51
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
52
|
Chassé M, Vasdev N. Synthesis and Preclinical Positron Emission Tomography Imaging of the p38 MAPK Inhibitor [ 11C]Talmapimod: Effects of Drug Efflux and Sex Differences. ACS Chem Neurosci 2023. [PMID: 37186961 DOI: 10.1021/acschemneuro.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Stress-activated kinases are targets of interest in neurodegenerative disease due to their involvement in inflammatory signaling and synaptic dysfunction. The p38α kinase has shown clinical and preclinical promise as a druggable target in several neurodegenerative conditions. We report the radiosynthesis and evaluation of the first positron emission tomography (PET) radiotracer for imaging MAPK p38α/β through radiolabeling of the inhibitor talmapimod (SCIO-469) with carbon-11. [11C]Talmapimod was reliably synthesized by carbon-11 methylation with non-decay corrected radiochemical yields of 3.1 ± 0.7%, molar activities of 38.9 ± 13 GBq/μmol, and >95% radiochemical purity (n = 20). Preclinical PET imaging in rodents revealed a low baseline brain uptake and retention with standardized uptake values (SUV) of ∼0.2 over 90 min; however, pretreatment with the P-glycoprotein (P-gp) drug efflux transporter inhibitor elacridar enabled [11C]talmapimod to pass the blood-brain barrier (>1.0 SUV) with distinct sex differences in washout kinetics. Blocking studies with a structurally dissimilar p38α/β inhibitor, neflamapimod (VX-745), and displacement imaging studies with talmapimod were attempted in elacridar-pretreated rodents, but neither compound displaced radiotracer uptake in the brain of either sex. Ex vivo radiometabolite analysis revealed substantial differences in the composition of radioactive species present in blood plasma but not in brain homogenates at 40 min post radiotracer injection. Digital autoradiography in fresh-frozen rodent brain tissue confirmed that the radiotracer signal was largely non-displaceable in vitro, where self-blocking and blocking with neflamapimod marginally decreased the total signal by 12.9 ± 8.8% and 2.66 ± 2.1% in C57bl/6 healthy controls and 29.3 ± 2.7% and 26.7 ± 12% in Tg2576 rodent brains, respectively. An MDCK-MDR1 assay suggests that talmapimod is likely to suffer from drug efflux in humans as well as rodents. Future efforts should focus on radiolabeling p38 inhibitors from other structural classes to avoid P-gp efflux and non-displaceable binding.
Collapse
Affiliation(s)
- Melissa Chassé
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
| | - Neil Vasdev
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
53
|
Iemmolo M, Ghersi G, Bivona G. The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24098026. [PMID: 37175729 PMCID: PMC10179166 DOI: 10.3390/ijms24098026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroinflammation plays a fundamental role in the development and progression of neurodegenerative diseases. It could therefore be said that neuroinflammation in neurodegenerative pathologies is not a consequence but a cause of them and could represent a therapeutic target of neuronal degeneration. CX3CL1 and several proteases (ADAMs/MMPs) are strongly involved in the inflammatory pathways of these neurodegenerative pathologies with multiple effects. On the one hand, ADAMs have neuroprotective and anti-apoptotic effects; on the other hand, they target cytokines and chemokines, thus causing inflammatory processes and, consequently, neurodegeneration. CX3CL1 itself is a cytokine substrate for the ADAM, ADAM17, which cleaves and releases it in a soluble isoform (sCX3CL1). CX3CL1, as an adhesion molecule, on the one hand, plays an inhibiting role in the pro-inflammatory response in the central nervous system (CNS) and shows neuroprotective effects by binding its membrane receptor (CX3CR1) present into microglia cells and maintaining them in a quiescent state; on the other hand, the sCX3CL1 isoform seems to promote neurodegeneration. In this review, the dual roles of CX3CL1 and ADAMs/MMPs in different neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (MH), and multiple sclerosis (MS), are investigated.
Collapse
Affiliation(s)
- Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
54
|
Singh L, Kaur N, Bhatti R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Mol Biol Rep 2023; 50:5369-5378. [PMID: 37039995 DOI: 10.1007/s11033-023-08397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Biochanin-A is a naturally occurring plant phytoestrogen, which mimics specific the agonistic activity of estrogens. Biochanin-A is known to possess numerous activities, including neuroprotective, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, and antimicrobial activities, along with the anticancer activity. Neuroinflammation is thought to play a pivotal pathological role in neurodegenerative disease. Sustained neuroinflammatory processes lead to progressive neuronal damage in Parkinson's and Alzheimer's disease. Activation of PI3K/Akt cascade and inhibition of MAPK signaling cascade have been observed to be responsible for conferring protection against neuroinflammation in neurodegenerative diseases. An increased oxidative stress promotes neuronal apoptosis via potentiating the TLR-4/NF-κB and inhibiting PI3K/Akt signaling mediated increase in pro-apoptotic and decreases in antiapoptotic proteins. Various authors have explored biochanin-A's neuroprotective effect by using various cell lines and animal models. Biochanin-A has been reported to mediate its neuroprotective via reducing the level of oxidants, inflammatory mediators, MAPK, TLR-4, NF-κB, NADPH oxidase, AchE, COX-2 and iNOS. Whereas, it has been observed to increase the level of anti-oxidants, along with phosphorylation of PI3K and Akt proteins. The current review has been designed to provide insights into the neuroprotective effect of biochanin-A and possible signaling pathways leading to protection against neuroinflammation and apoptosis in the central nervous system. This review will be helpful in guiding future researchers to further explore biochanin A at a mechanistic level to obtain useful lead molecules.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Navneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
55
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
56
|
Zhong L, Qin Y, Liu M, Sun J, Tang H, Zeng Y, Zhang J, Wang W, Liang G, Zhao X. Magnoflorine improves cognitive deficits and pathology of Alzheimer's disease via inhibiting of JNK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154714. [PMID: 36812746 DOI: 10.1016/j.phymed.2023.154714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cognitive deficit is the main clinical feature of Alzheimer's disease (AD), and the massive death of neuronal cells is the leading cause of cognitive deficits. So, there is an urgent clinical need to discover effective drugs to protect brain neurons from damage in order to treat AD. Naturally-derived compounds have always been an important source of new drug discovery because of their diverse pharmacological activities, reliable efficacy and low toxicity. Magnoflorine is a quaternary aporphine alkaloid, which naturally exist in some commonly used herbal medicines, and has good anti-inflammatory and antioxidant effects. However, magnoflorine has not been reported in AD. HYPOTHESIS/PURPOSE To investigate the therapeutic effect and mechanism of magnoflorine on AD. METHODS Neuronal damage was detected by flow cytometry, immunofluorescence and western blotting. Oxidative stress was measured by detection of SOD and MDA, as well as JC-1 and reactive oxygen species (ROS) staining. The APP/PS1 mice were given drugs by intraperitoneal injection (I.P.) every day for one month, and then the new object recognition and Morris water maze were used to detect the cognitive ability of the mice. RESULTS We demonstrated that magnoflorine reduced Aβ-induced PC12 cell apoptosis and intracellular ROS generation. Further studies found that magnoflorine significantly improved cognitive deficits and AD-type pathology. Most interestingly, the efficacy of magnoflorine was better than that of the clinical control drug donepezil. Mechanistically, based on RNA-sequencing analysis, we found that magnoflorine significantly inhibited phosphorylated c-Jun N-terminal kinase (JNK) in AD models. This result was further validated using a JNK inhibitor. CONCLUSION Our results indicate that magnoflorine improves cognitive deficits and pathology of AD through inhibiting of JNK signaling pathway. Thus, magnoflorine may be a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Lili Zhong
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yuankai Qin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Mei Liu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jinfeng Sun
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Hao Tang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yuqing Zeng
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jing Zhang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China.
| | - Xia Zhao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China.
| |
Collapse
|
57
|
Lv JM, Zhang LM, Wang JX, Shao JJ, Guo XG, Wang LY, Kang LQ, Zheng WC, Xin Y, Song RX, Guo W, Zhang DX. Abdominal surgery plus sevoflurane exposure induces abnormal emotional changes and cognitive dysfunction in aged rats. Behav Brain Res 2023; 442:114328. [PMID: 36740076 DOI: 10.1016/j.bbr.2023.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cognitive impairment, which includes perioperative psychological distress and cognitive dysfunction, can be determined by preoperative and post-operative neuropsychological tests. Several mechanisms have been proposed regarding the two-way communication between the immune system and the brain after surgery. We aimed to understand the mechanisms underlying perioperative neurocognitive disorders (PND) in elderly rats using an experimental abdominal surgery model. METHODS 24-month-old SD rats were exposed to the abdominal surgery model (AEL) under 3% anesthesia. On day 15 and day 30 post-surgery, fractional anisotropy (FA) using diffusion kurtosis imaging (DKI) was measured. From day 25 to day 30 post-surgery, behavioral tests, including open field test (OFT), Morris water maze (MWM), novel object recognition (NOR), force swimming test (FST), and elevated plus maze (EPM), were performed. Then, the rats were euthanized to perform pathological analysis and western blot measurement. RESULTS The rats exposed to AEL surgical treatment demonstrated significantly decreased time crossing the platform in the MWM, decreased recognition index in the NOR, reduced time in the open arm in the EPM, increased immobility time in the FST, and increased number of crossings in the OFT. Aged rats, after AEL exposure, further demonstrated decreased FA in the mPFC, nucleus accumbens (NAc), and hippocampus, together with reduced MAP2 intensity, attenuation of GAD65, VGlut2, CHAT, and phosphorylated P38MAPK expression, and increased reactive astrocytes and microglia. CONCLUSIONS In this study, the aged rats exposed to abdominal surgery demonstrated both emotional changes and cognitive dysfunction, which may be associated with neuronal degeneration and reduced phosphorylated P38MAPK.
