51
|
Hamed M, Shetty A, Dzwiniel T, Buller M, Koskinen L, Suchowersky O. Episodic Ataxia Secondary to CEP290 Compound Heterozygous Mutations: A Case Report. Mov Disord Clin Pract 2019; 7:104-106. [PMID: 31970223 DOI: 10.1002/mdc3.12872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Moath Hamed
- Department of Medicine (Neurology), Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Aakash Shetty
- Department of Medicine (Neurology), Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Tara Dzwiniel
- Department of Medical Genetics, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Mark Buller
- Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | | | - Oksana Suchowersky
- Department of Medicine (Neurology), Faculty of Medicine and Dentistry University of Alberta Edmonton Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada.,Departments of Pediatrics and Psychiatry, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| |
Collapse
|
52
|
Schesny M, Joncourt F, Tarnutzer AA. Acetazolamide-Responsive Episodic Ataxia Linked to Novel Splice Site Variant in FGF14 Gene. THE CEREBELLUM 2019; 18:649-653. [PMID: 30607796 DOI: 10.1007/s12311-018-0997-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we describe the case of a patient with episodic dizziness and gait imbalance for 7 years and a negative family history. On clinical examination, interictally, the patient presented with gaze-evoked nystagmus and rebound nystagmus and slight dysarthria. MRI of the brain was normal and peripheral-vestibular function was bilaterally intact. Based on genetic testing (episodic ataxia panel), a heterozygote splice site variant in intron 1 of the FGF14 gene was identified. This report adds important new evidence to previous observations that pathogenic variants in the FGF14 gene may result in variable phenotypes, either in progressive spinocerebellar ataxia (type 27) or in episodic ataxia as in our case. Our patient responded well to acetazolamide (reduction in the frequency of attacks by about two thirds), supporting the hypothesis of a sodium channelopathy.
Collapse
Affiliation(s)
- M Schesny
- Department of Neurology, University Hospital Zurich, Frauenklinikstr. 26, 8091, Zurich, Switzerland
| | - F Joncourt
- Division of Human Genetics, Department of Pediatrics, University Hospital Berne, Berne, Switzerland
| | - Alexander A Tarnutzer
- Department of Neurology, University Hospital Zurich, Frauenklinikstr. 26, 8091, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
53
|
De Gusmao CM, Silveira-Moriyama L. Paroxysmal movement disorders - practical update on diagnosis and management. Expert Rev Neurother 2019; 19:807-822. [PMID: 31353980 DOI: 10.1080/14737175.2019.1648211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Paroxysmal dyskinesias and episodic ataxias are often caused by mutations in genes related to cell membrane and synaptic function. Despite the exponential increase in publications of genetically confirmed cases, management remains largely clinical based on non-systematic evidence. Areas covered: The authors provide a historical and clinical review of the main types of paroxysmal dyskinesias and episodic ataxias, with recommendations for diagnosis and management of patients suffering from these conditions. Expert opinion: After secondary paroxysmal dyskinesias, the most common paroxysmal movement disorders are likely to be PRRT2-associated paroxysmal kinesigenic dyskinesias, which respond well to small doses of carbamazepine, and episodic ataxia type 2, which often responds to acetazolamide. Familial paroxysmal non-kinesigenic dyskinesias are largely caused by mutations in PNKD and have poor response to therapy but improve with age. Exercise-induced dyskinesias are genetically heterogeneous, caused by disorders of glucose transport, mitochondrial function, dopaminergic pathways or neurodegenerative conditions amongst others. GNAO1 and ADCY5 mutations can also cause paroxysmal movement disorders, often in the context of ongoing motor symptoms. Although a therapeutic trial is justified for classic cases and in limited resource settings, genetic testing may help direct initial or rescue therapy. Deep brain stimulation may be an option for severe cases.
