51
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Abstract
Increased understanding of fructose metabolism, which begins with uptake via the intestine, is important because fructose now constitutes a physiologically significant portion of human diets and is associated with increased incidence of certain cancers and metabolic diseases. New insights in our knowledge of intestinal fructose absorption mediated by the facilitative glucose transporter GLUT5 in the apical membrane and by GLUT2 in the basolateral membrane are reviewed. We begin with studies related to structure as well as ligand binding, then revisit the controversial proposition that apical GLUT2 is the main mediator of intestinal fructose absorption. The review then describes how dietary fructose may be sensed by intestinal cells to affect the expression and activity of transporters and fructolytic enzymes, to interact with the transport of certain minerals and electrolytes, and to regulate portal and peripheral fructosemia and glycemia. Finally, it discusses the potential contributions of dietary fructose to gastrointestinal diseases and to the gut microbiome.
Collapse
Affiliation(s)
- Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07946, USA;
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA;
| | - Chirag R Patel
- Independent Drug Safety Consulting, Wilmington, Delaware 19803, USA;
| |
Collapse
|
53
|
Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW. Enterochromaffin 5-HT cells - A major target for GLP-1 and gut microbial metabolites. Mol Metab 2018; 11:70-83. [PMID: 29576437 PMCID: PMC6001397 DOI: 10.1016/j.molmet.2018.03.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
Objectives 5-HT storing enterochromaffin (EC) cells are believed to respond to nutrient and gut microbial components, and 5-HT receptor-expressing afferent vagal neurons have been described to be the major sensors of nutrients in the GI-tract. However, the molecular mechanism through which EC cells sense nutrients and gut microbiota is still unclear. Methods and results TPH1, the 5-HT generating enzyme, and chromogranin A, an acidic protein responsible for secretory granule storage of 5-HT, were highly enriched in FACS-purified EC cells from both small intestine and colon using a 5-HT antibody-based method. Surprisingly, EC cells from the small intestine did not express GPCR sensors for lipid and protein metabolites, such as FFAR1, GPR119, GPBAR1 (TGR5), CaSR, and GPR142, in contrast to the neighboring GLP-1 storing enteroendocrine cell. However, the GLP-1 receptor was particularly highly expressed and enriched in EC cells as judged both by qPCR and by immunohistochemistry using a receptor antibody. GLP-1 receptor agonists robustly stimulated 5-HT secretion from intestinal preparations using both HPLC and a specific amperometric method. Colonic EC cells expressed many different types of known and potential GPCR sensors of microbial metabolites including three receptors for SCFAs, i.e. FFAR2, OLF78, and OLF558 and receptors for aromatic acids, GPR35; secondary bile acids GPBAR1; and acyl-amides and lactate, GPR132. Conclusion Nutrient metabolites apparently do not stimulate EC cells of the small intestine directly but through a paracrine mechanism involving GLP-1 secreted from neighboring enteroendocrine cells. In contrast, colonic EC cells are able to sense a multitude of different metabolites generated by the gut microbiota as well as gut hormones, including GLP-1. Pure intestinal 5-HT cells are obtained through antibody-based FACS sorting. Small intestinal 5-HT cells do not express sensors for nutrient metabolites. Colonic 5-HT cells express multiple types of receptors for gut microbial metabolites. GLP-1 stimulates 5-HT release from ex vivo intestinal preparations. GLP-1 and 5-HT act in series and synergy to control GI-tract and metabolism.
Collapse
Affiliation(s)
- Mari L Lund
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Kristoffer L Egerod
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Maja S Engelstoft
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Elvar Theodorsson
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Bhavik A Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Research, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
54
|
Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne) 2018; 9:754. [PMID: 30662430 PMCID: PMC6328484 DOI: 10.3389/fendo.2018.00754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.
