51
|
Terradas G, Allen SL, Chenoweth SF, McGraw EA. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasit Vectors 2017; 10:622. [PMID: 29282144 PMCID: PMC5746003 DOI: 10.1186/s13071-017-2589-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. METHODS We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. RESULTS We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). CONCLUSIONS In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.
Collapse
Affiliation(s)
- Gerard Terradas
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia.
| |
Collapse
|
52
|
Abstract
Mosquito-borne viruses are major human pathogens. Introducing Wolbachia into mosquitoes could reduce disease burdens because these bacteria block virus transmission. How Wolbachia does this is unclear, but new data show that modulation of host-cell lipids is critical.
Collapse
Affiliation(s)
- Francesca D Frentiu
- School of Biomedical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
53
|
Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T, Hester S, Charles PD, Thomas B, Sinkins SP. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nat Commun 2017; 8:526. [PMID: 28904344 PMCID: PMC5597582 DOI: 10.1038/s41467-017-00610-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important approach to dengue control. To better understand the mechanisms of virus inhibition, we here perform proteomic quantification of the effects of Wolbachia in Aedes aegypti mosquito cells and midgut. Perturbations are observed in vesicular trafficking, lipid metabolism and in the endoplasmic reticulum that could impact viral entry and replication. Wolbachia-infected cells display a differential cholesterol profile, including elevated levels of esterified cholesterol, that is consistent with perturbed intracellular cholesterol trafficking. Cyclodextrins have been shown to reverse lipid accumulation defects in cells with disrupted cholesterol homeostasis. Treatment of Wolbachia-infected Ae. aegypti cells with 2-hydroxypropyl-β-cyclodextrin restores dengue replication in Wolbachia-carrying cells, suggesting dengue is inhibited in Wolbachia-infected cells by localised cholesterol accumulation. These results demonstrate parallels between the cellular Wolbachia viral inhibition phenotype and lipid storage genetic disorders. Wolbachia infection of mosquitoes can block dengue virus infection and is tested in field trials, but the mechanism of action is unclear. Using proteomics, Geoghegan et al. here identify effects of Wolbachia on cholesterol homeostasis and dengue virus replication in Aedes aegypti.
Collapse
Affiliation(s)
- Vincent Geoghegan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, UK.,Biomedical and Life Sciences, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Kirsty Stainton
- Biomedical and Life Sciences, University of Lancaster, Lancaster, LA1 4YQ, UK.,Fera Science Ltd, Sand Hutton, York, YO41 1LZ, UK
| | - Stephanie M Rainey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, UK
| | - Thomas H Ant
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, UK.,Biomedical and Life Sciences, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Tony Larson
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Svenja Hester
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Philip D Charles
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Benjamin Thomas
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, UK. .,Biomedical and Life Sciences, University of Lancaster, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
54
|
Saucereau Y, Valiente Moro C, Dieryckx C, Dupuy JW, Tran FH, Girard V, Potier P, Mavingui P. Comprehensive proteome profiling in Aedes albopictus to decipher Wolbachia-arbovirus interference phenomenon. BMC Genomics 2017; 18:635. [PMID: 28821226 PMCID: PMC5563009 DOI: 10.1186/s12864-017-3985-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Aedes albopictus is a vector of arboviruses that cause severe diseases in humans such as Chikungunya, Dengue and Zika fevers. The vector competence of Ae. albopictus varies depending on the mosquito population involved and the virus transmitted. Wolbachia infection status in believed to be among key elements that determine viral transmission efficiency. Little is known about the cellular functions mobilized in Ae. albopictus during co-infection by Wolbachia and a given arbovirus. To decipher this tripartite interaction at the molecular level, we performed a proteome analysis in Ae. albopictus C6/36 cells mono-infected by Wolbachia wAlbB strain or Chikungunya virus (CHIKV), and bi-infected. Results We first confirmed significant inhibition of CHIKV by Wolbachia. Using two-dimensional gel electrophoresis followed by nano liquid chromatography coupled with tandem mass spectrometry, we identified 600 unique differentially expressed proteins mostly related to glycolysis, translation and protein metabolism. Wolbachia infection had greater impact on cellular functions than CHIKV infection, inducing either up or down-regulation of proteins associated with metabolic processes such as glycolysis and ATP metabolism, or structural glycoproteins and capsid proteins in the case of bi-infection with CHIKV. CHIKV infection inhibited expression of proteins linked with the processes of transcription, translation, lipid storage and miRNA pathways. Conclusions The results of our proteome profiling have provided new insights into the molecular pathways involved in tripartite Ae. albopictus-Wolbachia-CHIKV interaction and may help defining targets for the better implementation of Wolbachia-based strategies for disease transmission control. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3985-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoann Saucereau
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Cindy Dieryckx
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, CNRS, Lyon, France
| | - Jean-William Dupuy
- Centre de Génomique Fonctionnelle, Plateforme Protéome, Université Bordeaux, F-33000, Bordeaux, France
| | - Florence-Hélène Tran
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Vincent Girard
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, CNRS, Lyon, France
| | - Patrick Potier
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France. .,Université Lyon 1, Villeurbanne, France. .,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France. .,INRA, UMR1418, Villeurbanne, France. .,CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT). Plateforme Technologique CYROI, Université de La Réunion, 2 rue Maxime Rivière, 97490, Sainte Clotilde, île de La Réunion, France.
