51
|
Kijewski SDG, Akiyama H, Feizpour A, Miller CM, Ramirez NGP, Reinhard BM, Gummuluru S. Access of HIV-2 to CD169-dependent dendritic cell-mediated trans infection pathway is attenuated. Virology 2016; 497:328-336. [PMID: 27521724 DOI: 10.1016/j.virol.2016.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The mechanisms behind the low viral loads and lower mortality rates of HIV-2(+) individuals remain unknown. We hypothesized that reduced interaction of HIV-2 with CD169, the primary HIV-1 attachment factor on monocyte-derived dendritic cells (DCs) that targets captured virus particles to the trans infection pathway, contributes to its diminished pathogenic phenotype in vivo. We observed a significant decrease in capture of HIV-2 Gag-eGFP virus-like particles (VLPs) and infectious GFP-containing HIV-2 particles compared to corresponding HIV-1 particles by CD169(+) mature DCs. Interestingly, there was decreased co-localization of HIV-2 with HIV-1 Gag at plasma membrane microdomains in virus producer cells which correlated with reduced incorporation of GM3, the CD169 ligand, in HIV-2 virions, and reduction in mature DC-mediated HIV-2 trans infection compared to HIV-1. We conclude that limited interaction of HIV-2 with CD169 diminishes virus access to the mature DC-mediated trans infection pathway and might result in attenuated HIV-2 dissemination in vivo.
Collapse
Affiliation(s)
- Suzanne D G Kijewski
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Amin Feizpour
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Caitlin M Miller
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
52
|
van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery. Microbiol Mol Biol Rev 2016; 80:369-86. [PMID: 26935137 PMCID: PMC4867369 DOI: 10.1128/mmbr.00063-15] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors.
Collapse
Affiliation(s)
- Helena M van Dongen
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Niala Masoumi
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Viruses exploit the tissue physiology of the host to spread in vivo. Curr Opin Cell Biol 2016; 41:81-90. [PMID: 27149407 DOI: 10.1016/j.ceb.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Viruses are pathogens that strictly depend on their host for propagation. Over years of co-evolution viruses have become experts in exploiting the host cell biology and physiology to ensure efficient replication and spread. Here, we will first summarize the concepts that have emerged from in vitro cell culture studies to understand virus spread. We will then review the results from studies in living animals that reveal how viruses exploit the natural flow of body fluids, specific tissue architecture, and patterns of cell circulation and migration to spread within the host. Understanding tissue physiology will be critical for the design of antiviral strategies that prevent virus dissemination.
Collapse
|
54
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) gives rise to a chronic infection that progressively depletes CD4(+) T lymphocytes. CD4(+) T lymphocytes play a central coordinating role in adaptive cellular and humoral immune responses, and to do so they migrate and interact within lymphoid compartments and at effector sites to mount immune responses. While cell-free virus serves as an excellent prognostic indicator for patient survival, interactions of infected T cells or virus-scavenging immune cells with uninfected T cells can greatly enhance viral spread. HIV can induce interactions between infected and uninfected T cells that are triggered by cell surface expression of viral Env, which serves as a cell adhesion molecule that interacts with CD4 on the target cell, before it acts as the viral membrane fusion protein. These interactions are called virological synapses and promote replication in the face of selective pressure of humoral immune responses and antiretroviral therapy. Other infection-enhancing cell-cell interactions occur between virus-concentrating antigen-presenting cells and recipient T cells, called infectious synapses. The exact roles that these cell-cell interactions play in each stage of infection, from viral acquisition, systemic dissemination, to chronic persistence are still being determined. Infection-promoting immune cell interactions are likely to contribute to viral persistence and enhance the ability of HIV-1 to evade adaptive immune responses.
Collapse
Affiliation(s)
- K M Law
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - N Satija
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - A M Esposito
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - B K Chen
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
55
|
De Schryver M, Van Gorp H, Hoebeke I, De Maeyer B, Ooms K, Pintelon I, Maes LJ, Cos P, Nauwynck HJ, Delputte PL. Development and Characterization of New Species Cross-Reactive Anti-Sialoadhesin Monoclonal Antibodies. Antibodies (Basel) 2016; 5:antib5020007. [PMID: 31557988 PMCID: PMC6698821 DOI: 10.3390/antib5020007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Sialoadhesin (Sn) is a surface receptor expressed on a subset of macrophages in steady state conditions. During inflammation and diseases, Sn is highly upregulated on macrophages and blood monocytes. Therefore, therapies using monoclonal antibodies (mAbs) to target Sn-positive (Sn+) cells are a potential strategy for targeted treatment. It has been shown that Sn internalizes after binding with a mAb, though it is not clear whether this is species-specific. In this study, new Sn-specific mAbs were developed and analyzed for cross-reactivity between species. In addition, the newly developed mAbs were compared to mAbs used in previous research for their epitope recognition and other Sn-specific characteristics. Both species-specific and cross-reactive antibodies could be identified. Furthermore, sialic acid-binding of red blood cells (RBC) could be inhibited with mAbs recognizing different epitopes and all mAb showed internalization of Sn. The newly developed mAbs can be used as novel tools for Sn research and further analysis of Sn internalization in different species.
