51
|
Xue W, Cojocaru RI, Dudley VJ, Brooks M, Swaroop A, Sarthy VP. Ciliary neurotrophic factor induces genes associated with inflammation and gliosis in the retina: a gene profiling study of flow-sorted, Müller cells. PLoS One 2011; 6:e20326. [PMID: 21637858 PMCID: PMC3102695 DOI: 10.1371/journal.pone.0020326] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/21/2011] [Indexed: 01/24/2023] Open
Abstract
Background Ciliary neurotrophic factor (CNTF), a member of the interleukin-6 cytokine family, has been implicated in the development, differentiation and survival of retinal neurons. The mechanisms of CNTF action as well as its cellular targets in the retina are poorly understood. It has been postulated that some of the biological effects of CNTF are mediated through its action via retinal glial cells; however, molecular changes in retinal glia induced by CNTF have not been elucidated. We have, therefore, examined gene expression dynamics of purified Müller (glial) cells exposed to CNTF in vivo. Methodology/Principal Findings Müller cells were flow-sorted from mgfap-egfp transgenic mice one or three days after intravitreal injection of CNTF. Microarray analysis using RNA from purified Müller cells showed differential expression of almost 1,000 transcripts with two- to seventeen-fold change in response to CNTF. A comparison of transcriptional profiles from Müller cells at one or three days after CNTF treatment showed an increase in the number of transcribed genes as well as a change in the expression pattern. Ingenuity Pathway Analysis showed that the differentially regulated genes belong to distinct functional types such as cytokines, growth factors, G-protein coupled receptors, transporters and ion channels. Interestingly, many genes induced by CNTF were also highly expressed in reactive Müller cells from mice with inherited or experimentally induced retinal degeneration. Further analysis of gene profiles revealed 20–30% overlap in the transcription pattern among Müller cells, astrocytes and the RPE. Conclusions/Significance Our studies provide novel molecular insights into biological functions of Müller glial cells in mediating cytokine response. We suggest that CNTF remodels the gene expression profile of Müller cells leading to induction of networks associated with transcription, cell cycle regulation and inflammatory response. CNTF also appears to function as an inducer of gliosis in the retina.
Collapse
Affiliation(s)
- Wei Xue
- Department of Ophthalmology, Northwestern University Feinberg Medical School, Chicago, Illinois, United States of America
| | - Radu I. Cojocaru
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - V. Joseph Dudley
- Department of Ophthalmology, Northwestern University Feinberg Medical School, Chicago, Illinois, United States of America
| | - Matthew Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vijay P. Sarthy
- Department of Ophthalmology, Northwestern University Feinberg Medical School, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
52
|
Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, Porco TC, Roorda A, Duncan JL. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 2011; 52:2219-26. [PMID: 21087953 DOI: 10.1167/iovs.10-6479] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To study cone photoreceptor structure and function in patients with inherited retinal degenerations treated with sustained-release ciliary neurotrophic factor (CNTF). METHODS Two patients with retinitis pigmentosa and one with Usher syndrome type 2 who participated in a phase 2 clinical trial received CNTF delivered by an encapsulated cell technology implant in one eye and sham surgery in the contralateral eye. Patients were followed longitudinally over 30 to 35 months. Adaptive optics scanning laser ophthalmoscopy (AOSLO) provided high-resolution images at baseline and at 3, 6, 12, 18, and 24 months. AOSLO measures of cone spacing and density and optical coherence tomography measures of retinal thickness were correlated with visual function, including visual acuity (VA), visual field sensitivity, and full-field electroretinography (ERG). RESULTS No significant changes in VA, visual field sensitivity, or ERG responses were observed in either eye of the three patients over 24 months. Outer retinal layers were significantly thicker in CNTF-treated eyes than in sham-treated eyes (P < 0.005). Cone spacing increased by 2.9% more per year in sham-treated eyes than in CNTF-treated eyes (P < 0.001, linear mixed model), and cone density decreased by 9.1%, or 223 cones/degree(2) more per year in sham-treated than in CNTF-treated eyes (P = 0.002, linear mixed model). CONCLUSIONS AOSLO images provided a sensitive measure of disease progression and treatment response in patients with inherited retinal degenerations. Larger studies of cone structure using high-resolution imaging techniques are urgently needed to evaluate the effect of CNTF treatment in patients with inherited retinal degenerations.
