins misfold, selective ER-resident enzymes and chaperones are recruited to rectify the protein-misfolding problem in order to maintain cellular proteostasis. However, when a protein becomes terminally misfolded, it is ejected into the cytosol and degraded by the proteasome via a pathway called ER-associated degradation (ERAD). Strikingly, toxins and viruses can hijack elements of the ERAD pathway to access the host cytosol and cause infection. This review focuses on emerging data illuminating the molecular mechanisms by which these toxic agents co-opt the ER-to-cytosol translocation process to cause disease.
Collapse
Affiliation(s)
- Kaiyu He
- a Department of Cell and Developmental Biology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Madhu Sudhan Ravindran
- a Department of Cell and Developmental Biology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Billy Tsai
- a Department of Cell and Developmental Biology , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
57
|
A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathog 2015; 11:e1005086. [PMID: 26244546 PMCID: PMC4526233 DOI: 10.1371/journal.ppat.1005086] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 02/02/2023] Open
Abstract
Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event. How non-enveloped viruses penetrate a host membrane to enter cells and cause disease remains an enigmatic step. To infect cells, the non-enveloped SV40 must transport across the ER membrane to reach the cytosol. In this study, we report that a cellular Hsp105-powered disaggregation machinery pulls SV40 into the cytosol, likely by uncoating the ER membrane-penetrating virus. Because this disaggregation machinery is thought to clarify cellular aggregated proteins, we propose that the force generated by this machinery can also be hijacked by a non-enveloped virus to propel its entry into the host.
Collapse
|
58
|
Leznicki P, Korac-Prlic J, Kliza K, Husnjak K, Nyathi Y, Dikic I, High S. Binding of SGTA to Rpn13 selectively modulates protein quality control. J Cell Sci 2015; 128:3187-96. [PMID: 26169395 PMCID: PMC4582187 DOI: 10.1242/jcs.165209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation. Highlighted Article: Binding of SGTA to the proteasome delays substrate degradation, thereby providing a mechanism for potentially viable proteins to be rescued for reuse.
Collapse
Affiliation(s)
- Pawel Leznicki
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jelena Korac-Prlic
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, Split 21000, Croatia
| | - Katarzyna Kliza
- Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Yvonne Nyathi
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ivan Dikic
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, Split 21000, Croatia Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany Buchmann Institute for Molecular Life Sciences, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
59
|
ERdj5 Reductase Cooperates with Protein Disulfide Isomerase To Promote Simian Virus 40 Endoplasmic Reticulum Membrane Translocation. J Virol 2015; 89:8897-908. [PMID: 26085143 DOI: 10.1128/jvi.00941-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a reaction important for its ER membrane transport and infection. ERdj5 also mediates human BK PyV infection. This enzyme cooperates with protein disulfide isomerase (PDI), a redox chaperone previously implicated in the unfolding of SV40, to fully stimulate membrane penetration. Negative-stain electron microscopy of ER-localized SV40 suggests that ERdj5 and PDI impart structural rearrangements to the virus. These conformational changes enable SV40 to engage BAP31, an ER membrane protein essential for supporting membrane penetration of the virus. Uncoupling of SV40 from BAP31 traps the virus in ER subdomains called foci, which likely serve as depots from where SV40 gains access to the cytosol. Our study thus pinpoints two ER lumenal factors that coordinately prime SV40 for ER membrane translocation and establishes a functional connection between lumenal and membrane events driving this process. IMPORTANCE PyVs are established etiologic agents of many debilitating human diseases, especially in immunocompromised individuals. To infect cells at the cellular level, this virus family must penetrate the host ER membrane to reach the cytosol, a critical entry step. In this report, we identify two ER lumenal factors that prepare the virus for ER membrane translocation and connect these lumenal events with events on the ER membrane. Pinpointing cellular components necessary for supporting PyV infection should lead to rational therapeutic strategies for preventing and treating PyV-related diseases.
