51
|
Zhang D, Wang Y, Shen S, Hou Y, Chen Y, Wang T. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11:655-679. [PMID: 32150513 PMCID: PMC7524315 DOI: 10.1080/19490976.2020.1731287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria among microorganisms. What is surprising is that this seemingly small species can trigger huge changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease in different parts of the body. Meanwhile, our body also produces corresponding immune changes upon mycobiota infection. Several recent studies have made a connection between intestinal mycobiota and the human immune system. In this review, we focus on questions related to mycobiota, starting with an introduction of select species, then we summarize the typical diseases caused by mycobiota in different parts of the human body. Moreover, we constructed a framework for the human anti-fungal immune system based on genetics and immunology. Finally, the progression of fungal detection methods is also reviewed.
Collapse
Affiliation(s)
- Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,CONTACT Tingting Wang The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing210093, China
| |
Collapse
|
52
|
Ge Y, Pan M, Zhang C, Wang C, Ma K, Yan G, Wang T, Wu D, Shao J. Paeonol alleviates dextran sodium sulfate induced colitis involving Candida albicans-associated dysbiosis. Med Mycol 2020; 59:335-344. [PMID: 32598443 DOI: 10.1093/mmy/myaa053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/21/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD), which consists of ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disorder of the gastrointestinal tract. Occurrence and development of UC have been associated with multiple potential causative factors, which include fungal dysbiosis. Growing evidence reveals that Candida albicans-associated dysbiosis is correlated with clinical deterioration in UC. Paeonol (PAE) is a commonly used traditional medicine with multiple reported properties including effective alleviation of UC. In this study, a murine UC model was established by colonizing mice with additional C. albicans via gavage prior to dextran sodium sulfate (DSS) administration. Effects of PAE treatment were also assessed at initiation and in preestablished C. albicans-associated colitis. The results showed that C. albicans supplementation could aggravate disease activity index (DAI), compromise mucosal integrity, exacerbate fecal and tissue fungal burdens, increase serum β-glucan and anti-Saccharomyces cerevisiae antibody (ASCA) levels, promote serum and colonic tissue pro-inflammatory cytokine secretion (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8) and decrease the anti-inflammatory cytokine IL-10 level. It also stimulated Dectin-1, TLR2 and TLR4 as well as expression of their downstream effector NF-κB in colonic tissue. After PAE treatment, the adverse impacts of C. albicans on colitis were relieved, via decreased receptor-associated local and systemic inflammation. Our study suggests that PAE should be a candidate for treatment of fungal dysbiosis-associated UC and may act through the Dectin-1/NF-κB pathway in collaboration with TLR2 and TLR4. LAY SUMMARY Candida albicans is believed to be an important stimulator in ulcerative colitice (UC) development. Suppressing the growth of intestinal C. albicans can be contributory to the amelioration of UC. Paeonol (PAE) is a commonly used traditional medicine with multiple biological functions. In this study, we observed that PAE could alleviate symptoms in mice UC model accompanying with burden reduction of C. albicans. Therefore, we suppose that PAE can be a candidate in the treatment of C. albicans-associated UC.
Collapse
Affiliation(s)
- Yuzhu Ge
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Min Pan
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Chuanfeng Zhang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Changzhong Wang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Kelong Ma
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Guiming Yan
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
53
|
Spatz M, Richard ML. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front Cell Infect Microbiol 2020; 10:201. [PMID: 32528901 PMCID: PMC7265801 DOI: 10.3389/fcimb.2020.00201] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia is the most prevalent fungus identified in the human skin microbiota; originally described at the end of the nineteenth century, this genus is composed of at least 14 species. The role of Malassezia on the skin remains controversial because this genus has been associated with both healthy skin and pathologies (dermatitis, eczema, etc.). However, with the recent development of next-generation sequencing methods, allowing the description of the fungal diversity of various microbiota, Malassezia has also been identified as a resident fungus of diverse niches such as the gut or breast milk. A potential role for Malassezia in gut inflammation and cancer has also been suggested by recent studies. The aim of this review is to describe the findings on Malassezia in these unusual niches, to investigate what is known of the adaptation of Malassezia to the gut environment and to speculate on the role of this yeast in the host physiology specifically related to the gastrointestinal tract.