Collapse
Affiliation(s)
- Katherine E Talcott
- Department of Ophthalmology, Division of Preventive Medicine and Public Health, University of California at San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Xia X, Li Y, Huang D, Wang Z, Luo L, Song Y, Zhao L, Wen R. Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration. PLoS One 2011; 6:e18282. [PMID: 21479182 PMCID: PMC3068173 DOI: 10.1371/journal.pone.0018282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/02/2011] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of photoreceptor degenerative disorders that lead to loss of vision. Typically, rod photoreceptors degenerate first, resulting in loss of night and peripheral vision. Secondary cone degeneration eventually affects central vision, leading to total blindness. Previous studies have shown that photoreceptors could be protected from degeneration by exogenous neurotrophic factors, including ciliary neurotrophic factor (CNTF), a member of the IL-6 family of cytokines. Using a transgenic rat model of retinal degeneration (the S334-ter rat), we investigated the effects of Oncostatin M (OSM), another member of the IL-6 family of cytokines, on photoreceptor protection. We found that exogenous OSM protects both rod and cone photoreceptors. In addition, OSM promotes regeneration of cone outer segments in early stages of cone degeneration. Further investigation showed that OSM treatment induces STAT3 phosphorylation in Müller cells but not in photoreceptors, suggesting that OSM not directly acts on photoreceptors and that the protective effects of OSM on photoreceptors are mediated by Müller cells. These findings support the therapeutic strategy using members of IL-6 family of cytokines for retinal degenerative disorders. They also provide evidence that activation of the STAT3 pathway in Müller cells promotes photoreceptor survival. Our work highlights the importance of Müller cell-photoreceptor interaction in the retina, which may serve as a model of glia-neuron interaction in general.
Collapse
Affiliation(s)
- Xin Xia
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai, Shanghai Jiaotong University, People's Republic of China
- Shanghai Key Laboratory for Ocular Fundus Diseases, Shanghai, People's Republic of China
| | - Yiwen Li
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Deqiang Huang
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Zhengying Wang
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Lingyu Luo
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ying Song
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lian Zhao
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rong Wen
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
54
|
Effects of calcium ion, calpains, and calcium channel blockers on retinitis pigmentosa. J Ophthalmol 2010; 2011:292040. [PMID: 21253505 PMCID: PMC3021879 DOI: 10.1155/2011/292040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/13/2010] [Accepted: 11/15/2010] [Indexed: 11/19/2022] Open
Abstract
Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP). These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.
Collapse
|
55
|
Kirsch M, Trautmann N, Ernst M, Hofmann HD. Involvement of gp130-associated cytokine signaling in Müller cell activation following optic nerve lesion. Glia 2010; 58:768-79. [PMID: 20091786 DOI: 10.1002/glia.20961] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) and the related cytokine leukemia inhibitory factor (LIF) have been implicated in regulating astrogliosis following CNS lesions. Application of the factors activates astrocytes in vivo and in vitro, and their expression as well as their receptors is upregulated after brain injury. Here, we investigated their function by studying Müller cell activation induced by optic nerve crush in CNTF- and LIF-deficient mice, and in animals with deficiencies in cytokine signaling pathways. In the retina of CNTF(-/-) mice, basal GFAP expression was reduced, but unexpectedly, injury-induced upregulation in activated Müller cells was increased during the first 3 days after lesion as compared to wild-type animals and this corresponded with higher phosphorylation level of STAT3, an indicator of cytokine signaling. The observation that LIF expression was strongly upregulated in CNTF(-/-) mice but not in wild-type animals following optic nerve lesion provided a possible explanation. In fact, additional ablation of the LIF gene in CNTF/LIF double knockout mice almost completely abolished early lesion-induced GFAP upregulation in Müller cells and STAT3 phosphorylation. Early Müller cell activation was also eliminated in LIF(-/-) mice, despite normal CNTF levels, as well as in mutants deficient in gp130/JAK/STAT signaling and in conditional STAT3 knockout mice. Our results demonstrate that LIF signaling via the gp130/JAK/STAT3 pathway is required for the initiation of the astrogliosis-like reaction of retinal Müller cells after optic nerve injury. A potential role of CNTF was possibly masked by a compensatory increase in LIF signaling in the absence of CNTF.
Collapse
Affiliation(s)
- Matthias Kirsch
- Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 23, Freiburg, Germany
| | | | | | | |
Collapse
|
56
|
PACAP Improves Functional Outcome in Excitotoxic Retinal Lesion: An Electroretinographic Study. J Mol Neurosci 2010; 43:44-50. [DOI: 10.1007/s12031-010-9406-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
57
|
Li Y, Tao W, Luo L, Huang D, Kauper K, Stabila P, LaVail MM, Laties AM, Wen R. CNTF induces regeneration of cone outer segments in a rat model of retinal degeneration. PLoS One 2010; 5:e9495. [PMID: 20209167 PMCID: PMC2830484 DOI: 10.1371/journal.pone.0009495] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 02/12/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cone photoreceptors are responsible for color and central vision. In the late stage of retinitis pigmentosa and in geographic atrophy associated with age-related macular degeneration, cone degeneration eventually causes loss of central vision. In the present work, we investigated cone degeneration secondary to rod loss in the S334ter-3 transgenic rats carrying the rhodopsin mutation S334ter. METHODOLOGY/PRINCIPAL FINDINGS Recombinant human ciliary neurotrophic factor (CNTF) was delivered by intravitreal injection to the left eye of an animal, and vehicle to the right eye. Eyes were harvested 10 days after injection. Cone outer segments (COS), and cell bodies were identified by staining with peanut agglutinin and cone arrestin antibodies in whole-mount retinas. For long-term treatment with CNTF, CNTF secreting microdevices were implanted into the left eyes at postnatal day (PD) 20 and control devices into the right eyes. Cone ERG was recorded at PD 160 from implanted animals. Our results demonstrate that an early sign of cone degeneration is the loss of COS, which concentrated in many small areas throughout the retina and is progressive with age. Treatment with CNTF induces regeneration of COS and thus reverses the degeneration process in early stages of cone degeneration. Sustained delivery of CNTF prevents cones from degeneration and helps them to maintain COS and light-sensing function. CONCLUSIONS/SIGNIFICANCE Loss of COS is an early sign of secondary cone degeneration whereas cell death occurs much later. At early stages, degenerating cones are capable of regenerating outer segments, indicating the reversal of the degenerative process. Sustained delivery of CNTF preserves cone cells and their function. Long-term treatment with CNTF starting at early stages of degeneration could be a viable strategy for preservation of central vision for patients with retinal degenerations.