Collapse
Affiliation(s)
- Claudio M De Gusmao
- Department of Neurology, Harvard Medical School, Boston Children's Hospital , Boston , MA , USA.,Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil.,Education Unit, UCL Institute of Neurology, University College London , London , UK.,Department of Neurology, Hospital Bairral, Fundação Espírita Américo Bairral , Itapira , Brazil
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Recent advancements in next-generation sequencing (NGS) have enabled techniques such as whole exome sequencing (WES) and whole genome sequencing (WGS) to be used to study paroxysmal movement disorders (PMDs). This review summarizes how the recent genetic advances have altered our understanding of the pathophysiology and treatment of the PMDs. Recently described disease entities are also discussed. RECENT FINDINGS With the recognition of the phenotypic and genotypic heterogeneity that occurs amongst the PMDs, an increasing number of gene mutations are now implicated to cause the disorders. PMDs can also occur as part of a complex phenotype. The increasing complexity of PMDs challenges the way we view and classify them. The identification of new causative genes and their genotype-phenotype correlation will shed more light on the underlying pathophysiology and will facilitate development of genetic testing guidelines and identification of novel drug targets for PMDs.
Collapse
Affiliation(s)
- Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Che-Kang Lim
- Department of Clinical Translational Research, Singapore General Hospital, Bukit Merah, Singapore, Singapore
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
| |
Collapse
|
55
|
Gessani A, Cavallieri F, Budriesi C, Zucchi E, Malagoli M, Contardi S, Mascia MT, Giovannini G, Mandrioli J. Pearls & Oy-sters: Paroxysmal dysarthria-ataxia syndrome. Neurology 2019; 92:e2727-e2731. [DOI: 10.1212/wnl.0000000000007619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
56
|
Lee SA, Lee ES, Kim BG, Lee TK, Sung KB, Hwang K, Lee JD. Acute vestibular asymmetry disorder: a new disease entity in acute vestibular syndrome? Acta Otolaryngol 2019; 139:511-516. [PMID: 31035836 DOI: 10.1080/00016489.2019.1599142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Acute vestibular syndrome (AVS) is characterized by the rapid onset of vertigo, nausea, vomiting and gait unsteadiness, which lasts for days. AIMS/OBJECTIVES We report cases as acute vestibular asymmetry disorder (AVAD), with presentations that mimic vestibular neuritis (VN) but without central lesions. MATERIALS AND METHODS We retrospectively reviewed records of patients presenting with acute spontaneous vertigo lasting more than 24 h from January 2011 to June 2016. Among 341 patients, five showed different findings that did not indicate either VN or stroke. We analyzed the clinical features and vestibular assessments of these patients. RESULTS All five patients showed spontaneous nystagmus continuing for several days. However, head impulse tests (HITs) did not reveal a corrective saccade. Brain magnetic resonance imaging showed no abnormal lesions. The bithermal caloric test revealed directional preponderance without canal paresis. Finally, the slow harmonic test of the rotatory chair revealed unilateral high gain and phase within the normal range, but a significantly asymmetric response was observed. No patients showed recurrence during follow-up. CONCLUSIONS AND SIGNIFICANCE Our study suggests that a normal HIT in AVS is not always a dangerous sign indicating an acute stroke. From our observations, we propose that AVAD would be a new disease entity within AVS.
Collapse
Affiliation(s)
- Se A. Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Eek-Sung Lee
- Department of Neurology, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Bo Gyung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurology, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Ki-Bum Sung
- Department of Neurology, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Kyurin Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Jong Dae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
57
|
Zhang XJ, Xu ZY, Wu YC, Tan EK. Paroxysmal movement disorders: Recent advances and proposal of a classification system. Parkinsonism Relat Disord 2019; 59:131-139. [PMID: 30902529 DOI: 10.1016/j.parkreldis.2019.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
Abstract
The increasing recognition of the phenotypic and genotypic heterogeneity that exists amongst the paroxysmal movement disorders (PMDs) is challenging the way these disorders have been traditionally classified. The present review aims to summarize how recent genetic advances have influenced our understanding of the nosology, pathophysiology and treatment strategies of paroxysmal movement disorders. We propose classifying PMDs using a system that would combine both phenotype and genotype information to allow these disorders to be better categorized and studied. In the era of next generation sequencing, the use of a standardized algorithm and employment of selective genetic screening will lead to greater diagnostic certainty and targeted therapeutics for the patients.