Collapse
Affiliation(s)
- Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
54
|
|
55
|
Li XV, Leonardi I, Iliev ID. Gut Mycobiota in Immunity and Inflammatory Disease. Immunity 2019; 50:1365-1379. [PMID: 31216461 DOI: 10.1016/j.immuni.2019.05.023] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
The mammalian intestine is colonized by a wealth of microorganisms-including bacteria, viruses, protozoa, and fungi-that are all integrated into a functional trans-kingdom community. Characterization of the composition of the fungal community-the mycobiota-has advanced further than the much-needed mechanistic studies. Recent findings have revealed roles for the gut mycobiota in the regulation of host immunity and in the development and progression of human diseases of inflammatory origin. We review these findings here while placing them in the context of the current understanding of the pathways and cellular networks that induce local and systemic immune responses to fungi in the gastrointestinal tract. We discuss gaps in knowledge and argue for the importance of considering bacteria-fungal interactions as we aim to define the roles of mycobiota in immune homeostasis and immune-associated pathologies.
Collapse
Affiliation(s)
- Xin V Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
56
|
Moeller JB, Leonardi I, Schlosser A, Flamar AL, Bessman NJ, Putzel GG, Thomsen T, Hammond M, Jepsen CS, Skjødt K, Füchtbauer EM, Farber DL, Sorensen GL, Iliev ID, Holmskov U, Artis D. Modulation of the fungal mycobiome is regulated by the chitin-binding receptor FIBCD1. J Exp Med 2019; 216:2689-2700. [PMID: 31601676 PMCID: PMC6888979 DOI: 10.1084/jem.20182244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/29/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
In the present study, Moeller et al. identify a previously unrecognized pathway through which intestinal epithelial cells expressing the novel chitin-binding receptor FIBCD1 can recognize and control intestinal fungal colonization, limit fungal dysbiosis, and dampen intestinal inflammation. Host–microbiota interactions are critical in regulating mammalian health and disease. In addition to bacteria, parasites, and viruses, beneficial communities of fungi (the mycobiome) are important modulators of immune- and tissue-homeostasis. Chitin is a major component of the fungal cell wall, and fibrinogen C containing domain 1 (FIBCD1) is a chitin-binding protein; however, the role of this molecule in influencing host–mycobiome interactions in vivo has never been examined. Here, we identify direct binding of FIBCD1 to intestinal-derived fungi and demonstrate that epithelial-specific expression of FIBCD1 results in significantly reduced fungal colonization and amelioration of fungal-driven intestinal inflammation. Collectively, these results identify FIBCD1 as a previously unrecognized microbial pattern recognition receptor through which intestinal epithelial cells can recognize and control fungal colonization, limit fungal dysbiosis, and dampen intestinal inflammation.
Collapse
Affiliation(s)
- Jesper B Moeller
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY .,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Irina Leonardi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Anders Schlosser
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne-Laure Flamar
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Gregory Garbès Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Theresa Thomsen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mark Hammond
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christine S Jepsen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjødt
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Donna L Farber
- Columbia Center for Translational Immunology, Department of Surgery and Department of Microbiology and Immunology, Columbia University, New York, NY
| | - Grith L Sorensen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| |
Collapse
|
57
|
Choi HH, Lee MH. C-type lectin receptors as potential targets for the treatment of gastrointestinal diseases related to fungal infection. Gastroenterol Rep (Oxf) 2019; 7:376-377. [PMID: 31687160 PMCID: PMC6821261 DOI: 10.1093/gastro/goz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hyun Ho Choi
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mong-Hong Lee
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
58
|
Li TH, Liu L, Hou YY, Shen SN, Wang TT. C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut. Gastroenterol Rep (Oxf) 2019; 7:312-321. [PMID: 31687150 PMCID: PMC6821170 DOI: 10.1093/gastro/goz028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
C-type lectin receptors (CLRs) are powerful pattern-recognition receptors that discern ‘self’ and ‘non-self’ in our body and protect us from invasive pathogens by mediating immune recognition and response. The gastrointestinal tract is very important for the maintenance of homeostasis; it is the largest shelter for the billions of microorganisms in the body and CLRs play a crucial regulatory role in this system. This study focuses on several CLRs, including Dectin-1, Dectin-2, Dectin-3 and Mincle. We summarize the roles of CLRs in maintaining gastrointestinal immune-system homeostasis, especially their functions in mediating immune recognition and responses in the gut, discuss their relationships to some diseases, highlight the significance of CLR-mediated sensing of microbial and non-microbial compounds in the gut immune system and identify new therapeutic targets.