Collapse
Affiliation(s)
- Jin-Meng Lv
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Jie-Xia Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China.
| | - Jing-Jing Shao
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xin-Gui Guo
- Department of Medical Iconography, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China.
| | - Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Li-Qing Kang
- Department of Medical Iconography, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China.
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China.
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China.
| | - Wei Guo
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
58
|
Jin R, Ning X, Liu X, Zhao Y, Ye G. Porphyromonas gingivalis-induced periodontitis could contribute to cognitive impairment in Sprague–Dawley rats via the P38 MAPK signaling pathway. Front Cell Neurosci 2023; 17:1141339. [PMID: 37056710 PMCID: PMC10086325 DOI: 10.3389/fncel.2023.1141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundPeriodontitis is one of the most common oral diseases and has been shown to be a risk factor for systemic diseases. Our aim was to investigate the relationship between periodontitis and cognitive impairment and to explore the role of the P38 MAPK signaling pathway in this process.MethodsWe established a periodontitis model by ligating the first molars of SD rats with silk thread and injecting Porphyromonas gingivalis (P. gingivalis) or P. gingivalis plus the P38 MAPK inhibitor SB203580 at the same time for ten weeks. We assessed alveolar bone resorption and spatial learning and memory using microcomputed tomography and the Morris water maze test, respectively. We used transcriptome sequencing to explore the genetic differences between the groups. The gingival tissue, peripheral blood and hippocampal tissue were assessed for the cytokines TNF-α, IL-1β, IL-6, IL-8 and C reactive protein (CRP) with enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT–PCR). We observed the presence of P. gingivalis in the hippocampus of rats by paraffin-fluorescence in situ hybridization (FISH). We determined the activation of microglia by immunofluorescence. Finally, Western blot analysis was employed to determine the expression of amyloid precursor protein (APP), β-site APP-cleaving enzyme 1 (BACE1) and P38MAPK pathway activation.ResultsWe demonstrated that silk ligature-induced periodontitis plus injection of P. gingivalis into subgingival tissue could lead to memory and cognitive impairment. Transcriptome sequencing results suggested that there were neurodegenerative diseases in the P. gingivalis group, and the MWM test showed that periodontitis reduced the spatial learning and memory ability of mild cognitive impairment (MCI) model rats. We found high levels of inflammatory factors (TNF-α, IL-1β, IL-6, and IL-8) and CRP in the gingiva, peripheral blood and hippocampus, and the expression of APP and BACE1 was upregulated, as was the P38 MAPK pathway activation. Activated microglia and the presence of P. gingivalis were also found in the hippocampus. P38 MAPK inhibitors mitigated all of these changes.ConclusionOur findings strongly suggest that topical application of P. gingivalis increases the inflammatory burden in the peripheral and central nervous systems (CNS) and that neuroinflammation induced by activation of P38 MAPK leads to impaired learning and memory in SD rats. It can also modulate APP processing. Therefore, P38 MAPK may serve as a linking pathway between periodontitis and cognitive impairment.
Collapse
Affiliation(s)
- Ru Jin
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Ning
- The First People’s Hospital of Wanzhou, Chongqing, China
| | - Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Guo Ye
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Guo Ye,
| |
Collapse
|
59
|
Son S, Lee NR, Gee MS, Song CW, Lee SJ, Lee SK, Lee Y, Kim HJ, Lee JK, Inn KS, Kim NJ. Chemical Knockdown of Phosphorylated p38 Mitogen-Activated Protein Kinase (MAPK) as a Novel Approach for the Treatment of Alzheimer's Disease. ACS CENTRAL SCIENCE 2023; 9:417-426. [PMID: 36968534 PMCID: PMC10037464 DOI: 10.1021/acscentsci.2c01369] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 05/28/2023]
Abstract
Targeted protein degradation (TPD) provides unique advantages over gene knockdown in that it can induce selective degradation of disease-associated proteins attributed to pathological mutations or aberrant post-translational modifications (PTMs). Herein, we report a protein degrader, PRZ-18002, that selectively binds to an active form of p38 MAPK. PRZ-18002 induces degradation of phosphorylated p38 MAPK (p-p38) and a phosphomimetic mutant of p38 MAPK in a proteasome-dependent manner. Given that the activation of p38 MAPK plays pivotal roles in the pathophysiology of Alzheimer's disease (AD), selective degradation of p-p38 may provide an attractive therapeutic option for the treatment of AD. In the 5xFAD transgenic mice model of AD, intranasal treatment of PRZ-18002 reduces p-p38 levels and alleviates microglia activation and amyloid beta (Aβ) deposition, leading to subsequent improvement of spatial learning and memory. Collectively, our findings suggest that PRZ-18002 ameliorates AD pathophysiology via selective degradation of p-p38, highlighting a novel therapeutic TPD modality that targets a specific PTM to induce selective degradation of neurodegenerative disease-associated protein.
Collapse
Affiliation(s)
- Seung
Hwan Son
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Rae Lee
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Min Sung Gee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chae Won Song
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Soo Jin Lee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang-Kyung Lee
- Department
of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoonji Lee
- College
of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Jin Kim
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Jong Kil Lee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Kyung-Soo Inn
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Nam-Jung Kim
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| |
Collapse
|
60
|
Decandia D, Gelfo F, Landolfo E, Balsamo F, Petrosini L, Cutuli D. Dietary Protection against Cognitive Impairment, Neuroinflammation and Oxidative Stress in Alzheimer's Disease Animal Models of Lipopolysaccharide-Induced Inflammation. Int J Mol Sci 2023; 24:ijms24065921. [PMID: 36982996 PMCID: PMC10051444 DOI: 10.3390/ijms24065921] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
61
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
62
|
Ju IG, Lee S, Choi JG, Kim N, Huh E, Lee JK, Oh MS. Aerial part of Houttuynia cordata reverses memory impairment by regulating amyloid beta accumulation and neuroinflammation in Alzheimer's disease model. Phytother Res 2023. [PMID: 36814130 DOI: 10.1002/ptr.7781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by amyloid-β (Aβ) deposition, accompanied by neuroinflammation and memory dysfunction. Houttuyniae Herba (aerial parts of Houttuynia cordata, also known as fish mint; HH), an herbal medicine traditionally used to treat fever, urinary disorders, and pus, is revealed to protect neurons from Aβ toxicity and regulate cholinergic dysfunction in AD models. In this study, we aimed to investigate the effects of HH on excessive accumulation of Aβ followed by neuroinflammation, synaptic degeneration, and memory impairment. Two-month-old 5xFAD transgenic mice were administered HH at 100 mg/kg for 4 months. We observed that HH treatment ameliorated memory impairment and reduced Aβ deposits in the brains of the mice. HH directly inhibited Aβ aggregation in vitro using the Thioflavin T assay and indirectly suppressed the amyloidogenic pathway by increasing alpha-secretase expression in the mice brain. In addition, HH exerted antineuroinflammatory effects by reducing of glial activation and p38 phosphorylation. Moreover, HH treatment increased the expression of synaptophysin, a presynaptic marker protein. Overall, HH alleviates memory impairment in AD by facilitating nonamyloidogenic pathway and inhibiting neuroinflammation. Therefore, we suggest that HH can be a promising herbal drug for patients with AD requiring multifaceted improvement.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Gyu Choi
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, Seoul, Republic of Korea.,Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
63
|
Sakakibara Y, Yamashiro R, Chikamatsu S, Hirota Y, Tsubokawa Y, Nishijima R, Takei K, Sekiya M, Iijima KM. Drosophila Toll-9 is induced by aging and neurodegeneration to modulate stress signaling and its deficiency exacerbates tau-mediated neurodegeneration. iScience 2023; 26:105968. [PMID: 36718365 PMCID: PMC9883205 DOI: 10.1016/j.isci.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Drosophila Toll-9 is most closely related to mammalian Toll-like receptors; however, physiological functions of Toll-9 remain elusive. We examined the roles of Toll-9 in fly brains in aging and neurodegeneration. Toll-9 mRNA levels were increased in aged fly heads accompanied by activation of nuclear factor-kappa B (NF-kB) and stress-activated protein kinase (SAPK) signaling, and many of these changes were modulated by Toll-9 in glial cells. The loss of Toll-9 did not affect lifespan or brain integrity, whereas it exacerbated hydrogen peroxide-induced lethality. Toll-9 expression was also induced by nerve injury but did not affect acute stress response or glial engulfment activity, suggesting Toll-9 may modulate subsequent neurodegeneration. In a fly tauopathy model, Toll-9 deficiency enhanced neurodegeneration and disease-related tau phosphorylation with reduced SAPK activity, and blocking SAPK enhanced tau phosphorylation and neurodegeneration. In sum, Toll-9 is induced upon aging and nerve injury and affects neurodegeneration by modulating stress kinase signaling.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Yamashiro
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Reseach Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| | - Koichi M. Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| |
Collapse
|
64
|
Zhu XC, Zhu MZ, Lu J, Yao QY, Hu JW, Long WJ, Ruan SS, Dai WZ, Li R. MicroRNA-125a-3p Modulate Amyloid β-Protein through the MAPK Pathway in Alzheimer's Disease. Curr Alzheimer Res 2023; 20:471-480. [PMID: 37711111 DOI: 10.2174/1567205020666230913105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND MicroRNA (miR)-125a-3p is reported to play an important role in some central nervous system diseases, such as Alzheimer's disease (AD). However, a study has not been conducted on the mechanism of miR-125a-3p in the pathological process of AD. METHODS First, we assessed the expression of miR-125a-3p in AD cohort. Subsequently, we altered the expressions of miR-125a-3p to assess its role in cell viability, cell apoptosis, amyloid-β (Aβ) metabolism, and synaptic activity. Finally, we identified its potential mechanism underlying AD pathology. RESULTS This study unveiled the potential function of miR-125a-3p through modulating amyloid precursor protein processing. Additionally, miR-125a-3p influenced cell survival and activated synaptic expression through the modulation of Aβ metabolism in the mitogen-activated protein kinase (MAPK) pathway via fibroblast growth factor receptor 2. CONCLUSION Our study indicates that targeting miR-125a-3p may be an applicable therapy for AD in the future. However, more in vitro and in vivo studies with more samples are needed to confirm these results.