Collapse
Affiliation(s)
- Marjorie De Schryver
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Antwerp 2610, Belgium.
| | - Hanne Van Gorp
- Laboratory of Virology, Ghent University, Merelbeke 9820, Belgium.
- Inflammation Research Center, VIB-Department of Internal Medicine, Ghent University, Ghent 9000, Belgium.
| | - Inge Hoebeke
- Laboratory of Virology, Ghent University, Merelbeke 9820, Belgium.
| | - Bauke De Maeyer
- Laboratory of Virology, Ghent University, Merelbeke 9820, Belgium.
| | - Karen Ooms
- Laboratory of Virology, Ghent University, Merelbeke 9820, Belgium.
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp (UA), Antwerp 2020, Belgium.
| | - Louis J Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Antwerp 2610, Belgium.
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Antwerp 2610, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Ghent University, Merelbeke 9820, Belgium.
| | - Peter L Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Antwerp 2610, Belgium.
| |
Collapse
|
56
|
Erikson E, Wratil PR, Frank M, Ambiel I, Pahnke K, Pino M, Azadi P, Izquierdo-Useros N, Martinez-Picado J, Meier C, Schnaar RL, Crocker PR, Reutter W, Keppler OT. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner. J Biol Chem 2015; 290:27345-27359. [PMID: 26370074 DOI: 10.1074/jbc.m115.681338] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 01/21/2023] Open
Abstract
Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.
Collapse
Affiliation(s)
- Elina Erikson
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, 60596 Frankfurt am Main, Germany,; Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Paul R Wratil
- the Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, 12200 Berlin, Germany
| | | | - Ina Ambiel
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Katharina Pahnke
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Maria Pino
- the AIDS Research Institute IrsiCaixa, Institut d'Investigatio en Ciencies de la Salut Germans Trias I Pujol, Universitat Autonoma de Barcelona, 08916 Barcelona, Spain
| | - Parastoo Azadi
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Nuria Izquierdo-Useros
- the AIDS Research Institute IrsiCaixa, Institut d'Investigatio en Ciencies de la Salut Germans Trias I Pujol, Universitat Autonoma de Barcelona, 08916 Barcelona, Spain
| | - Javier Martinez-Picado
- the AIDS Research Institute IrsiCaixa, Institut d'Investigatio en Ciencies de la Salut Germans Trias I Pujol, Universitat Autonoma de Barcelona, 08916 Barcelona, Spain,; the Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Ronald L Schnaar
- Departments of Pharmacology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218
| | - Paul R Crocker
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Werner Reutter
- the Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, 12200 Berlin, Germany
| | - Oliver T Keppler
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, 60596 Frankfurt am Main, Germany,; Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany,.
| |
Collapse
|
57
|
van Montfort T, Thomas AAM, Krawczyk PM, Berkhout B, Sanders RW, Paxton WA. Reactivation of Neutralized HIV-1 by Dendritic Cells Is Dependent on the Epitope Bound by the Antibody. THE JOURNAL OF IMMUNOLOGY 2015; 195:3759-68. [DOI: 10.4049/jimmunol.1402344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
|
58
|
Correction: CD169-Mediated Trafficking of HIV to Plasma Membrane Invaginations in Dendritic Cells Attenuates Efficacy of Anti-gp120 Broadly Neutralizing Antibodies. PLoS Pathog 2015; 11:e1004916. [PMID: 25950184 PMCID: PMC4423840 DOI: 10.1371/journal.ppat.1004916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
59
|
Yu X, Xu F, Ramirez NGP, Kijewski SDG, Akiyama H, Gummuluru S, Reinhard BM. Dressing up Nanoparticles: A Membrane Wrap to Induce Formation of the Virological Synapse. ACS NANO 2015; 9:4182-92. [PMID: 25853367 PMCID: PMC4423798 DOI: 10.1021/acsnano.5b00415] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Next-generation nanoparticle-based drug delivery systems require the ability to target specific organelles or subcellular regions in selected target cells. Human immunodeficiency virus type I (HIV-1) particles are evolutionarily optimized nanocarriers that have evolved to avoid intracellular degradation and achieve enrichment at the synapse between mature dendritic cells (mDCs) and T cells by subverting cellular trafficking mechanisms. This study demonstrates that integration of the glycosphingolipid, GM3, in a membrane around a solid nanoparticle (NP) core is sufficient to recapitulate key aspects of the virus particle trafficking in mDCs. GM3-presenting artificial virus NPs (GM3-AVNs) accumulate in CD169(+) and CD81(+) nonlysosomal compartments in an actin-dependent process that mimics the sequestration of HIV-1. Live-cell optical tracking studies reveal a preferential recruitment and arrest of surface scanning CD4(+) T cells in direct vicinity to the AVN-enriched compartments. The formed mDC-T cell conjugates exhibit strong morphological similarities between the GM3-AVN-containing mDC-T cell synapse and the HIV-1 virological synapse, indicating that GM3-CD169 interactions alone are sufficient for establishing the mDC-T cell virological synapse. These results emphasize the potential of the GM3-AVN approach for providing therapeutic access to a key step of the host immune response--formation of the synaptic junction between an antigen-presenting cell (mDC) and T cells--for modulating and controlling immune responses.
Collapse
Affiliation(s)
- Xinwei Yu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| | - Fangda Xu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| | | | - Suzanne D. G. Kijewski
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| |
Collapse
|