Collapse
Affiliation(s)
- Tian-Hang Li
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ling Liu
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ya-Yi Hou
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Su-Nan Shen
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ting-Ting Wang
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
59
|
Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, Jiang C, Zhao X, Hou Y, Hung MC, Lin X. The Adaptor Protein CARD9 Protects against Colon Cancer by Restricting Mycobiota-Mediated Expansion of Myeloid-Derived Suppressor Cells. Immunity 2019; 49:504-514.e4. [PMID: 30231984 DOI: 10.1016/j.immuni.2018.08.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 03/29/2018] [Accepted: 07/06/2018] [Indexed: 01/19/2023]
Abstract
The adaptor protein CARD9 links detection of fungi by surface receptors to the activation of the NF-κB pathway. Mice deficient in CARD9 exhibit dysbiosis and are more susceptible to colitis. Here we examined the impact of Card9 deficiency in the development of colitis-associated colon cancer (CAC). Treatment of Card9-/- mice with AOM-DSS resulted in increased tumor loads as compared to WT mice and in the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissue. The impaired fungicidal functions of Card9-/- macrophages led to increased fungal loads and variation in the overall composition of the intestinal mycobiota, with a notable increase in C. tropicalis. Bone marrow cells incubated with C. tropicalis exhibited MDSC features and suppressive functions. Fluconazole treatment suppressed CAC in Card9-/- mice and was associated with decreased MDSC accumulation. The frequency of MDSCs in tumor tissues of colon cancer patients correlated positively with fungal burden, pointing to the relevance of this regulatory axis in human disease.
Collapse
Affiliation(s)
- Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Chaogang Fan
- General Surgery, Jinling Hospital affiliated Medical School, Nanjing University, Nanjing 210093, China
| | - Anran Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xingwei Xu
- General Surgery, Jinling Hospital affiliated Medical School, Nanjing University, Nanjing 210093, China
| | - Guoxing Zheng
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Yun You
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Changying Jiang
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xueqiang Zhao
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua, Beijing 100084, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
60
|
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1438. [PMID: 30255552 PMCID: PMC6586165 DOI: 10.1002/wsbm.1438] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under:
Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models
Collapse
|
61
|
Duan Z, Chen Q, Zeng R, Du L, Liu C, Chen X, Li M. Candida tropicalis induces pro-inflammatory cytokine production, NF-κB and MAPKs pathways regulation, and dectin-1 activation. Can J Microbiol 2018; 64:937-944. [PMID: 30134115 DOI: 10.1139/cjm-2017-0559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of Candida infection induced by non-albicans Candida (NAC) species is increasing. However, as a common NAC species, C. tropicalis has received much less study in terms of host immunity than C. albicans has. In this study, we evaluated the pro-inflammatory cytokine responses evoked by C. tropicalis and determined whether dectin-1 and downstream NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways played roles in inflammation in human peripheral blood mononuclear cells (PBMCs) and THP-1 macrophage-like cells. Exposure of PBMCs and THP-1 macrophage-like cells to C. tropicalis led to the enhanced gene expression and secretion of TNF-α and IL-6 in a time- and dose-dependent manner. THP-1 macrophage-like cells being challenged by C. tropicalis resulted in the activation of the NF-κB, p38, and ERK1/2 MAPK signaling pathways. We also found that the expression of dectin-1 was increased with C. tropicalis treatment. These data reveal that dectin-1 may play a role in sensing the inflammation response induced by C. tropicalis and that NF-κB and MAPK are involved in the downstream signaling pathways in macrophages.