Collapse
Affiliation(s)
- Xi-Chen Zhu
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China
- Department of Neurology, the Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
- Department of Neurology, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Meng-Zhuo Zhu
- Department of Neurology, the Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Jing Lu
- Department of Neurology, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Qing-Yu Yao
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Jia-Wei Hu
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Wen-Jun Long
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Sha-Sha Ruan
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Wen-Zhuo Dai
- Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Rong Li
- Department of Neurology, the Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
- Department of Pharmacy, the Affiliated Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| |
Collapse
|
65
|
Seyed Hosseini Fin N, Georgevsky D, Sukkar MB, Golzan SM. RAGE and its ligand amyloid beta promote retinal ganglion cell loss following ischemia-reperfusion injury. Front Cell Neurosci 2023; 17:1156084. [PMID: 37124398 PMCID: PMC10130520 DOI: 10.3389/fncel.2023.1156084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glaucoma is a progressive neurodegenerative disease associated with age. Accumulation of amyloid-beta (Aß) proteins in the ganglion cell layer (GCL) and subsequent retinal ganglion cell (RGC) loss is an established pathological hallmark of the disease. The mechanism through which Aß provokes RGC loss remains unclear. The receptor for the advanced glycation end product (RAGE), and its ligand Aß, have been shown to mediate neuronal loss via internalizing Aß within the neurons. In this study, we investigated whether the RAGE-Aß axis plays a role in RGC loss in experimental glaucoma. Methods Retinal ischemia was induced by an acute elevation of intraocular pressure in RAGE-/- and wild-type (WT) control mice. In a subset of animals, oligomeric Aß was injected directly into the vitreous of both strains. RGC loss was assessed using histology and biochemical assays. Baseline and terminal positive scotopic threshold (pSTR) were also recorded. Results Retinal ischemia resulted in 1.9-fold higher RGC loss in WT mice compared to RAGE-/- mice (36 ± 3% p < 0.0001 vs. 19 ± 2%, p = 0.004). Intravitreal injection of oligomeric Aß resulted in 2.3-fold greater RGC loss in WT mice compared to RAGE-/- mice, 7-days post-injection (55 ± 4% p = 0.008 vs. 24 ± 2%, p = 0.02). We also found a significant decline in the positive scotopic threshold response (pSTR) amplitude of WT mice compared to RAGE-/- (36 ± 3% vs. 16 ± 6%). Discussion RAGE-/- mice are protected against RGC loss following retinal ischemia. Intravitreal injection of oligomeric Aß accelerated RGC loss in WT mice but not RAGE-/-. A co-localization of RAGE and Aß, suggests that RAGE-Aß binding may contribute to RGC loss.
Collapse
Affiliation(s)
- Nafiseh Seyed Hosseini Fin
- Vision Science Group, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Dana Georgevsky
- Vision Science Group, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Maria B. Sukkar
- Pharmacy Discipline, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - S. Mojtaba Golzan
- Vision Science Group, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: S. Mojtaba Golzan,
| |
Collapse
|
66
|
Iliyasu MO, Musa SA, Oladele SB, Iliya AI. Amyloid-beta aggregation implicates multiple pathways in Alzheimer's disease: Understanding the mechanisms. Front Neurosci 2023; 17:1081938. [PMID: 37113145 PMCID: PMC10128090 DOI: 10.3389/fnins.2023.1081938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by tau pathology and accumulations of neurofibrillary tangles (NFTs) along with amyloid-beta (Aβ). It has been associated with neuronal damage, synaptic dysfunction, and cognitive deficits. The current review explained the molecular mechanisms behind the implications of Aβ aggregation in AD via multiple events. Beta (β) and gamma (γ) secretases hydrolyzed amyloid precursor protein (APP) to produce Aβ, which then clumps together to form Aβ fibrils. The fibrils increase oxidative stress, inflammatory cascade, and caspase activation to cause hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), which ultimately lead to neuronal damage. Acetylcholine (Ach) degradation is accelerated by upstream regulation of the acetylcholinesterase (AChE) enzyme, which leads to a deficiency in neurotransmitters and cognitive impairment. There are presently no efficient or disease-modifying medications for AD. It is necessary to advance AD research to suggest novel compounds for treatment and prevention. Prospectively, it might be reasonable to conduct clinical trials with unclean medicines that have a range of effects, including anti-amyloid and anti-tau, neurotransmitter modulation, anti-neuroinflammatory, neuroprotective, and cognitive enhancement.
Collapse
Affiliation(s)
- Musa O. Iliyasu
- Department of Anatomy, Kogi State University, Anyigba, Nigeria
- *Correspondence: Musa O. Iliyasu, ;
| | - Sunday A. Musa
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday B. Oladele
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
67
|
Hu W, Liu J, Hu Y, Xu Q, Deng T, Wei M, Lu L, Mi J, Bergquist J, Xu F, Tian G. Transcriptome-wide association study reveals cholesterol metabolism gene Lpl is a key regulator of cognitive dysfunction. Front Mol Neurosci 2022; 15:1044022. [PMID: 36590920 PMCID: PMC9798092 DOI: 10.3389/fnmol.2022.1044022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cholesterol metabolism in the brain plays a crucial role in normal physiological function, and its aberrations are associated with cognitive dysfunction. The present study aimed to determine which cholesterol-related genes play a vital role in cognitive dysfunction and to dissect its underlying molecular mechanisms using a systems genetics approach in the BXD mice family. We first systematically analyzed the association of expression of 280 hippocampal genes related to cholesterol metabolism with cognition-related traits and identified lipoprotein lipase (Lpl) as a critical regulator. This was further confirmed by phenome-wide association studies that indicate Lpl associated with hippocampus volume residuals and anxiety-related traits. By performing expression quantitative trait locus mapping, we demonstrate that Lpl is strongly cis-regulated in the BXD hippocampus. We also identified ∼3,300 genes significantly (p < 0.05) correlated with the Lpl expression. Those genes are mainly involved in the regulation of neuron-related traits through the MAPK signaling pathway, axon guidance, synaptic vesicle cycle, and NF-kappa B signaling pathway. Furthermore, a protein-protein interaction network analysis identified several direct interactors of Lpl, including Rab3a, Akt1, Igf1, Crp, and Lrp1, which indicates that Lpl involves in the regulation of cognitive dysfunction through Rab3a-mediated synaptic vesicle cycle and Akt1/Igf1/Crp/Lrp1-mediated MAPK signaling pathway. Our findings demonstrate the importance of the Lpl, among the cholesterol-related genes, in regulating cognitive dysfunction and highlighting the potential signaling pathways, which may serve as novel therapeutic targets for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Wei Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, China
| | - Yaorui Hu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Qingling Xu
- Department of Ultrasound, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Tingzhi Deng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden,*Correspondence: Jonas Bergquist,
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,Fuyi Xu,
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,Geng Tian,
| |
Collapse
|
68
|
Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022; 6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Indexed: 01/28/2023]
Abstract
In several mammalian species, including humans, complex stimulation patterns such as cognitive and physical exercise lead to improvements in organ function, organism health and performance, as well as possibly longer lifespans. A framework is introduced here in which activity-dependent transcriptional programs, induced by these environmental stimuli, move somatic cells such as neurons and muscle cells toward a state that resembles younger cells to allow remodeling and adaptation of the organism. This cellular adaptation program targets several process classes that are heavily implicated in aging, such as mitochondrial metabolism, cell-cell communication, and epigenetic information processing, and leads to functional improvements in these areas. The activity-dependent gene program (ADGP) can be seen as a natural, endogenous cellular reprogramming mechanism that provides deep insight into the principles of inducible improvements in cell and organism function and can guide the development of therapeutic approaches for longevity. Here, these ADGPs are analyzed, exemplary critical molecular nexus points such as cAMP response element-binding protein, myocyte enhancer factor 2, serum response factor, and c-Fos are identified, and it is explored how one may leverage them to prevent, attenuate, and reverse human aging-related decline of body function.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
69
|
Fu P, Zhao Y, Dong C, Cai Z, Li R, Yung KKL. An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world PM 2.5 exposure. J Environ Sci (China) 2022; 122:25-40. [PMID: 35717088 DOI: 10.1016/j.jes.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is associated with increased risks of Alzheimer's disease (AD), yet the toxicological mechanisms of PM2.5 promoting AD remain unclear. In this study, wild-type and APP/PS1 transgenic mice (AD mice) were exposed to either filtered air (FA) or PM2.5 for eight weeks with a real-world exposure system in Taiyuan, China (mean PM2.5 concentration in the cage was 61 µg/m3). We found that PM2.5 exposure could remarkably aggravate AD mice's ethological and brain ultrastructural damage, along with the elevation of the pro-inflammatory cytokines (IL-6 and TNF-α), Aβ-42 and AChE levels and the decline of ChAT levels in the brains. Based on high-throughput sequencing results, some differentially expressed (DE) mRNAs and DE miRNAs in the brains of AD mice after PM2.5 exposure were screened. Using RT-qPCR, seven DE miRNAs (mmu-miR-193b-5p, 122b-5p, 466h-3p, 10b-5p, 1895, 384-5p, and 6412) and six genes (Pcdhgb8, Unc13b, Robo3, Prph, Pter, and Tbata) were evidenced the and verified. Two miRNA-target gene pairs (miR-125b-Pcdhgb8 pair and miR-466h-3p-IL-17Rα/TGF-βR2/Aβ-42/AChE pairs) were demonstrated that they were more related to PM2.5-induced brain injury. Results of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways predicted that synaptic and postsynaptic regulation, axon guidance, Wnt, MAPK, and mTOR pathways might be the possible regulatory mechanisms associated with pathological response. These revealed that PM2.5-elevated pro-inflammatory cytokine levels and PM2.5-altered neurotransmitter levels in AD mice could be the important causes of brain damage and proposed the promising miRNA and mRNA biomarkers and potential miRNA-mRNA interaction networks of PM2.5-promoted AD.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