| |
Collapse
|
55
|
Terradas G, McGraw EA. Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. CURRENT OPINION IN INSECT SCIENCE 2017; 22:37-44. [PMID: 28805637 DOI: 10.1016/j.cois.2017.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Viruses transmitted by mosquitoes such as dengue, Zika and West Nile cause a threat to global health due to increased geographical range and frequency of outbreaks. The bacterium Wolbachia pipientis may be the solution reducing disease transmission. Though commonly missing in vector species, the bacterium was artificially and stably introduced into Aedes aegypti to assess its potential for biocontrol. When infected with Wolbachia, mosquitoes become refractory to infection by a range of pathogens, including the aforementioned viruses. How the bacterium is conferring this phenotype remains unknown. Here we discuss current hypotheses in the field for the mechanistic basis of pathogen blocking and evaluate the evidence from mosquitoes and related insects.
Collapse
Affiliation(s)
- Gerard Terradas
- School of Biological Sciences, Monash University, Clayton VIC 3800, Melbourne, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton VIC 3800, Melbourne, Australia.
| |
Collapse
|
56
|
Variable Inhibition of Zika Virus Replication by Different Wolbachia Strains in Mosquito Cell Cultures. J Virol 2017; 91:JVI.00339-17. [PMID: 28446677 DOI: 10.1128/jvi.00339-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Mosquito-borne arboviruses are a major source of human disease. One strategy to reduce arbovirus disease is to reduce the mosquito's ability to transmit virus. Mosquito infection with the bacterial endosymbiont Wolbachia pipientis wMel is a novel strategy to reduce Aedes mosquito competency for flavivirus infection. However, experiments investigating cyclic environmental temperatures have shown a reduction in maternal transmission of wMel, potentially weakening the integration of this strain into a mosquito population relative to that of other Wolbachia strains. Consequently, it is important to investigate additional Wolbachia strains. All Zika virus (ZIKV) suppression studies are limited to the wMel Wolbachia strain. Here we show ZIKV inhibition by two different Wolbachia strains: wAlbB (isolated from Aedes albopictus mosquitoes) and wStri (isolated from the planthopper Laodelphax striatellus) in mosquito cells. Wolbachia strain wStri inhibited ZIKV most effectively. Single-cycle infection experiments showed that ZIKV RNA replication and nonstructural protein 5 translation were reduced below the limits of detection in wStri-containing cells, demonstrating early inhibition of virus replication. ZIKV replication was rescued when Wolbachia was inhibited with a bacteriostatic antibiotic. We observed a partial rescue of ZIKV growth when Wolbachia-infected cells were supplemented with cholesterol-lipid concentrate, suggesting competition for nutrients as one of the possible mechanisms of Wolbachia inhibition of ZIKV. Our data show that wAlbB and wStri infection causes inhibition of ZIKV, making them attractive candidates for further in vitro mechanistic and in vivo studies and future vector-centered approaches to limit ZIKV infection and spread.IMPORTANCE Zika virus (ZIKV) has swiftly spread throughout most of the Western Hemisphere. This is due in large part to its replication in and spread by a mosquito vector host. There is an urgent need for approaches that limit ZIKV replication in mosquitoes. One exciting approach for this is to use a bacterial endosymbiont called Wolbachia that can populate mosquito cells and inhibit ZIKV replication. Here we show that two different strains of Wolbachia, wAlbB and wStri, are effective at repressing ZIKV in mosquito cell lines. Repression of virus growth is through the inhibition of an early stage of infection and requires actively replicating Wolbachia Our findings further the understanding of Wolbachia viral inhibition and provide novel tools that can be used in an effort to limit ZIKV replication in the mosquito vector, thereby interrupting the transmission and spread of the virus.