Collapse
Affiliation(s)
- Zhimin Duan
- a Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, P.R. China
| | - Qing Chen
- b Jiangsu Province Blood Center, Nanjing, 210042, P.R. China
| | - Rong Zeng
- a Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, P.R. China
| | - Leilei Du
- a Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, P.R. China
| | - Caixia Liu
- c Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P.R. China
| | - Xu Chen
- a Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, P.R. China
| | - Min Li
- a Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, P.R. China
| |
Collapse
|
62
|
Salazar F, Brown GD. Antifungal Innate Immunity: A Perspective from the Last 10 Years. J Innate Immun 2018; 10:373-397. [PMID: 29768268 DOI: 10.1159/000488539] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/11/2018] [Indexed: 01/02/2023] Open
Abstract
Fungal pathogens can rarely cause diseases in immunocompetent individuals. However, commensal and normally nonpathogenic environmental fungi can cause life-threatening infections in immunocompromised individuals. Over the last few decades, there has been a huge increase in the incidence of invasive opportunistic fungal infections along with a worrying increase in antifungal drug resistance. As a consequence, research focused on understanding the molecular and cellular basis of antifungal immunity has expanded tremendously in the last few years. This review will provide an overview of the most exciting recent advances in innate antifungal immunity, discoveries that are helping to pave the way for the development of new strategies that are desperately needed to combat these devastating diseases.
Collapse
|
63
|
Abstract
Over the last decade, invasive fungal infections have emerged as a growing threat to human health worldwide and novel treatment strategies are urgently needed. In this context, investigations into host-pathogen interactions represent an important and promising field of research. Antigen presenting cells such as macrophages and dendritic cells are strategically located at the frontline of defence against potential invaders. Importantly, these cells express germline encoded pattern recognition receptors (PRRs), which sense conserved entities from pathogens and orchestrate innate immune responses. Herein, we review the latest findings regarding the biology and functions of the different classes of PRRs involved in pathogenic fungal recognition. We also discuss recent literature on PRR collaboration/crosstalk and the mechanisms involved in inhibiting/regulating PRR signalling. Finally, we discuss how the accumulated knowledge on PRR biology, especially Dectin-1, has been used for the design of new immunotherapies against fungal infections.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Aiysha Thompson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom.
| |
Collapse
|
64
|
Hernández-Santos N, Klein BS. Through the Scope Darkly: The Gut Mycobiome Comes into Focus. Cell Host Microbe 2018; 22:728-729. [PMID: 29241038 DOI: 10.1016/j.chom.2017.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiome is comprised of microbes from multiple kingdoms, including bacteria, but also fungi, viruses, and perhaps other agents. In this issue of Cell Host & Microbe, Jiang et al. (2017) reveal that fungal monocolonization after antibiotic-mediated depletion of intestinal bacteria prevents colitis and influenza, thus highlighting beneficial roles of fungi.
Collapse
Affiliation(s)
- Nydiaris Hernández-Santos
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA.
| |
Collapse
|
65
|
Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, Bar A, Prieto D, Rescigno M, McGovern DPB, Pla J, Iliev ID. CX3CR1 + mononuclear phagocytes control immunity to intestinal fungi. Science 2018; 359:232-236. [PMID: 29326275 DOI: 10.1126/science.aao1503] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/15/2017] [Accepted: 12/09/2017] [Indexed: 12/23/2022]
Abstract
Intestinal fungi are an important component of the microbiota, and recent studies have unveiled their potential in modulating host immune homeostasis and inflammatory disease. Nonetheless, the mechanisms governing immunity to gut fungal communities (mycobiota) remain unknown. We identified CX3CR1+ mononuclear phagocytes (MNPs) as being essential for the initiation of innate and adaptive immune responses to intestinal fungi. CX3CR1+ MNPs express antifungal receptors and activate antifungal responses in a Syk-dependent manner. Genetic ablation of CX3CR1+ MNPs in mice led to changes in gut fungal communities and to severe colitis that was rescued by antifungal treatment. In Crohn's disease patients, a missense mutation in the gene encoding CX3CR1 was identified and found to be associated with impaired antifungal responses. These results unravel a role of CX3CR1+ MNPs in mediating interactions between intestinal mycobiota and host immunity at steady state and during inflammatory disease.