70
|
Li Y, Lai W, Zheng C, Babu JR, Xue C, Ai Q, Huggins KW. Neuroprotective Effect of Stearidonic Acid on Amyloid β-Induced Neurotoxicity in Rat Hippocampal Cells. Antioxidants (Basel) 2022; 11:2357. [PMID: 36552565 PMCID: PMC9774633 DOI: 10.3390/antiox11122357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dietary intake of omega-3 fatty acids found in fish has been reported to reduce the risk of Alzheimer's Disease (AD). Stearidonic acid (SDA), a plant-based omega-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids. However, its role in neuronal degeneration is unknown. This study was designed to evaluate effects of SDA on Amyloid-β(A-β)-induced neurotoxicity in rat hippocampal cells. Results showed that SDA effectively converted to eicosapentaenoic acid (EPA) in hippocampal cells. Aβ-induced apoptosis in H19-7 cells was protected by SDA pretreatment as evidenced by its regulation on the expression of relevant pro- and anti-apoptotic genes, as well as the inhibition on caspase activation. SDA also protected H19-7 cells from Aβ-induced oxidative stress by regulating the expression of relevant pro- and anti-oxidative genes, as well as the improvement in activity of catalase. As for Aβ/LPS-induced neuronal inflammation, SDA pretreatment reduced the release of IL-1β and TNFα. Further, we found that the anti-Aβ effect of SDA involves its inhibition on the expression of amyloid precursor protein and the regulation on MAPK signaling. These results demonstrated that SDAs have neuroprotective effect in Aβ-induced H19-7 hippocampal cells. This beneficial effect of SDA was attributed to its antiapoptotic, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Chen Zheng
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
71
|
Ferrer-Acosta Y, Rodriguez-Massó S, Pérez D, Eterovic VA, Ferchmin PA, Martins AH. Memantine has a nicotinic neuroprotective pathway in acute hippocampal slices after an NMDA insult. Toxicol In Vitro 2022; 84:105453. [PMID: 35944748 PMCID: PMC10026604 DOI: 10.1016/j.tiv.2022.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Memantine is a non-competitive antagonist with a moderate affinity to the N-methyl-d-Aspartate (NMDA) receptor. The present study assessed memantine's neuroprotective activity using electrophysiology of ex-vivo hippocampal slices. Interestingly, a nicotinic component was necessary for memantine's neuroprotection (NP). Memantine demonstrated a bell-shaped dose-response curve of NP against NMDA. Memantine was neuroprotective at concentrations below 3 μM, but the NP declined at higher concentrations (>3 μM) when memantine inhibits the NMDA receptor. Additional evidence that memantine NP is mediated by an alternate mechanism independent of the inhibition of the NMDA receptor is supported by its ability to protect neurons when applied before or after the NMDA insult and in the presence of D(-)-2-Amino-5-phosphonopentanoic acid (APV), the standard NMDA receptor inhibitor. We found several similarities between the memantine NP mechanism and the neuroprotective nicotinic drug, the 4R cembranoid. Memantine's NP requires the release of acetylcholine, the activation of α4β2, and is independent of MEK/MAPK signaling. Both 4R and memantine require the activation of PI3K/AKT for NP against NMDA-mediated excitotoxicity, although at different concentrations. In conclusion, our studies show memantine is neuroprotective through a nicotinic pathway, similar to the nicotinic drug 4R. This information leads to a better understanding of memantine's mechanisms of action and explains its dose-dependent effectiveness in Alzheimer's and other neurological disorders.
Collapse
Affiliation(s)
- Yancy Ferrer-Acosta
- Department of Neuroscience, Universidad Central del Caribe, Laurel Avenue 2U6, Lomas Verdes, Bayamón 00956, Puerto Rico.
| | - Sergio Rodriguez-Massó
- Department of Pharmacology and Toxicology, University of Puerto Rico, Medical Sciences Campus, Los Paseos Avenue, Guillermo Arbona Building, San Juan 00935, Puerto Rico.
| | - Dinely Pérez
- Department of Biochemistry, Universidad Central del Caribe Laurel Avenue, #100, Santa Juanita, Bayamón 00956, Puerto Rico
| | - Vesna A Eterovic
- Neuroprotection for Life, 480 E Village Dr., Carmel, IN 46032, USA
| | - P A Ferchmin
- Neuroprotection for Life, 480 E Village Dr., Carmel, IN 46032, USA
| | - Antonio Henrique Martins
- Department of Pharmacology and Toxicology, University of Puerto Rico, Medical Sciences Campus, Los Paseos Avenue, Guillermo Arbona Building, San Juan 00935, Puerto Rico.
| |
Collapse
|
72
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
73
|
Wang X, Tian Y, Li C, Chen M. Exploring the key ferroptosis-related gene in the peripheral blood of patients with Alzheimer’s disease and its clinical significance. Front Aging Neurosci 2022; 14:970796. [PMID: 36118694 PMCID: PMC9475071 DOI: 10.3389/fnagi.2022.970796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Alzheimer’s disease (AD) is the most common type of dementia, and there is growing evidence suggesting that ferroptosis is involved in its pathogenesis. In this study, we aimed to investigate the key ferroptosis-related genes in AD and identify a novel ferroptosis-related gene diagnosis model for patients with AD. Materials and methods We extracted the human blood and hippocampus gene expression data of five datasets (GSE63060, GSE63061, GSE97760, GSE48350, and GSE5281) in the Gene Expression Omnibus database as well as the ferroptosis-related genes from FerrDb. Differentially expressed ferroptosis-related genes were screened by random forest classifier, and were further used to construct a diagnostic model of AD using an artificial neural network. The patterns of immune infiltration in the peripheral immune system of AD were also investigated using the CIBERSORT algorithm. Results We first screened and identified 12 ferroptosis-related genes (ATG3, BNIP3, DDIT3, FH, GABARAPL1, MAPK14, SOCS1, SP1, STAT3, TNFAIP3, UBC, and ULK) via a random forest classifier, which was differentially expressed between the AD and normal control groups. Based on the 12 hub genes, we successfully constructed a satisfactory diagnostic model for differentiating AD patients from normal controls using an artificial neural network and validated its diagnostic efficacy in several external datasets. Further, the key ferroptosis-related genes were found to be strongly correlated to immune cells infiltration in AD. Conclusion We successfully identified 12 ferroptosis-related genes and established a novel diagnostic model of significant predictive value for AD. These results may help understand the role of ferroptosis in AD pathogenesis and provide promising therapeutic strategies for patients with AD.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaotian Tian
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Min Chen,
| |
Collapse
|
74
|
Liu P, Zhao S, Qiao H, Li T, Mi W, Xu Z, Xue X. Does propofol definitely improve postoperative cognitive dysfunction?-a review of propofol-related cognitive impairment. Acta Biochim Biophys Sin (Shanghai) 2022; 54:875-881. [PMID: 35713318 PMCID: PMC9828335 DOI: 10.3724/abbs.2022067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common brain function-related complication after surgery. In addition to old age being an independent risk factor, anesthetics are also important predisposing factors. Among them, propofol is the most commonly used intravenous anesthetic in clinical practice. It has a rapid onset, short half-life, and high recovery quality. Many studies report that propofol can attenuate surgery-induced cognitive impairment, however, some other studies reveal that propofol also induces cognitive dysfunction. Therefore, this review summarizes the effects of propofol on the cognition, and discusses possible related mechanisms, which aims to provide some evidence for the follow-up studies.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China
| | - Sheng Zhao
- Department of CardiologyFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100037China
| | - Hui Qiao
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Tianzuo Li
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Weidong Mi
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Zhipeng Xu
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Xinying Xue
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| |
Collapse
|
75
|
Olajide OA, Iwuanyanwu VU, Banjo OW, Kato A, Penkova YB, Fleet GWJ, Nash RJ. Iminosugar Amino Acid idoBR1 Reduces Inflammatory Responses in Microglia. Molecules 2022; 27:3342. [PMID: 35630818 PMCID: PMC9143674 DOI: 10.3390/molecules27103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background. Inflammation is reported to be a key factor in neurodegeneration. The microglia are immune cells present in the central nervous system; their activation results in the release of inflammatory cytokines and is thought to be related to aging and neurodegenerative disorders, such as Alzheimer's disease. (2) Methods. A mouse BV-2 microglia cell line was activated using LPS and the anti-inflammatory cucumber-derived iminosugar amino acid idoBR1, (2R,3R,4R,5S)-3,4,5-trihydroxypiperidine-2-carboxylic acid, was used alongside dexamethasone as the control to determine whether it could reduce the inflammatory responses. (3) Results. A dose-dependent reduction in the LPS-induced production of the proinflammatory factors TNFα, IL-6, and nitric oxide and the transcription factor NF-κB was found. (4) Conclusions. Further investigations of the anti-inflammatory effects of idoBR1 in other models of neurodegenerative diseases are warranted.
Collapse
Affiliation(s)
- Olumayokun A. Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (O.A.O.); (V.U.I.); (O.W.B.)
| | - Victoria U. Iwuanyanwu
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (O.A.O.); (V.U.I.); (O.W.B.)
| | - Owolabi W. Banjo
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (O.A.O.); (V.U.I.); (O.W.B.)