Collapse
|
57
|
Bhattacharya T, Newton ILG, Hardy RW. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLoS Pathog 2017; 13:e1006427. [PMID: 28617844 PMCID: PMC5472326 DOI: 10.1371/journal.ppat.1006427] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023] Open
Abstract
Wolbachia pipientis is an intracellular endosymbiont known to confer host resistance against RNA viruses in insects. However, the causal mechanism underlying this antiviral defense remains poorly understood. To this end, we have established a robust arthropod model system to study the tripartite interaction involving Sindbis virus and Wolbachia strain wMel within its native host, Drosophila melanogaster. By leveraging the power of Drosophila genetics and a parallel, highly tractable D. melanogaster derived JW18 cell culture system, we determined that in addition to reducing infectious virus production, Wolbachia negatively influences Sindbis virus particle infectivity. This is further accompanied by reductions in viral transcript and protein levels. Interestingly, unchanged ratio of proteins to viral RNA copies suggest that Wolbachia likely does not influence the translational efficiency of viral transcripts. Additionally, expression analyses of candidate host genes revealed D. melanogaster methyltransferase gene Mt2 as an induced host factor in the presence of Wolbachia. Further characterization of viral resistance in Wolbachia-infected flies lacking functional Mt2 revealed partial recovery of virus titer relative to wild-type, accompanied by complete restoration of viral RNA and protein levels, suggesting that Mt2 acts at the stage of viral genome replication. Finally, knockdown of Mt2 in Wolbachia uninfected JW18 cells resulted in increased virus infectivity, thus demonstrating its previously unknown role as an antiviral factor against Sindbis virus. In conclusion, our findings provide evidence supporting the role of Wolbachia-modulated host factors towards RNA virus resistance in arthropods, alongside establishing Mt2's novel antiviral function against Sindbis virus in D. melanogaster.
Collapse
Affiliation(s)
- Tamanash Bhattacharya
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Richard W. Hardy
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
58
|
Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E, Donald CL, Sterk J, Kean J, Vazeille M, Failloux AB, Kohl A, Schnettler E. Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. mSphere 2017; 2:e00144-17. [PMID: 28497119 PMCID: PMC5415634 DOI: 10.1128/msphere.00144-17] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 11/20/2022] Open
Abstract
The small interfering RNA (siRNA) pathway is a major antiviral response in mosquitoes; however, another RNA interference pathway, the PIWI-interacting RNA (piRNA) pathway, has been suggested to be antiviral in mosquitoes. Piwi4 has been reported to be a key mediator of this response in mosquitoes, but it is not involved in the production of virus-specific piRNAs. Here, we show that Piwi4 associates with members of the antiviral exogenous siRNA pathway (Ago2 and Dcr2), as well as with proteins of the piRNA pathway (Ago3, Piwi5, and Piwi6) in an Aedes aegypti-derived cell line, Aag2. Analysis of small RNAs captured by Piwi4 revealed that it is predominantly associated with virus-specific siRNAs in Semliki Forest virus-infected cells and, to a lesser extent, with viral piRNAs. By using a Dcr2 knockout cell line, we showed directly that Ago2 lost its antiviral activity, as it was no longer bound to siRNAs, but Piwi4 retained its antiviral activity in the absence of the siRNA pathway. These results demonstrate a complex interaction between the siRNA and piRNA pathways in A. aegypti and identify Piwi4 as a noncanonical PIWI protein that interacts with members of the siRNA and piRNA pathways, and its antiviral activities may be independent of either pathway. IMPORTANCE Mosquitoes transmit several pathogenic viruses, for example, the chikungunya and Zika viruses. In mosquito cells, virus replication intermediates in the form of double-stranded RNA are cleaved by Dcr2 into 21-nucleotide-long siRNAs, which in turn are used by Ago2 to target the virus genome. A different class of virus-derived small RNAs, PIWI-interacting RNAs (piRNAs), have also been found in infected insect cells. These piRNAs are longer and are produced in a Dcr2-independent manner. The only known antiviral protein in the PIWI family is Piwi4, which is not involved in piRNA production. It is associated with key proteins of the siRNA and piRNA pathways, although its antiviral function is independent of their actions.