Collapse
Affiliation(s)
- Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xin Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexa Semon
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dalin Li
- The F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gregory Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Agnieszka Bar
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel Prieto
- Faculty of Pharmacy, Department of Microbiology II, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, I-20141 Milan, Italy
| | - Dermot P B McGovern
- The F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jesus Pla
- Faculty of Pharmacy, Department of Microbiology II, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
66
|
Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin Cell Dev Biol 2018; 89:78-90. [PMID: 29366628 DOI: 10.1016/j.semcdb.2018.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Abstract
Fungal infections remain a significant global health problem in humans. Fungi infect millions of people worldwide and cause from acute superficial infections to life-threatening systemic disease to chronic illnesses. Trying to decipher the complex innate and adaptive immune mechanisms that protect humans from pathogenic fungi is therefore a key research goal that may lead to immune-based therapeutic strategies and improved patient outcomes. In this review, we summarize how the cells and molecules of the innate immune system activate the adaptive immune system to elicit long-term immunity to fungi. We present current knowledge and exciting new advances in the context of organ-specific immunity, outlining the tissue-specific tropisms for the major pathogenic fungi of humans, the antifungal functions of tissue-resident myeloid cells, and the adaptive immune responses required to protect specific organs from fungal challenge.
Collapse
|
67
|
Maldonado S, Fitzgerald-Bocarsly P. Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection. Front Immunol 2017; 8:1705. [PMID: 29255464 PMCID: PMC5723005 DOI: 10.3389/fimmu.2017.01705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body’s most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, and Pneumocystis jirovecii. Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro, while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Collapse
Affiliation(s)
- Samuel Maldonado
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
68
|
Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41:479-511. [PMID: 28430946 DOI: 10.1093/femsre/fuw047] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area.
Collapse
Affiliation(s)
- Chloe E Huseyin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| | - Pauline D Scanlan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| |
Collapse
|
69
|
Shiokawa M, Yamasaki S, Saijo S. C-type lectin receptors in anti-fungal immunity. Curr Opin Microbiol 2017; 40:123-130. [PMID: 29169147 DOI: 10.1016/j.mib.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
Host immune systems are constantly engaged with fungal pathogens which are common in environments as well as in healthy human skin and mucosa. C-type lectin receptors (CLRs) are expressed in myeloid cells and play central roles in host defenses against fungal infections by coordinating innate and adaptive immune systems. Upon ligand binding, CLRs stimulate cellular responses by inducing the production of cytokines and reactive oxygen species via the Syk/CARD9 signaling pathway, leading to fungal elimination. Due to identification and characterization of the CLRs, the underlying mechanisms of the anti-fungal immunity are being unveiled in the present decade. In this review, we focus on the anti-fungal activities of CLRs and summarize of current knowledge of the related expression profiles, modes of ligand recognition, and signaling cascades.
Collapse
Affiliation(s)
- Moe Shiokawa
- Division of Host Defense, Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Division of Host Defense, Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| |
Collapse
|
70
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
71
|
Abstract
Fungi and mammals share a co-evolutionary history and are involved in a complex web of interactions. Studies focused on commensal bacteria suggest that pathological changes in the microbiota, historically known as dysbiosis, are at the root of many inflammatory diseases of non-infectious origin. However, the importance of dysbiosis in the fungal community - the mycobiota - was only recently acknowledged to have a pathological role, as novel findings have suggested that mycobiota disruption can have detrimental effects on host immunity. Fungal dysbiosis and homeostasis are dynamic processes that are probably more common than actual fungal infections, and therefore constantly shape the immune response. In this Review, we summarize specific mycobiota patterns that are associated with fungal dysbiosis, and discuss how mucosal immunity has evolved to distinguish fungal infections from dysbiosis and how it responds to these different conditions. We propose that gut microbiota dysbiosis is a collective feature of complex interactions between prokaryotic and eukaryotic microbial communities that can affect immunity and that can influence health and disease.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
72
|
Ostrop J, Lang R. Contact, Collaboration, and Conflict: Signal Integration of Syk-Coupled C-Type Lectin Receptors. THE JOURNAL OF IMMUNOLOGY 2017; 198:1403-1414. [PMID: 28167651 DOI: 10.4049/jimmunol.1601665] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Several spleen tyrosine kinase-coupled C-type lectin receptors (CLRs) have emerged as important pattern recognition receptors for infectious danger. Because encounter with microbial pathogens leads to the simultaneous ligation of several CLRs and TLRs, the signals emanating from different pattern recognition receptors have to be integrated to achieve appropriate biological responses. In this review, we briefly summarize current knowledge about ligand recognition and core signaling by Syk-coupled CLRs. We then address mechanisms of synergistic and antagonistic crosstalk between different CLRs and with TLRs. Emerging evidence suggests that signal integration occurs through 1) direct interaction between receptors, 2) regulation of expression levels and localization, and 3) collaborative or conflicting signaling interference. Accordingly, we aim to provide a conceptual framework for the complex and sometimes unexpected outcome of CLR ligation in bacterial and fungal infection.