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yana B. Penkova
- Phytoquest Limited, Plas Gogerddan, Aberystwyth SY23 3EB, UK;
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| | - Robert J. Nash
- Phytoquest Limited, Plas Gogerddan, Aberystwyth SY23 3EB, UK;
| |
Collapse
|
76
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
77
|
Ma M, Liao Y, Huang X, Zou C, Chen L, Liang L, Meng Y, Wu Y, Zou D. Identification of Alzheimer’s Disease Molecular Subtypes Based on Parallel Large-Scale Sequencing. Front Aging Neurosci 2022; 14:770136. [PMID: 35592696 PMCID: PMC9112923 DOI: 10.3389/fnagi.2022.770136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/08/2022] [Indexed: 12/17/2022] Open
Abstract
The incidence of Alzheimer’s disease (AD) is constantly increasing as the older population grows, and no effective treatment is currently available. In this study, we focused on the identification of AD molecular subtypes to facilitate the development of effective drugs. AD sequencing data collected from the Gene Expression Omnibus (GEO) database were subjected to cluster sample analysis. Each sample module was then identified as a specific AD molecular subtype, and the biological processes and pathways were verified. The main long non-coding RNAs and transcription factors regulating each “typing pathway” and their potential mechanisms were determined using the RNAInter and TRRUST databases. Based on the marker genes of each “typing module,” a classifier was developed for molecular typing of AD. According to the pathways involved, five sample clustering modules were identified (mitogen-activated protein kinase, synaptic, autophagy, forkhead box class O, and cell senescence), which may be regulated through multiple pathways. The classifier showed good classification performance, which may be useful for developing novel AD drugs and predicting their indications.
Collapse
Affiliation(s)
- Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuhan Liao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohua Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youshi Meng
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Yuan Wu,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Donghua Zou,
| |
Collapse
|
78
|
Zhang T, Wei W, Chang S, Liu N, Li H. Integrated Network Pharmacology and Comprehensive Bioinformatics Identifying the Mechanisms and Molecular Targets of Yizhiqingxin Formula for Treatment of Comorbidity With Alzheimer’s Disease and Depression. Front Pharmacol 2022; 13:853375. [PMID: 35548356 PMCID: PMC9081443 DOI: 10.3389/fphar.2022.853375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Yizhiqinxin formula (YZQX) has been used to treat Alzheimer’s disease (AD) or major depression disorder (MDD). However, its specific underlying mechanisms and therapeutic targets remain unclear.Methods: The ingredients and putative targets of YZQX were screened using the TCMSP and Drugbank databases. Next, the GEO database was used to retrieve relevant differentially expressed genes (DEGs) in AD or MDD and normal tissues. The PPI network was established, merged, and further screened to identify the main ingredients and core targets of YZQX against AD and MDD comorbidities. We performed enrichment analysis of core targets to identify biological processes and pathways. Finally, AutoDock software was used to validate the binding affinity between the crucial targets of direct action and their corresponding ingredients.Results: A total of 43 ingredients were identified from YZQX, of which 43 were screened to yield 504 targets. By establishing the PPI network, 92 targets were regarded as targets of YZQX against AD and MDD comorbidities in the core network. Promising targets (HSP90AA1, ESR1, AKT1, VCAM1, EGFR, CDK1, MAPK1, CDK2, MYC, HSPB1, and HSPA5) and signaling pathways (PI3K-Akt signaling pathway, ubiquitin-mediated proteolysis, MAPK signaling pathway, etc.) were filtered and refined to elucidate the underlying mechanism of YZQX against AD and MDD comorbidities. Molecular docking confirmed the ingredients of YZQX (quercetin and kaempferol) could bind well to multiple crucial targets.Conclusion: The ingredients of YZQX, such as quercetin and kaempferol, might treat AD and MDD comorbidities by acting on multiple targets and pathways.
Collapse
Affiliation(s)
- Tingting Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Surui Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Nanyang Liu, ; Hao Li,
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Nanyang Liu, ; Hao Li,
| |
Collapse
|
79
|
Role of Butylphthalide in Immunity and Inflammation: Butylphthalide May Be a Potential Therapy for Anti-Inflammation and Immunoregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7232457. [PMID: 35422893 PMCID: PMC9005281 DOI: 10.1155/2022/7232457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Inflammation and immunity play an essential role in disease pathogenesis. 3-N-Butylphthalide (NBP), a group of compounds extracted from seeds of Apium graveolens (Chinese celery), has been demonstrated as an efficient and effective therapy for ischemic stroke. The amount of research on NBP protective effect is increasing at pace, such as microcircular reconstruction, alleviating inflammation, ameliorating brain edema and blood-brain barrier (BBB) damage, mitochondrial function protection, antiplatelet aggregation, antithrombosis, decreasing oxidative damage, and reducing neural cell apoptosis. There has been increasing research emphasizing the association between NBP and immunity and inflammation in the past few years. Hence, it is aimed at reviewing the related literature and summarizing the underlying anti-inflammatory and immunoregulatory function of NBP in various disorders.
Collapse
|
80
|
Attaluri S, Arora M, Madhu LN, Kodali M, Shuai B, Melissari L, Upadhya R, Rao X, Bates A, Mitra E, Ghahfarouki KR, Ravikumar MNV, Shetty AK. Oral Nano-Curcumin in a Model of Chronic Gulf War Illness Alleviates Brain Dysfunction with Modulation of Oxidative Stress, Mitochondrial Function, Neuroinflammation, Neurogenesis, and Gene Expression. Aging Dis 2022; 13:583-613. [PMID: 35371600 PMCID: PMC8947830 DOI: 10.14336/ad.2021.0829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022] Open
Abstract
Unrelenting cognitive and mood impairments concomitant with incessant oxidative stress and neuroinflammation are among the significant symptoms of chronic Gulf War Illness (GWI). Curcumin (CUR), an antiinflammatory compound, has shown promise to alleviate brain dysfunction in a model of GWI following intraperitoneal administrations at a high dose. However, low bioavailability after oral treatment has hampered its clinical translation. Therefore, this study investigated the efficacy of low-dose, intermittent, oral polymer nanoparticle encapsulated CUR (nCUR) for improving brain function in a rat model of chronic GWI. Intermittent administration of 10 or 20 mg/Kg nCUR for 8 weeks in the early phase of GWI improved brain function and reduced oxidative stress (OS) and neuroinflammation. We next examined the efficacy of 12-weeks of intermittent nCUR at 10 mg/Kg in GWI animals, with treatment commencing 8 months after exposure to GWI-related chemicals and stress, mimicking treatment for the persistent cognitive and mood dysfunction displayed by veterans with GWI. GWI rats receiving nCUR exhibited better cognitive and mood function associated with improved mitochondrial function and diminished neuroinflammation in the hippocampus. Improved mitochondrial function was evident from normalized expression of OS markers, antioxidants, and mitochondrial electron transport genes, and complex proteins. Lessened neuroinflammation was noticeable from reductions in astrocyte hypertrophy, NF-kB, activated microglia with NLRP3 inflammasomes, and multiple proinflammatory cytokines. Moreover, nCUR treated animals displayed enhanced neurogenesis with a normalized expression of synaptophysin puncta, and multiple genes linked to cognitive dysfunction. Thus, low-dose, intermittent, oral nCUR therapy has promise for improving brain function in veterans with GWI.
Collapse
Affiliation(s)
- Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Laila Melissari
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Adrian Bates
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Eeshika Mitra
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Keyhan R Ghahfarouki
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - M. N. V Ravikumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| |
Collapse
|
81
|
Alves SR, da Cruz e Silva C, Martins I, Henriques AG, da Cruz e Silva OA. A Bioinformatics Approach Toward Unravelling the Synaptic Molecular Crosstalk Between Alzheimer’s Disease and Diabetes. J Alzheimers Dis 2022; 86:1917-1933. [PMID: 35253743 PMCID: PMC9108712 DOI: 10.3233/jad-215059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Increasing evidence links impaired brain insulin signaling and insulin resistance to the development of Alzheimer’s disease (AD). Objective: This evidence prompted a search for molecular players common to AD and diabetes mellitus (DM). Methods: The work incorporated studies based on a primary care-based cohort (pcb-Cohort) and a bioinformatics analysis to identify central nodes, that are key players in AD and insulin signaling (IS) pathways. The interactome for each of these key proteins was retrieved and network maps were developed for AD and IS. Synaptic enrichment was performed to reveal synaptic common hubs. Results: Cohort analysis showed that individuals with DM exhibited a correlation with poor performance in the Mini-Mental State Examination (MMSE) cognitive test. Additionally, APOE ɛ2 allele carriers appear to potentially be relatively more protected against both DM and cognitive deficits. Ten clusters were identified in this network and 32 key synaptic proteins were common to AD and IS. Given the relevance of signaling pathways, another network was constructed focusing on protein kinases and protein phosphatases, and the top 6 kinase nodes (LRRK2, GSK3B, AKT1, EGFR, MAPK1, and FYN) were further analyzed. Conclusion: This allowed the elaboration of signaling cascades directly impacting AβPP and tau, whereby distinct signaling pathway play a major role and strengthen an AD-IS link at a molecular level.
Collapse
Affiliation(s)
- Steven R. Alves
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | | | - Ilka Martins
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
82
|
1-(7-Chloroquinolin-4-yl)-N-(4-Methoxybenzyl)-5-Methyl-1H-1,2, 3-Triazole-4- carboxamide Reduces Aβ Formation and Tau Phosphorylation in Cellular Models of Alzheimer's Disease. Neurochem Res 2022; 47:1110-1122. [PMID: 35165799 DOI: 10.1007/s11064-021-03514-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
1-(7-Chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4- carboxamide (QTC-4-MeOBnE) is a new multi-target directed ligand (MTDL) rationally designed to have affinity with β-secretase (BACE), Glycogen Synthase Kinase 3β (GSK3β) and acetylcholinesterase, which are considered promising targets on the development of disease-modifying therapies against Alzheimer's Disease (AD). Previously, QTC-4-MeOBnE treatment showed beneficial effects in preclinical AD-like models by influencing in vivo neurogenesis, oxidative and inflammatory pathways. However, the biological effect and mechanism of action exerted by QTC-4-MeOBnE in AD cellular models have not been elucidated yet. Hereby we investigate the acute effect of QTC-4-MeOBnE on neuronal cells overexpressing Amyloid Protein Precursor (APP) or human tau protein, the two main features of the AD pathophysiology. When compared to the control group, QTC-4-MeOBnE treatment prevented amyloid beta (Aβ) formation through the downregulation of APP and BACE levels in APPswe-expressing cells. Furthermore, in N2a cells overexpressing human tau, QTC-4-MeOBnE reduced the levels of phosphorylated forms of tau via the modulation of the GSK3β pathway. Taken together, our findings provide new insights into the mechanism of action exerted by QTC-4-MeOBnE in AD cellular models, and further support its potential as an interesting therapeutic strategy against AD.