Collapse
Affiliation(s)
- Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mick Watson
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | | | - Anthony C. Fredericks
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Claire L. Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Jelle Sterk
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Joy Kean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Marie Vazeille
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| |
Collapse
|
59
|
Audsley MD, Ye YH, McGraw EA. The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus. PLoS Negl Trop Dis 2017; 11:e0005426. [PMID: 28267749 PMCID: PMC5357062 DOI: 10.1371/journal.pntd.0005426] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Dengue virus (DENV) is primarily vectored by the mosquito Aedes aegypti, and is estimated to cause 390 million human infections annually. A novel method for DENV control involves stable transinfection of Ae. aegypti with the common insect endosymbiont Wolbachia, which mediates an antiviral effect. However, the mechanism by which Wolbachia reduces the susceptibility of Ae. aegypti to DENV is not fully understood. In this study we assessed the potential of resident microbiota, which can play important roles in insect physiology and immune responses, to affect Wolbachia-mediated DENV blocking. Methodology/Findings The microbiome of Ae. aegypti stably infected with Wolbachia strain wMel was compared to that of Ae. aegypti without Wolbachia, using 16s rDNA profiling. Our results indicate that although Wolbachia affected the relative abundance of several genera, the microbiome of both the Wolbachia-infected and uninfected mosquitoes was dominated by Elizabethkingia and unclassified Enterobacteriaceae. To assess the potential of the resident microbiota to affect the Wolbachia-mediated antiviral effect, we used antibiotic treatment before infection with DENV by blood-meal. In spite of a significant shift in the microbiome composition in response to the antibiotics, we detected no effect of antibiotic treatment on DENV infection rates, or on the DENV load of infected mosquitoes. Conclusions/Significance Our findings indicate that stable infection with Wolbachia strain wMel produces few effects on the microbiome of laboratory-reared Ae. aegypti. Moreover, our findings suggest that the microbiome can be significantly altered without affecting the fundamental DENV blocking phenotype in these mosquitoes. Since Ae. aegypti are likely to encounter diverse microbiota in the field, this is a particularly important result in the context of using Wolbachia as a method for DENV control. Dengue virus is transmitted by the mosquito Aedes aegypti and can cause dengue fever and dengue haemorrhagic fever in humans. The World Health Organization currently considers it as the most important mosquito-borne virus globally. One method to control dengue infection of Ae. aegypti is to infect the mosquito with a common bacterium, Wolbachia, which increases the mosquito’s resistance to dengue virus. The mechanism by which resistance to dengue virus occurs is not well understood. Here, we considered whether other bacteria that reside in the mosquito might affect the ability of Wolbachia to limit dengue virus infection. First, we assessed whether Wolbachia had an impact on the abundance of bacterial species present in Ae. aegypti, finding that it had minimal effects. Second, we altered the composition of the bacterial species present by treating Ae. aegypti with antibiotics, then examined whether this affected Wolbachia’s antiviral effect. We found that there was no difference in the susceptibility of the mosquitoes to dengue virus, regardless of antibiotic treatment. We therefore conclude that it is unlikely that there are specific resident bacteria required for the principal mechanism(s) by which Wolbachia reduces susceptibility of Ae. aegypti to dengue virus.
Collapse
Affiliation(s)
- Michelle D. Audsley
- School of Biological Sciences, Monash University, Clayton VIC, Melbourne, Australia
| | - Yixin H. Ye
- School of Biological Sciences, Monash University, Clayton VIC, Melbourne, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Clayton VIC, Melbourne, Australia
- * E-mail:
| |
Collapse
|
60
|
Terradas G, Joubert DA, McGraw EA. The RNAi pathway plays a small part in Wolbachia-mediated blocking of dengue virus in mosquito cells. Sci Rep 2017; 7:43847. [PMID: 28262718 PMCID: PMC5338330 DOI: 10.1038/srep43847] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022] Open
Abstract
Wolbachia pipientis is an insect endosymbiont known to limit the replication of viruses including dengue and Zika in their primary mosquito vector, Aedes aegypti. Wolbachia is being released into mosquito populations globally in a bid to control the diseases caused by these viruses. It is theorized that Wolbachia’s priming of the insect immune system may confer protection against subsequent viral infection. Other hypotheses posit a role for competition between Wolbachia and viruses for host cellular resources. Using an A. aegypti cell line infected with Wolbachia, we tested the effects of targeting siRNAs against the major innate immune pathways on dengue virus loads. We show that while Wolbachia infection induces genes in the Toll, JAK/STAT and RNAi pathways, only reduced expression of RNAi leads to a rebound of dengue virus loads in Wolbachia-infected cells. The magnitude of the effect explained less than 10% of the total DENV load, demonstrating that blocking must be dependent on other factors in addition to the expression of RNAi. The findings bode well for the long-term stability of blocking given that immunity gene expression would likely be highly plastic and susceptible to rapid evolution.