Collapse
Affiliation(s)
- Emily W. L. Sun
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alyce M. Martin
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard L. Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Damien J. Keating
| |
Collapse
|
55
|
Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ. Regional differences in nutrient-induced secretion of gut serotonin. Physiol Rep 2017; 5:5/6/e13199. [PMID: 28320893 PMCID: PMC5371566 DOI: 10.14814/phy2.13199] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
Enterochromaffin (EC) cells located in the gastrointestinal (GI) tract provide the vast majority of serotonin (5-HT) in the body and constitute half of all enteroendocrine cells. EC cells respond to an array of stimuli, including various ingested nutrients. Ensuing 5-HT release from these cells plays a diverse role in regulating gut motility as well as other important responses to nutrient ingestion such as glucose absorption and fluid balance. Recent data also highlight the role of peripheral 5-HT in various pathways related to metabolic control. Details related to the manner by which EC cells respond to ingested nutrients are scarce and as that the nutrient environment changes along the length of the gut, it is unknown whether the response of EC cells to nutrients is dependent on their GI location. The aim of the present study was to identify whether regional differences in nutrient sensing capability exist in mouse EC cells. We isolated mouse EC cells from duodenum and colon to demonstrate differential responses to sugars depending on location. Measurements of intracellular calcium concentration and 5-HT secretion demonstrated that colonic EC cells are more sensitive to glucose, while duodenal EC cells are more sensitive to fructose and sucrose. Short-chain fatty acids (SCFAs), which are predominantly synthesized by intestinal bacteria, have been previously associated with an increase in circulating 5-HT; however, we find that SCFAs do not acutely stimulate EC cell 5-HT release. Thus, we highlight that EC cell physiology is dictated by regional location within the GI tract, and identify differences in the regional responsiveness of EC cells to dietary sugars.
Collapse
Affiliation(s)
- Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Richard L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW We report recently published knowledge regarding gut chemosensory mechanisms focusing on nutrient-sensing G protein-coupled receptors (GPCRs) expressed on gut enteroendocrine cells (EECs), tuft cells, and in afferent nerves in the gastroduodenal mucosa and submucosa. RECENT FINDINGS Gene profiling of EECs and tuft cells have revealed expression of a variety of nutrient-sensing GPCRs. The density of EEC and tuft cells is altered by luminal environmental changes that may occur following bypass surgery or in the presence of mucosal inflammation. Some EECs and tuft cells are directly linked to sensory nerves in the subepithelial space. Vagal afferent neurons that innervate the intestinal villi express nutrient receptors, contributing to the regulation of duodenal anion secretion in response to luminal nutrients. Nutrients are also absorbed via specific epithelial transporters. SUMMARY Gastric and duodenal epithelial cells are continually exposed to submolar concentrations of nutrients that activate GPCRs expressed on EECs, tuft cells, and submucosal afferent nerves and are also absorbed through specific transporters, regulating epithelial cell proliferation, gastrointestinal physiological function, and metabolism. The chemical coding and distribution of EECs and tuft cells are keys to the development of GPCR-targeted therapies.
Collapse
|
57
|
Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology 2017; 158:1049-1063. [PMID: 28323941 DOI: 10.1210/en.2016-1839] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a multifunctional bioamine with important signaling roles in a range of physiological pathways. Almost all of the 5-HT in our bodies is synthesized in specialized enteroendocrine cells within the gastrointestinal (GI) mucosa called enterochromaffin (EC) cells. These cells provide all of our circulating 5-HT. We have long appreciated the important contributions of 5-HT within the gut, including its role in modulating GI motility. However, evidence of the physiological and clinical significance of gut-derived 5-HT outside of the gut has recently emerged, implicating 5-HT in regulation of glucose homeostasis, lipid metabolism, bone density, and diseases associated with metabolic syndrome, such as obesity and type 2 diabetes. Although a new picture has developed in the last decade regarding the various metabolic roles of peripheral serotonin, so too has our understanding of the physiology of EC cells. Given that they are scattered throughout the lining of the GI tract within the epithelial cell layer, these cells are typically difficult to study. Advances in isolation procedures now allow the study of pure EC-cell cultures and single cells, enabling studies of EC-cell physiology to occur. EC cells are sensory cells that are capable of integrating cues from ingested nutrients, the enteric nervous system, and the gut microbiome. Thus, levels of peripheral 5-HT can be modulated by a multitude of factors, resulting in both local and systemic effects for the regulation of a raft of physiological pathways related to metabolism and obesity.
Collapse
Affiliation(s)
- Alyce M Martin
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Richard L Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Lex Leong
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Geraint B Rogers
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Claire F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
- Discipline of Anatomy and Histology, Flinders University of South Australia, Adelaide 5042, Australia
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
| |
Collapse
|