Collapse
|
83
|
Kong C, Jia L, Jia J. γ-mangostin attenuates amyloid-β42-induced neuroinflammation and oxidative stress in microglia-like BV2 cells via the mitogen-activated protein kinases signaling pathway. Eur J Pharmacol 2022; 917:174744. [PMID: 34998794 DOI: 10.1016/j.ejphar.2022.174744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oxidative stress (OS) and neuroinflammation are related to the pathogenic mechanism of Alzheimer's disease (AD). γ-Mangostin, a xanthone derivative obtained from mangosteen pericarp, could prevent their detrimental effects in AD. OBJECTIVE This study focused on determining the role of γ-mangostin in protection against the amyloid-β (Aβ) 42 oligomers-induced OS and inflammation in microglial BV2 cells and investigating their precise mechanism of action. METHODS Lactate dehydrogenase release assay and cell counting kit-8 assay were used to estimate the drug impact in BV2 cells and functional effects of the conditioned medium (supernatant of Aβ42 oligomers-/γ-mangostin-treated BV2 cells) on neuron-like SH-SY5Y and N2a cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay were carried out for detecting inflammatory factor contents. In addition, nitric oxide (NO) assay, an intracellular reactive oxygen species (ROS) assay, and qRT-PCR were performed to measure OS. Western blotting was used to explore the influence of γ-mangostin on the mitogen-activated protein kinase (MAPK) pathway. RESULTS γ-Mangostin alleviated Aβ42 oligomer-induced inflammation by decreasing the levels of interleukin (IL) -6, IL-1β, and tumor necrosis factor-α, while attenuating OS through decreasing ROS/NO generation, and suppressing cyclo-oxygenase-2 and inducible NO synthase expressions. γ-Mangostin protected N2a and SH-SY5Ycells against the BV2 cell supernatant-induced toxicity following Aβ42 oligomer exposure. Furthermore, γ-mangostin inhibited c-Jun NH2-terminal kinase and p38 MAPK pathway activation. CONCLUSION This study demonstrated that γ-mangostin could attenuate OS and inflammation resulting from Aβ42 oligomers, which also protect neurons against toxic medium-induced injury, suggesting that it may exert a protective effect in AD.
Collapse
Affiliation(s)
- Chaojun Kong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China.
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, PR China.
| |
Collapse
|
84
|
Mansour HM, Fawzy HM, El-Khatib AS, Khattab MM. Repurposed anti-cancer epidermal growth factor receptor inhibitors: mechanisms of neuroprotective effects in Alzheimer's disease. Neural Regen Res 2022; 17:1913-1918. [PMID: 35142667 PMCID: PMC8848623 DOI: 10.4103/1673-5374.332132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Numerous molecular mechanisms are being examined in an attempt to discover disease-modifying drugs to slow down the underlying neurodegeneration in Alzheimer’s disease. Recent studies have shown the beneficial effects of epidermal growth factor receptor inhibitors on the enhancement of behavioral and pathological sequelae in Alzheimer’s disease. Despite the promising effects of epidermal growth factor receptor inhibitors in Alzheimer’s disease, there is no irrefutable neuroprotective evidence in well-established animal models using epidermal growth factor receptor inhibitors due to many un-explored downstream signaling pathways. This caused controversy about the potential involvement of epidermal growth factor receptor inhibitors in any prospective clinical trial. In this review, the mystery beyond the under-investigation of epidermal growth factor receptor in Alzheimer’s disease will be discussed. Furthermore, their molecular mechanisms in neurodegeneration will be explained. Also, we will shed light on SARS-COVID-19 induced neurological manifestations mediated by epidermal growth factor modulation. Finally, we will discuss future perspectives and under-examined epidermal growth factor receptor downstream signaling pathways that warrant more exploration. We conclude that epidermal growth factor receptor inhibitors are novel effective therapeutic approaches that require further research in attempts to be repositioned in the delay of Alzheimer’s disease progression.
Collapse
Affiliation(s)
- Heba M Mansour
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
85
|
Li Z, Dai A, Yang M, Chen S, Deng Z, Li L. p38MAPK Signaling Pathway in Osteoarthritis: Pathological and Therapeutic Aspects. J Inflamm Res 2022; 15:723-734. [PMID: 35140502 PMCID: PMC8820459 DOI: 10.2147/jir.s348491] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/16/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is an aging-related joint disease, pathologically featured with degenerated articular cartilage and deformation of subchondral bone. OA has become the fourth major cause of disability in the world, imposing a huge economic burden. At present, the pathogenesis and pathophysiology of OA are still unclear. Complex regulating networks containing different biochemical signaling pathways are involved in OA pathogenesis and progression. The p38MAPK signaling pathway is a member of the MAPK signaling pathway family, which participates in the induction of cellular senescence, the differentiation of chondrocytes, the synthesis of matrix metalloproteinase (MMPs) and the production of pro-inflammatory factors. In recent years, studies on the regulating role of p38MAPK signaling pathway and the application of its inhibitors have attracted growing attention, with an increasing number of in vivo and in vitro studies. One interesting finding is that the inhibition of p38MAPK could suppress chondrocyte inflammation and ameliorate OA, indicating its therapeutic role in OA treatment. Based on this, we reviewed the mechanisms of p38MAPK signaling pathway in the pathogenesis of OA, hoping to provide new ideas for future research and OA treatment.
Collapse
Affiliation(s)
- Zongchao Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Aonan Dai
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Ming Yang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518035, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email ; Liangjun Li, Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha City, 410018, People’s Republic of China, Tel +86 13875822004, Fax +86 731-85668156, Email
| | - Liangjun Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518035, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email ; Liangjun Li, Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha City, 410018, People’s Republic of China, Tel +86 13875822004, Fax +86 731-85668156, Email
| |
Collapse
|
86
|
Mehrbeheshti N, Esmaili Z, Ahmadi M, Moosavi M. A dose response effect of oral aluminum nanoparticle on novel object recognition memory, hippocampal caspase-3 and MAPKs signaling in mice. Behav Brain Res 2022; 417:113615. [PMID: 34606775 DOI: 10.1016/j.bbr.2021.113615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
The increasing use of aluminum nanoparticles (nano-Al) leads to increased human exposure and might affect human health. Considering the suggested connection between aluminum exposure and Alzheimer's disease (AD) pathogenesis, there is a concern about the effect of nano-Al on cognitive function and brain health. This study was aimed to assess the effect of a 5-day oral gavage of aluminum oxide nanoparticle (nano-Al) on memory and the phosphorylation levels of hippocampal p38, JNK (c-Jun N-terminal kinase), ERK (extracellular signal-regulated kinase) as well as cleaved caspase-3 in mice. Adult male NMRI mice were treated with nano-Al in doses 5 and 10 mg/kg/oral gavage for 5 days. The test session of novel object recognition (NOR) task was performed on day 5. Following the NOR test, the hippocampi were isolated for western blot analysis to determine the total and phosphorylated levels of p38, JNK, ERK as well as cleaved caspase-3 proteins. The results showed that nano-Al oral gavage in doses of 5 and 10 mg/kg impairs NOR memory in mice. Moreover, the memory impairing effect of nano-Al coincided with a dose dependent increase in phosphorylated p38 and cleaved caspase-3 in the hippocampus. It also increased the ratio of phosphorylated to total content of ERK in the hippocampus while JNK signaling was not affected by nano-Al. This study showed that nano-Al in doses as low as 5 and 10 mg/ kg ingested for 5 days impairs NOR memory and activates p38, ERK and cleaved caspase-3 in the hippocampus.
Collapse
Affiliation(s)
- Nahid Mehrbeheshti
- Shiraz Neuroscience Research Centre, Shiraz University of Medical sciences, Shiraz, Iran
| | - Zahra Esmaili
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical sciences, Shiraz, Iran
| | - Mojdeh Ahmadi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical sciences, Shiraz, Iran
| | - Maryam Moosavi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical sciences, Shiraz, Iran.
| |
Collapse
|
87
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
88
|
Li WY, Lee CY, Lee KM, Zhang G, Lyu A, Yue KKM. Advanced Glycation End-Product Precursor Methylglyoxal May Lead to Development of Alzheimer's Disease. Diabetes Metab Syndr Obes 2022; 15:3153-3166. [PMID: 36262805 PMCID: PMC9575592 DOI: 10.2147/dmso.s382927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is characterized by chronic hyperglycemia and diabetic complications. Exacerbated cortical neuronal degeneration was observed in Alzheimer's disease (AD) patients with DM. In fact, DM is now considered a risk factor of AD, as DM-induced activation of stress responses in the central nervous system (CNS) such as oxidative stress and neuroinflammation may lead to various neurodegenerative disorders. Methylglyoxal (MG) is one of the most reactive advanced glycation end-product (AGE) precursors. Abnormal accumulation of MG is observed in the serum of diabetic patients. As MG is reported to promote brain cells impairment in the CNS, and it is found that AGEs are abnormally increased in the brains of AD patients. Therefore, the effect of MG causing subsequent symptoms of AD was investigated. METHODS 5-week-old C57BL/6 mice were intraperitoneally injected with MG solution for 11 weeks. The Morris water maze (MWM) was used to examine the spatial learning ability and cognition of mice. After MG treatment, MTT assay, real-time PCR analyses, and Western blot were performed to assess the harvested astrocytes and hippocampi. RESULTS Significantly longer escape latency and reduced percentage time spent in the target quadrant were observed in the 9-week-MG-treated mice. We have found in both in vitro and in vivo models that MG induced astrogliosis, pro-inflammatory cytokines, AD-related markers, and ERK activation. Further, trend of normalization of the tested markers mRNA expressions were observed after ERK inhibition. CONCLUSION Our in vivo results suggested that MG could induce AD symptoms and in vitro results implied that ERK may regulate the promotion of inflammation and Aβ formation in MG-induced reactive astrocytes. Taken together, MG may participate in the dysfunction of brain cells resulting in possible diabetes-related neurodegeneration by promoting astrogliosis, Aβ production, and neuroinflammation through the ERK pathway. Our findings provide insight of targeting ERK as a therapeutic application for diabetes-induced AD.