Collapse
Affiliation(s)
- Jenny Ostrop
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; .,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; and
| | - Roland Lang
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
73
|
Abstract
Pathogenic fungi cause a wide range of syndromes in immune-competent and immune-compromised individuals, with life-threatening disease primarily seen in humans with HIV/AIDS and in patients receiving immunosuppressive therapies for cancer, autoimmunity, and end-organ failure. The discovery that specific primary immune deficiencies manifest with fungal infections and the development of animal models of mucosal and invasive mycoses have facilitated insight into fungus-specific recognition, signaling, effector pathways, and adaptive immune responses. Progress in deciphering the molecular and cellular basis of immunity against fungi is guiding preclinical studies into vaccine and immune reconstitution strategies for vulnerable patient groups. Furthermore, recent work has begun to address the role of endogenous fungal communities in human health and disease. In this review, we summarize a contemporary understanding of protective immunity against fungi.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in IBD, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
74
|
Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017; 97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Mycobacteria and Candida species include significant human pathogens that can cause localized or disseminated infections. Although these organisms may appear to have little in common, several shared pathways of immune recognition and response are important for both control and infection-related pathology. In this article, we compare and contrast the innate and adaptive components of the immune system that pertain to these infections in humans and animal models. We also explore a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-established model of Candida infection, Mycobacteria species colonize their human hosts in equilibrium with the immune response. Perturbations in the immune response permit the progression to pathologic disease at the expense of the host. Understanding the immune factors required to maintain commensalism may aid with the development of diagnostic and treatment strategies for both categories of pathogens.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anna R Huppler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Children's Hospital and Health System, Children's Research Institute, Milwaukee, WI, USA.
| |
Collapse
|
75
|
Bene K, Varga Z, Petrov VO, Boyko N, Rajnavolgyi E. Gut Microbiota Species Can Provoke both Inflammatory and Tolerogenic Immune Responses in Human Dendritic Cells Mediated by Retinoic Acid Receptor Alpha Ligation. Front Immunol 2017; 8:427. [PMID: 28458670 PMCID: PMC5394128 DOI: 10.3389/fimmu.2017.00427] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells are considered as the main coordinators of both mucosal and systemic immune responses, thus playing a determining role in shaping the outcome of effector cell responses. However, it is still uncovered how primary human monocyte-derived DC (moDC) populations drive the polarization of helper T (Th) cells in the presence of commensal bacteria harboring unique immunomodulatory properties. Furthermore, the individual members of the gut microbiota have the potential to modulate the outcome of immune responses and shape the immunogenicity of differentiating moDCs via the activation of retinoic acid receptor alpha (RARα). Here, we report that moDCs are able to mediate robust Th1 and Th17 responses upon stimulation by Escherichia coli Schaedler or Morganella morganii, while the probiotic Bacillus subtilis strain limits this effect. Moreover, physiological concentrations of all-trans retinoic acid (ATRA) are able to re-program the differentiation of moDCs resulting in altered gene expression profiles of the master transcription factors RARα and interferon regulatory factor 4, and concomitantly regulate the cell surface expression levels of CD1 proteins and also the mucosa-associated CD103 integrin to different directions. It was also demonstrated that the ATRA-conditioned moDCs exhibited enhanced pro-inflammatory cytokine secretion while reduced their co-stimulatory and antigen-presenting capacity thus reducing Th1 and presenting undetectable Th17 type responses against the tested microbiota strains. Importantly, these regulatory circuits could be prevented by the selective inhibition of RARα functionality. These results altogether demonstrate that selected commensal bacterial strains are able to drive strong effector immune responses by moDCs, while in the presence of ATRA, they support the development of both tolerogenic and inflammatory moDC in a RARα-dependent manner.
Collapse
Affiliation(s)
- Krisztian Bene
- Faculty of Medicine, Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Zsofia Varga
- Faculty of Medicine, Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Viktor O Petrov
- Faculty of Medicine, R&D Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Nadiya Boyko
- Faculty of Medicine, R&D Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Eva Rajnavolgyi
- Faculty of Medicine, Department of Immunology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|