Collapse
Affiliation(s)
- Gerard Terradas
- School of Biological Sciences, Monash University, Clayton VIC 3800, Melbourne, Australia
| | - D Albert Joubert
- Institute of Vector-borne Disease, Monash University, Clayton VIC 3800, Melbourne, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton VIC 3800, Melbourne, Australia
| |
Collapse
|
61
|
Biological Control Strategies for Mosquito Vectors of Arboviruses. INSECTS 2017; 8:insects8010021. [PMID: 28208639 PMCID: PMC5371949 DOI: 10.3390/insects8010021] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022]
Abstract
Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.
Collapse
|
62
|
Baxter RHG, Contet A, Krueger K. Arthropod Innate Immune Systems and Vector-Borne Diseases. Biochemistry 2017; 56:907-918. [PMID: 28072517 DOI: 10.1021/acs.biochem.6b00870] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.
Collapse
Affiliation(s)
- Richard H G Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Alicia Contet
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Kathryn Krueger
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
63
|
Schnettler E, Sreenu VB, Mottram T, McFarlane M. Wolbachia restricts insect-specific flavivirus infection in Aedes aegypti cells. J Gen Virol 2016; 97:3024-3029. [PMID: 27692043 PMCID: PMC5120408 DOI: 10.1099/jgv.0.000617] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mosquito-borne viruses are known to cause disease in humans and livestock and are often difficult to control due to the lack of specific antivirals and vaccines. The Wolbachia endosymbiont has been widely studied for its ability to restrict positive-strand RNA virus infection in mosquitoes, although little is known about the precise antiviral mechanism. In recent years, a variety of insect-specific viruses have been discovered in mosquitoes and an interaction with mosquito-borne viruses has been reported for some of them; however, nothing is known about the effect of Wolbachia on insect-specific virus infection in mosquitoes. Here, we show that transinfection of the Drosophila-derived wMelPop Wolbachia strain into Aedes aegypti-derived cells resulted in inhibition and even clearance of the persistent cell-fusing agent flavivirus infection in these cells. This broadens the antiviral activity of Wolbachia from acute infections to persistent infections and from arboviruses to mosquito-specific viruses. In contrast, no effect on the Phasi Charoen-like bunyavirus persistent infection in these cells was observed, suggesting a difference in Wolbachia inhibition between positive- and negative-strand RNA viruses.
Collapse
Affiliation(s)
- Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Vatipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Timothy Mottram
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
64
|
Martins N, Imler JL, Meignin C. Discovery of novel targets for antivirals: learning from flies. Curr Opin Virol 2016; 20:64-70. [PMID: 27657660 DOI: 10.1016/j.coviro.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
Developing antiviral drugs is challenging due to the small number of targets in viruses, and the rapid evolution of viral genes. Animals have evolved a number of efficient antiviral defence mechanisms, which can serve as a source of inspiration for novel therapies. The genetically tractable insect Drosophila belongs to the most diverse group of animals. Genetic and transcriptomic analyses have recently identified Drosophila genes encoding viral restriction factors. Some of them represent evolutionary novelties and their characterization may provide hints for the design of directly acting antivirals. In addition, functional screens revealed conserved host factors required for efficient viral translation, such as the ribosomal protein RACK1 and the release factor Pelo. These proteins are promising candidates for host-targeted antivirals.
Collapse
Affiliation(s)
- Nelson Martins
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Imler
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
65
|
Pietri JE, DeBruhl H, Sullivan W. The rich somatic life of Wolbachia. Microbiologyopen 2016; 5:923-936. [PMID: 27461737 PMCID: PMC5221451 DOI: 10.1002/mbo3.390] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 01/18/2023] Open
Abstract
Wolbachia is an intracellular endosymbiont infecting most arthropod and some filarial nematode species that is vertically transmitted through the maternal lineage. Due to this primary mechanism of transmission, most studies have focused on Wolbachia interactions with the host germline. However, over the last decade many studies have emerged highlighting the prominence of Wolbachia in somatic tissues, implicating somatic tissue tropism as an important aspect of the life history of this endosymbiont. Here, we review our current understanding of Wolbachia-host interactions at both the cellular and organismal level, with a focus on Wolbachia in somatic tissues.
Collapse
Affiliation(s)
- Jose E Pietri
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| | - Heather DeBruhl
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - William Sullivan
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| |
Collapse
|