Collapse
Affiliation(s)
- Wai Yin Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Cheuk Yan Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Kwan Ming Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Kevin Kin Man Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Correspondence: Kevin Kin Man Yue, 4/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, Tel +852 3411 2468, Email
| |
Collapse
|
89
|
Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Alagulakshmi S, Singaraj P, Pandian S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci 2021; 22:12691. [PMID: 34884496 PMCID: PMC8657749 DOI: 10.3390/ijms222312691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
- Department of Biotechnology, Vidhyaa Giri College of Arts and Science, Karaikudi 630 003, India
| | - Sekaran Balaji
- Independent Researcher, Madurai 625 020, India; (S.B.); (P.S.)
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | - Selvaraj Alagulakshmi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
90
|
Liang Y, Wang L. Inflamma-MicroRNAs in Alzheimer's Disease: From Disease Pathogenesis to Therapeutic Potentials. Front Cell Neurosci 2021; 15:785433. [PMID: 34776873 PMCID: PMC8581643 DOI: 10.3389/fncel.2021.785433] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of senile dementia. Although AD research has made important breakthroughs, the pathogenesis of this disease remains unclear, and specific AD diagnostic biomarkers and therapeutic strategies are still lacking. Recent studies have demonstrated that neuroinflammation is involved in AD pathogenesis and is closely related to other health effects. MicroRNAs (miRNAs) are a class of endogenous short sequence non-coding RNAs that indirectly inhibit translation or directly degrade messenger RNA (mRNA) by specifically binding to its 3′ untranslated region (UTR). Several broadly expressed miRNAs including miR-21, miR-146a, and miR-155, have now been shown to regulate microglia/astrocytes activation. Other miRNAs, including miR-126 and miR-132, show a progressive link to the neuroinflammatory signaling. Therefore, further studies on these inflamma-miRNAs may shed light on the pathological mechanisms of AD. The differential expression of inflamma-miRNAs (such as miR-29a, miR-125b, and miR-126-5p) in the peripheral circulation may respond to AD progression, similar to inflammation, and therefore may become potential diagnostic biomarkers for AD. Moreover, inflamma-miRNAs could also be promising therapeutic targets for AD treatment. This review provides insights into the role of inflamma-miRNAs in AD, as well as an overview of general inflamma-miRNA biology, their implications in pathophysiology, and their potential roles as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
91
|
Asif M, Kala C, Gilani SJ, Imam SS, Taleuzzaman M, Naaz F, Rahat I, Khan NA. Protective Effects Of Isothiocyanates Against Alzheimer's Disease. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211109121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The extensive search for a novel therapeutic agent against Alzheimer's Disease (AD) in medical and pharmaceutical research still continues. Despite a lot being explored about its therapeutics, there is still much more to learn in order to achieve promising therapeutic agents against ADAlzheimer's. Phytochemicals, especially secondary metabolites, are the major focus of the investigators for AD treatment.
Objective:
To describe major therapeutics targets of AD and the role of isothiocyanates (ITCs) in modulating these targets.
Methods:
Scientific databases, including Elsevier, Science Direct, Pub med, were explored. The explored literature was mainly journal publications on pathogenesis and targets of AD, and the effect of various ITCs in the modulation of these targets.
Results:
The major targets of AD include the Nrf-2/ARE signaling pathway, MAPKs pathway, GSK-3 signaling, and Ubiquitin-Protease system. ITCs, such as Sulforaphane, Allyl isothiocyanates, Moringin, 6-(methylsulfinyl) hexyl ITC, Phenethyl isothiocyanates, and Erucin, were reported to exert a protective effect against AD via modulating one of the several above mentioned targets.
Conclusion:
This article gives a detailed description of the therapeutic targets of AD and sheds light that phytochemicals, such as ITCs, can exert a protective effect against AD by targeting those pathways. However, properly designed research and clinical trials are required to include ITCs as a mainstream agent against AD.
Collapse
Affiliation(s)
- Mohammad Asif
- Faculty of Pharmacy, Lachoo Memorial College of Science and Technology, Sector-A, Shastri Nagar, Jodhpur, Rajasthan, India
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan 342802, India
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory year, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan 342802, India
| | - Farha Naaz
- Nanochemistry Laboratory, Department of Chemistry, Jamia Milia Islamia, New Delhi, 110025, India
| | - Iqra Rahat
- Glocal School of Pharmacy, Glocal University, Mirzapur pole, Saharanpur, U.P, 242121, India
| | - Najam Ali Khan
- School of Pharmaceutical Sciences, IFTM University, Delhi Road, NH-24, Lodhipur Rajput, Moradabad, U.P., 244102, India
| |
Collapse
|
92
|
Amyloid peptide exerts a rapid induction of Dicer1 protein in neuron via reducing phosphorylation. Neurochem Int 2021; 151:105210. [PMID: 34695450 DOI: 10.1016/j.neuint.2021.105210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022]
Abstract
A growing number of evidence suggests that altered microRNA network in the brain contributes to the risk of Alzheimer's disease(AD). Dicer1 is a type III riboendonuclease which cleaves pre-microRNA into functional microRNA. Reduction of Dicer1 or Dicer1 mutation has been involved in cancer, aging or age-related macular degeneration. Recently, we found a possible link between Dicer1 and AD. In particular, Dicer1 protein and Dicer1 mRNA is reduced in the hippocampus and the cortex of an animal model of AD and exposure to Aβ42 oligomer(AβO) longer than 6 h reduces the transcription of Dicer1 gene in neuron, via depletion of NF-E2-related factor-2. In this study, exposure to AβO at shorter time increased Dicer1 protein in neuron in a dose-dependent mode; but the mRNA level remained unaltered. Under this treatment regime,AβO reduced phosphorylation level of Dicer1 and of its binding partner, transactivation response element RNA-binding protein(TRBP). Addition of a JNK inhibitor,SP600125, or an ERK inhibitor,U0126, further increased Dicer1 protein compared to Aβo treatment alone, with simultaneaous reduction of phospho-Dicer1, but with different effects on phospho-TRBP. Finally, an inhibitor of calcineurin,FK506, further increased Dicer1 protein compared to Aβo treatment alone. Thus, phosphorylation of Dicer1 and TRBP was determined by mitogen activated protein kinases JNK,ERK, and protein phosphatase 2B(calcineurin) which together determined Dicer1 stability. In summary, reduced phosphorylation of Dicer1 accounted for the rapid induction of Dicer1 by AβO. This study highlights a novel way by which AβO regulates Dicer1.
Collapse
|
93
|
Li D, Cai C, Liao Y, Wu Q, Ke H, Guo P, Wang Q, Ding B, Fang J, Fang S. Systems pharmacology approach uncovers the therapeutic mechanism of medicarpin against scopolamine-induced memory loss. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153662. [PMID: 34333326 DOI: 10.1016/j.phymed.2021.153662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Medicarpin is a natural pterocarpan-type phytoalexin widely distributed in many traditional Chinese medicines, such as Astragali Radix. A previous study showed that Astragali Radix demonstrated promising protective effects in neurons. However, there is no reported study on the neuroprotective function and the underlying mechanism of Medicarpin. PURPOSE This study aimed to demonstrate the neuroprotective effect of Medicarpin on Alzheimer's disease (AD) and explore the therapeutic mechanisms. METHOD First, we carried out animal behavioral tests and biochemical analysis to assess the anti-AD potential of Medicarpin for ameliorating spatial learning and memory and modulating cholinergic metabolism in scopolamine-induced amnesic mice. Subsequently, network proximity prediction was used to measure the network distance between the Medicarpin target network and AD-related endophenotype module. We identified Medicarpin-regulated AD pathological processes and highlighted the key disease targets via network analysis. Finally, experimental approaches including Nissl staining and Western blotting were conducted to validate our network-based findings. RESULT In this study, we first observed that Medicarpin can ameliorate cognitive and memory dysfunction and significantly modulate cholinergic metabolism in scopolamine-induced amnesic mice. We then proposed an endophenotype network-based framework to comprehensively explore the AD therapeutic mechanisms of Medicarpin by integrating 25 AD-related endophenotype modules, gold-standard AD seed genes, an experimentally validated drug-target network of Medicarpin, and a global human protein-protein interactome. In silico prediction revealed that the effect of Medicarpin is highly relevant to neuronal apoptosis and synaptic plasticity, which was validated by experimental assays. Network analysis and Western blotting further identified two key targets, GSK-3β and MAPK14 (p38), in the AD-related protein regulatory network, which play key roles in the regulation of neuronal apoptosis and synaptic plasticity by Medicarpin. CONCLUSIONS This study presented a powerful endophenotype network-based strategy to explore the mechanisms of action (MOAs) of new AD therapeutics, and first identified Medicarpin as a potential anti-AD candidate by targeting multiple pathways.