Collapse
|
60
|
Abstract
DNA viruses undertake their replication within the cell nucleus, and therefore they must first deliver their genome into the nucleus of their host cells. Thus, trafficking across the nuclear envelope is at the basis of DNA virus infections. Nuclear transport of molecules with diameters up to 39 nm is a tightly regulated process that occurs through the nuclear pore complex (NPC). Due to the enormous diversity of virus size and structure, each virus has developed its own strategy for entering the nucleus of their host cells, with no two strategies alike. For example, baculoviruses target their DNA-containing capsid to the NPC and subsequently enter the nucleus intact, while the hepatitis B virus capsid crosses the NPC but disassembles at the nuclear side of the NPC. For other viruses such as herpes simplex virus and adenovirus, although both dock at the NPC, they have each developed a distinct mechanism for the subsequent delivery of their genome into the nucleus. Remarkably, other DNA viruses, such as parvoviruses and human papillomaviruses, access the nucleus through an NPC-independent mechanism. This review discusses our current understanding of the mechanisms used by DNA viruses to deliver their genome into the nucleus, and further presents the experimental evidence for such mechanisms.
Collapse
Affiliation(s)
- Nikta Fay
- Department of Zoology, University of British Columbia Vancouver, BC, Canada
| | - Nelly Panté
- Department of Zoology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
61
|
Fay N, Panté N. Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses. Curr Opin Virol 2015; 12:59-65. [PMID: 25846849 DOI: 10.1016/j.coviro.2015.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 01/03/2023]
Abstract
The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40.
Collapse
Affiliation(s)
- Nikta Fay
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nelly Panté
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
62
|
Abstract
Virus genomes are condensed and packaged inside stable proteinaceous capsids that serve to protect them during transit from one cell or host organism, to the next. During virus entry, capsid shells are primed and disassembled in a complex, tightly-regulated, multi-step process termed uncoating. Here we compare the uncoating-programs of DNA viruses of the pox-, herpes-, adeno-, polyoma-, and papillomavirus families. Highlighting the chemical and mechanical cues virus capsids respond to, we review the conformational changes that occur during stepwise disassembly of virus capsids and how these culminate in the release of viral genomes at the right time and cellular location to assure successful replication.
Collapse
|
63
|
A nucleotide exchange factor promotes endoplasmic reticulum-to-cytosol membrane penetration of the nonenveloped virus simian virus 40. J Virol 2015; 89:4069-79. [PMID: 25653441 DOI: 10.1128/jvi.03552-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.
Collapse
|
64
|
The endoplasmic reticulum membrane J protein C18 executes a distinct role in promoting simian virus 40 membrane penetration. J Virol 2015; 89:4058-68. [PMID: 25631089 DOI: 10.1128/jvi.03574-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10: e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18's cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18's contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. IMPORTANCE Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In this study, we clarify the role of an ER membrane protein called C18 in mobilizing the simian PyV SV40, a PyV archetype, from the ER into the cytosol. Our findings also support the hypothesis that SV40 induces the formation of punctate structures in the ER membrane, called foci, that serve as the portal for cytosol entry of the virus.
Collapse
|
65
|
Bennett SM, Zhao L, Bosard C, Imperiale MJ. Role of a nuclear localization signal on the minor capsid proteins VP2 and VP3 in BKPyV nuclear entry. Virology 2014; 474:110-6. [PMID: 25463609 DOI: 10.1016/j.virol.2014.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell.
Collapse
Affiliation(s)
- Shauna M Bennett
- Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109
| | - Linbo Zhao
- Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109
| | - Catherine Bosard
- Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109
| | - Michael J Imperiale
- Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109; Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109; Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109.
| |
Collapse
|
66
|
Bilkova E, Forstova J, Abrahamyan L. Coat as a dagger: the use of capsid proteins to perforate membranes during non-enveloped DNA viruses trafficking. Viruses 2014; 6:2899-937. [PMID: 25055856 PMCID: PMC4113798 DOI: 10.3390/v6072899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023] Open
Abstract
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection.
Collapse
Affiliation(s)
- Eva Bilkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Levon Abrahamyan
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| |
Collapse
|