Collapse
Affiliation(s)
- Xiao-Jin Zhang
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore; Department of Neurology, Shanghai General Hospital, China; Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Zhe-Yu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, China
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
58
|
Danielsson A, Anderlid BM, Stödberg T, Lagerstedt-Robinson K, Klackenberg Arrhenius E, Tedroff K. Benign paroxysmal torticollis of infancy does not lead to neurological sequelae. Dev Med Child Neurol 2018; 60:1251-1255. [PMID: 29956301 DOI: 10.1111/dmcn.13939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
AIM To elucidate the natural course of benign paroxysmal torticollis, the relationship of this disorder to migraine and other paroxysmal diseases, and to analyse candidate genes. METHOD This was a case series of children with benign paroxysmal torticollis of infancy (BPTI) diagnosed from 1998 to 2005, at Astrid Lindgren Children's Hospital, Stockholm, Sweden. A neurological examination and a formalized motor assessment were performed from 2005 to 2007. At a second follow-up, in 2014 to 2015, the children and their parents were interviewed and candidate genes analysed. RESULTS The mean age of the eight females and three males included in the second follow-up was 13 years 9 months (SD 2y 2mo). All motor assessments were normal. Five had developed migraine, abdominal migraine, and/or cyclic vomiting. Prophylactic treatment or migraine-specific medication during attacks were not needed. No paroxysmal tonic upgaze, benign paroxysmal vertigo, epilepsy, episodic ataxia, or paroxysmal dyskinesia was reported. Rare genetic variants in CACNA1A and ATP1A2 were found in two children. Five had a family history of migraine. INTERPRETATION BPTI is transient and does not lead to neurological sequelae. Most children afflicted experience either a mild migraine or no paroxysmal disorder at all in their adolescence. Genetic variants in candidate genes were few, indicating potential genetic heterogeneity. WHAT THIS PAPER ADDS After resolution of their benign paroxysmal torticollis of infancy (BPTI), children display no gross motor delay. Most adolescents who previously had BPTI have not developed migraine. No mutations in candidate genes, known to cause hemiplegic migraine, were found. Associated symptoms are often lacking during episodes of torticollis.
Collapse
Affiliation(s)
- Annika Danielsson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Stockholm South General Hospital, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Stödberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Kristina Tedroff
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
59
|
Pilotto F, Saxena S. Epidemiology of inherited cerebellar ataxias and challenges in clinical research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18785258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| |
Collapse
|
60
|
The expanding spectrum of paroxysmal movement disorders: update from clinical features to therapeutics. Curr Opin Neurol 2018; 31:491-497. [DOI: 10.1097/wco.0000000000000576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice. THE CEREBELLUM 2018; 17:628-653. [DOI: 10.1007/s12311-018-0937-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Groth CL, Berman BD. Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype. Tremor Other Hyperkinet Mov (N Y) 2018; 8:534. [PMID: 29416937 PMCID: PMC5801325 DOI: 10.7916/d80s0zjq] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Spinocerebellar ataxia (SCA) is an uncommon form of progressive cerebellar ataxia with multiple genetic causes and marked variability in phenotypic expression even across patients with identical genetic abnormalities. SCA27 is a recently identified SCA caused by mutations in the Fibroblast Growth Factor 14 gene, with a phenotypic expression that is only beginning to be fully appreciated. We report here a case of a 70-year-old male who presented with slowly worsening tremor and gait instability that began in his early adulthood along with additional features of parkinsonism on examination. Work-up revealed a novel pathogenic mutation in the Fibroblast Growth Factor 14 gene, and symptoms improved with amantadine and levodopa. We also provide a review of the literature in order to better characterize the phenotypic expression of this uncommon condition. Methods Case report and review of the literature. Results Review of the literature revealed a total of 32 previously reported clinical cases of SCA27. Including our case, we found that early-onset tremor (12.1 ± 10.5 years) was present in 95.8%, while gait ataxia tended to present later in life (23.7 ± 16.7 years) and was accompanied by limb ataxia, dysarthria, and nystagmus. Other features of SCA27 that may distinguish it from other SCAs include the potential for episodic ataxia, accompanying psychiatric symptoms, and cognitive impairment. Discussion Testing for SCA27 should be considered in individuals with ataxia who report tremor as an initial or early symptom, as well as those with additional findings of episodic ataxia, neuropsychiatric symptoms, or parkinsonism.