Collapse
Affiliation(s)
- Dongli Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510404, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, China
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qihui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, United States
| | - Pengfei Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Banghan Ding
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510404, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, United States.
| |
Collapse
|
94
|
Huang R, Zhu Z, Wu Q, Bekhit AEDA, Wu S, Chen M, Wang J, Ding Y. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer's disease. Crit Rev Food Sci Nutr 2021; 63:2388-2406. [PMID: 34553662 DOI: 10.1080/10408398.2021.1975093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Recently, sustained neuroinflammatory response in microglia and astrocytes has been found to cause the deposition of amyloid beta plaques and the hyperphosphorylation of tau protein, thereby accelerating AD progression. The lipoxin A4-transcription factor nuclear factor-kappa B and mitogen-activated protein kinase pathways have been shown to play important roles in the regulation of inflammatory processes. There is growing research-based evidence suggesting that dietary whole-plant foods, such as mushrooms and berries, may be used as inhibitors for anti-neuroinflammation. The beneficial effects of whole-plant foods were mainly attributed to their high contents of functional macromolecules including polysaccharides, polyphenols, and bioactive peptides. This review provides up-to-date information on important molecular signaling pathways of neuroinflammation and discusses the anti-neuroinflammatory effects of whole-plant foods. Further, a critical evaluation of plants' macromolecular components that have the potential to prevent and/or relieve AD is provided. This work will contribute to better understanding the pathogenetic mechanism of neuroinflammation in AD and provide new approaches for AD therapy.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Zhenjun Zhu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China
| | | | - Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | - Yu Ding
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
95
|
Jian C, Wei L, Mo R, Li R, Liang L, Chen L, Zou C, Meng Y, Liu Y, Zou D. Microglia Mediate the Occurrence and Development of Alzheimer's Disease Through Ligand-Receptor Axis Communication. Front Aging Neurosci 2021; 13:731180. [PMID: 34616287 PMCID: PMC8488208 DOI: 10.3389/fnagi.2021.731180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Its onset is insidious and its progression is slow, making diagnosis difficult. In addition, its underlying molecular and cellular mechanisms remain unclear. In this study, clustering analysis was performed on single-cell RNA sequencing (scRNA-seq) data from the prefrontal cortex of 48 AD patients. Each sample module was identified to be a specific AD cell type, eight main brain cell types were identified, and the dysfunctional evolution of each cell type was further explored by pseudo-time analysis. Correlation analysis was then used to explore the relationship between AD cell types and pathological characteristics. In particular, intercellular communication between neurons and glial cells in AD patients was investigated by cell communication analysis. In patients, neuronal cells and glial cells significantly correlated with pathological features, and glial cells appear to play a key role in the development of AD through ligand-receptor axis communication. Marker genes involved in communication between these two cell types were identified using five types of modeling: logistic regression, multivariate logistic regression, least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM). LASSO modeling identified CXCR4, EGFR, MAP4K4, and IGF1R as key genes in this communication. Our results support the idea that microglia play a role in the occurrence and development of AD through ligand-receptor axis communication. In particular, our analyses identify CXCR4, EGFR, MAP4K4, and IGF1R as potential biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruikang Mo
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youshi Meng
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Liu
- Department of General Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Geriatrics, The First People’s Hospital of Nanning, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
96
|
Mansour HM, Fawzy HM, El-Khatib AS, Khattab MM. Inhibition of mitochondrial pyruvate carrier 1 by lapatinib ditosylate mitigates Alzheimer's-like disease in D-galactose/ovariectomized rats. Neurochem Int 2021; 150:105178. [PMID: 34481907 DOI: 10.1016/j.neuint.2021.105178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022]
Abstract
Mitochondrial, autophagic impairment, excitotoxicity, and also neuroinflammation are implicated in Alzheimer's disease (AD) pathophysiology. We postulated that inhibiting the mitochondrial pyruvate carrier-1 (MPC-1), which inhibits the activation of the mammalian target of rapamycin (mTOR), may ameliorate the neurodegeneration of hippocampal neurons in the rat AD model. To assess this, we used lapatinib ditosylate (LAP), an anti-cancer drug that inhibits MPC-1 through suppression of estrogen-related receptor-alpha (ERR-α), in D-galactose/ovariectomized rats. AD characteristics were developed in ovariectomized (OVX) rats following an 8-week injection of D-galactose (D-gal) (150 mg/kg, i.p.). The human epidermal growth factor receptor-2 (HER-2) inhibitor, LAP (100 mg/kg, p.o.) was daily administered for 3 weeks. LAP protected against D-gal/OVX-induced changes in cortical and hippocampal neurons along with improvement in learning and memory, as affirmed using Morris water maze (MWM) and novel object recognition (NOR) tests. Furthermore, LAP suppressed the hippocampal expression of Aβ1-42, p-tau, HER-2, p-mTOR, GluR-II, TNF-α, P38-MAPK, NOX-1, ERR-α, and MPC-1. Also, LAP treatment leads to activation of the pro-survival PI3K/Akt pathway. As an epilogue, targeting MPC-1 in the D-gal-induced AD in OVX rats resulted in the enhancement of autophagy, and suppression of neuroinflammation and excitotoxicity. Our work proves that alterations in metabolic signaling as a result of inhibiting MPC-1 were anti-inflammatory and neuroprotective in the AD model, revealing that HER-2, MPC-1, and ERR-α may be promising therapeutic targets for AD.
Collapse
Affiliation(s)
- Heba M Mansour
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt.
| | - Hala M Fawzy
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
97
|
Chen K, Jiang X, Wu M, Cao X, Bao W, Zhu LQ. Ferroptosis, a Potential Therapeutic Target in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:704298. [PMID: 34422824 PMCID: PMC8374166 DOI: 10.3389/fcell.2021.704298] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cell death is a common phenomenon in the progression of Alzheimer’s disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. Moreover, several hallmarks of AD pathogenesis were consistent with the characteristics of ferroptosis, such as excess iron accumulation, elevated lipid peroxides, and reactive oxygen species (ROS), reduced glutathione (GSH), and glutathione peroxidase 4 (GPX4) levels. Besides, some ferroptosis inhibitors can relieve AD-related pathological symptoms in AD mice and exhibit potential clinical benefits in AD patients. Therefore, ferroptosis is gradually being considered as a distinct cell death mechanism in the pathogenesis of AD. However, direct evidence is still lacking. In this review, we summarize the features of ferroptosis in AD, its underlying mechanisms in AD pathology, and review the application of ferroptosis inhibitors in both AD clinical trials and mice/cell models, to provide valuable information for future treatment and prevention of this devastating disease.
Collapse
Affiliation(s)
- Kai Chen
- Key Lab of Neurological Disorder of Education Ministry, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moxin Wu
- Department of Jiujiang Clinical Research Center for Precision Medicine, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xianming Cao
- Department of Jiujiang Clinical Research Center for Precision Medicine, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Wendai Bao
- Key Lab of Neurological Disorder of Education Ministry, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Ling-Qiang Zhu
- Key Lab of Neurological Disorder of Education Ministry, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
98
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:ijms22158208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| |
Collapse
|
99
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
100
|
Prins ND, Harrison JE, Chu HM, Blackburn K, Alam JJ, Scheltens P. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:106. [PMID: 34044875 PMCID: PMC8157623 DOI: 10.1186/s13195-021-00843-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In preclinical studies, p38⍺ kinase is implicated in Alzheimer's disease (AD) pathogenesis. In animal models, it mediates impaired synaptic dysfunction in the hippocampus, causing memory deficits, and is involved in amyloid-beta (Aβ) production and tau pathology. METHODS The REVERSE-SD (synaptic dysfunction) study was a multi-center phase 2, randomized, double-blind, placebo-controlled trial of the p38⍺ kinase inhibitor neflamapimod; conducted December 29, 2017, to June 17, 2019; 464 participants screened, and 161 randomized to either 40 mg neflamapimod (78 study participants) or matching placebo (83 study participants), orally twice daily for 24 weeks. Study participants are as follows: CSF AD-biomarker confirmed, Clinical Dementia Rating (CDR)-global score 0.5 or 1.0, CDR-memory score ≥0.5, and Mini-Mental State Examination (MMSE) 20-28. The primary endpoint was the improvement in episodic memory, assessed by combined change in Z-scores of Hopkins Verbal Learning Test-Revised (HVLT-R) Total and Delayed Recall. Secondary endpoints included change in Wechsler Memory Scale-IV (WMS) Immediate and Delayed Recall composites, CDR-SB, MMSE, and CSF biomarkers [total and phosphorylated tau (T-tau and p-tau181), Aβ1-40, Aβ1-42, neurogranin, and neurofilament light chain]. RESULTS At randomization, the mean age is 72, 50% female, 77% with CDR-global score 0.5, and mean MMSE score 23.8. The incidence of discontinuation for adverse events and serious adverse events (all considered unrelated) was 3% each. No significant differences between treatment groups were observed in the primary or secondary clinical endpoints. Significantly reduced CSF levels with neflamapimod treatment, relative to placebo, were evident for T-tau [difference (95% CI): -18.8 (-35.8, -1.8); P=0.031] and p-tau181 [-2.0 (-3.6, -0.5); P=0.012], with a trend for neurogranin [-21.0 (-43.6, 1.6); P=0.068]. In pre-specified pharmacokinetic-pharmacodynamic (PK-PD) analyses, subjects in the highest quartile of trough plasma neflamapimod levels demonstrated positive trends, compared with placebo, in HLVT-R and WMS. CONCLUSIONS AND RELEVANCE A 24-week treatment with 40 mg neflamapimod twice daily did not improve episodic memory in patients with mild AD. However, neflamapimod treatment lowered CSF biomarkers of synaptic dysfunction. Combined with PK-PD findings, the results indicate that a longer duration study of neflamapimod at a higher dose level to assess effects on AD progression is warranted. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03402659 . Registered on January 18, 2018.
Collapse
Affiliation(s)
- Niels D Prins
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands. .,Brain Research Center, Amsterdam, The Netherlands.
| | - John E Harrison
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Metis Cognition Ltd., Wiltshire, UK
| | | | | | | | - Philip Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| | | |
Collapse
|