Collapse
Affiliation(s)
- Christopher L. Groth
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D. Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neurology Section, Denver VA Medical Center, Denver, CO, USA
| |
Collapse
|
63
|
Abstract
Immune-mediated cerebellar ataxia (CA) comprises a group of rare diseases that are still incompletely described, and are probably underdiagnosed. Both acute and progressive progressions are possible. Different syndromes have been identified, including CA associated with anti-GAD antibodies, the cerebellar type of Hashimoto encephalopathy, primary autoimmune CA, gluten ataxia, opsoclonus-myoclonus syndrome, and paraneoplastic cerebellar degenerations. Most of these syndromes are associated with autoantibodies targeting neuronal antigens. Additionally, autoimmune CA can be triggered by infections, especially in children, and in rare cases occur in the context of an autoimmune multisystem disease, such as systemic lupus erythematosus, sarcoidosis, or Behçet disease. A careful workup is needed to distinguish autoimmune CA from other causes. In adults, a paraneoplastic origin must be ruled out, especially in cases with subacute onset. Neurologic outcome in adults is frequently poor, and optimal therapeutic strategies remain ill defined. The outcome in children is in general good, but children with a poor recovery are on record. The precise pathophysiologic mechanisms even in the presence of detectable autoantibodies are still largely unknown. Further research is needed on both the clinical and mechanistic aspects of immune-mediated CA, and to determine optimal therapeutic strategies.
Collapse
Affiliation(s)
- Bastien Joubert
- French Reference Centre for Paraneoplastic Neurological Syndromes, Lyon Neurological Hospital, Lyon, France; Institut NeuroMyoGene, Université Claude Bernard Lyon 1, Lyon, France
| | - Kevin Rostásy
- Department of Pediatric Neurology, Witten/Herdecke University, Children's Hospital Datteln, Datteln, Germany
| | - Jérôme Honnorat
- French Reference Centre for Paraneoplastic Neurological Syndromes, Lyon Neurological Hospital, Lyon, France; Institut NeuroMyoGene, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
64
|
Abstract
The cerebellum plays an integral role in the control of limb and ocular movements, balance, and walking. Cerebellar disorders may be classified as sporadic or hereditary with clinical presentation varying with the extent and site of cerebellar damage and extracerebellar signs. Deficits in balance and walking reflect the cerebellum's proposed role in coordination, sensory integration, coordinate transformation, motor learning, and adaptation. Cerebellar dysfunction results in increased postural sway, hypermetric postural responses to perturbations and optokinetic stimuli, and postural responses that are poorly coordinated with volitional movement. Gait variability is characteristic and may arise from a combination of balance impairments, interlimb incoordination, and incoordination between postural activity and leg movement. Intrinsic problems with balance lead to a high prevalence of injurious falls. Evidence for pharmacologic management is limited, although aminopyridines reduce attacks in episodic ataxias and may have a role in improving gait ataxia in other conditions. Intensive exercises targeting balance and coordination lead to improvements in balance and walking but require ongoing training to maintain/maximize any effects. Noninvasive brain stimulation of the cerebellum may become a useful adjunct to therapy in the future. Walking aids, orthoses, specialized footwear and seating may be required for more severe cases of cerebellar ataxia.
Collapse
Affiliation(s)
- Jonathan F Marsden
- Department of Rehabilitation, School of Health Professions, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
65
|
Abstract
Episodic ataxia (EA) is a rare neurological condition characterized by recurrent spells of truncal ataxia and incoordination. Five genes (KCNA1, CACNA1A, CACNB4, SLC1A3, and UBR4) have been linked to EA. Despite extensive efforts to genetically diagnose EA, many patients remain still undiagnosed. Whole-exome sequencing was carried out in 39 Korean patients with EA to identify pathogenic mutations of the five known EA genes. We also evaluated 40 candidate genes that cause EA as a secondary phenotype or cerebellar ataxia. Eighteen patients (46%) revealed genetic information useful for establishing a molecular diagnosis of EA. In 11 patients, 16 pathogenic mutations were detected in three EA genes. These included nine mutations in CACNA1A, three in SLC1A3, and four in UBR4. Three patients had mutations in two genes, either CACNA1A and SLC1A3 or CACNA1A and UBR4, suggesting that SLC1A3 and UBR4 may act as genetic modifiers with synergic effects on the abnormal presynaptic activity caused by CACNA1A mutations. In seven patients with negative results for screening of EA genes, potential pathogenic mutations were identified in the candidate genes ATP1A2, SCN1A, TTBK2, TGM6, FGF14, and KCND3. This study demonstrates the genetic heterogeneity of Korean EA, and indicates that whole-exome sequencing may be useful for molecular genetic diagnosis of EA.
Collapse
|
66
|
Set KK, Ghosh D, Huq AHM, Luat AF. Episodic Ataxia Type 1 (K-channelopathy) Manifesting as Paroxysmal Nonkinesogenic Dyskinesia: Expanding the Phenotype. Mov Disord Clin Pract 2017; 4:784-786. [PMID: 30363417 DOI: 10.1002/mdc3.12518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/20/2017] [Accepted: 06/10/2017] [Indexed: 01/13/2023] Open
Abstract
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2330-1619/homepage/mdc312518-sup-v001.htm.
Collapse
Affiliation(s)
- Kallol K Set
- Department of Pediatrics Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA.,Department of Neurology Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA
| | - Debabrata Ghosh
- Department of Pediatric Neurology Nationwide Children's Hospital Columbus Ohio USA
| | - A H M Huq
- Department of Pediatrics Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA.,Department of Neurology Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA
| | - Aimee F Luat
- Department of Pediatrics Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA.,Department of Neurology Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
67
|
Pavone P, Praticò AD, Pavone V, Lubrano R, Falsaperla R, Rizzo R, Ruggieri M. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43:6. [PMID: 28257643 PMCID: PMC5347818 DOI: 10.1186/s13052-016-0325-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ataxia is a sign of different disorders involving any level of the nervous system and consisting of impaired coordination of movement and balance. It is mainly caused by dysfunction of the complex circuitry connecting the basal ganglia, cerebellum and cerebral cortex. A careful history, physical examination and some characteristic maneuvers are useful for the diagnosis of ataxia. Some of the causes of ataxia point toward a benign course, but some cases of ataxia can be severe and particularly frightening. METHODS Here, we describe the primary clinical ways of detecting ataxia, a sign not easily recognizable in children. We also report on the main disorders that cause ataxia in children. RESULTS The causal events are distinguished and reported according to the course of the disorder: acute, intermittent, chronic-non-progressive and chronic-progressive. CONCLUSIONS Molecular research in the field of ataxia in children is rapidly expanding; on the contrary no similar results have been attained in the field of the treatment since most of the congenital forms remain fully untreatable. Rapid recognition and clinical evaluation of ataxia in children remains of great relevance for therapeutic results and prognostic counseling.
Collapse
Affiliation(s)
- Piero Pavone
- University-Hospital “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliera Universitaria Vittorio Emanuele-Policlinico, University of Catania, Italy, Via Plebiscito 767, 95123 Catania, Italy
| | - Andrea D. Praticò
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito Pavone
- Department of Orthopaedics, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- University-Hospital “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|