Collapse
Affiliation(s)
- Yiwen Li
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Weng Tao
- Neurotech USA, Lincoln, Rhode Island, United States of America
| | - Lingyu Luo
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Deqiang Huang
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Konrad Kauper
- Neurotech USA, Lincoln, Rhode Island, United States of America
| | - Paul Stabila
- Neurotech USA, Lincoln, Rhode Island, United States of America
| | - Matthew M. LaVail
- Beckman Vision Center, University of California San Francisco, San Francisco, California, United States of America
| | - Alan M. Laties
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rong Wen
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
58
|
Ueki Y, Chollangi S, Le YZ, Ash JD. gp130 Activation in Müller Cells is Not Essential for Photoreceptor Protection from Light Damage. RETINAL DEGENERATIVE DISEASES 2010; 664:655-61. [DOI: 10.1007/978-1-4419-1399-9_75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
59
|
Beltran WA. The use of canine models of inherited retinal degeneration to test novel therapeutic approaches. Vet Ophthalmol 2009; 12:192-204. [PMID: 19392879 DOI: 10.1111/j.1463-5224.2009.00694.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inherited retinal degenerations (RDs) are a common cause of blindness in dogs and in humans. Over the past two decades numerous genes causally associated with these diseases have been identified and several canine models have been used to improve our understanding of the molecular mechanisms of RDs, as well as to test the proof of principle and safety of novel therapies. This review briefly summarizes the drug delivery approaches and therapeutic strategies that have been and are currently tested in dogs, with a particular emphasis on corrective gene therapy, and retinal neuroprotection.
Collapse
Affiliation(s)
- William A Beltran
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
60
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
61
|
Yang Y, Mohand-Said S, Danan A, Simonutti M, Fontaine V, Clerin E, Picaud S, Léveillard T, Sahel JA. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther 2009; 17:787-95. [PMID: 19277021 DOI: 10.1038/mt.2009.28] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In retinitis pigmentosa (RP), a majority of causative mutations affect genes solely expressed in rods; however, cone degeneration inevitably follows rod cell loss. Following transplantation and in vitro studies, we demonstrated the role of photoreceptor cell paracrine interactions and identified a Rod-derived Cone Viability Factor (RdCVF), which increases cone survival. In order to establish the clinical relevance of such mechanism, we assessed the functional benefit afforded by the injection of this factor in a frequent type of rhodopsin mutation, the P23H rat. In this model of autosomal dominant RP, RdCVF expression decreases in parallel with primary rod degeneration, which is followed by cone loss. RdCVF protein injections induced an increase in cone cell number and, more important, a further increase in the corresponding electroretinogram (ERG). These results indicate that RdCVF can not only rescue cones but also preserve significantly their function. Interestingly, the higher amplitude of the functional versus the survival effect of RdCVF on cones indicates that RdCVF is acting more directly on cone function. The demonstration at the functional level of the therapeutic potential of RdCVF in the most frequent of dominant RP mutations paves the way toward the use of RdCVF for preserving central vision in many RP patients.
Collapse
Affiliation(s)
- Ying Yang
- Université Pierre et Marie Curie-Paris6, UMR-S 592, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ozawa Y, Nakao K, Kurihara T, Shimazaki T, Shimmura S, Ishida S, Yoshimura A, Tsubota K, Okano H. Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. J Biol Chem 2008; 283:24561-70. [PMID: 18614536 PMCID: PMC2528996 DOI: 10.1074/jbc.m802238200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inflammatory cytokines cause tissue dysfunction. We previously reported
that retinal inflammation down-regulates rhodopsin expression and impairs
visual function by an unknown mechanism. Here, we demonstrate that rhodopsin
levels were preserved by suppressor of cytokine signaling 3 (SOCS3), a
negative feedback regulator of STAT3 activation. SOCS3 was expressed mainly in
photoreceptor cells in the retina. In the SOCS3-deficient retinas,
rhodopsin protein levels dropped sooner, and the reduction was more profound
than in the wild type. Visual dysfunction, measured by electroretinogram, was
prolonged in retina-specific SOCS3 conditional knock-out mice. Visual
dysfunction and decreased rhodopsin levels both correlated with increased
STAT3 activation enhanced by SOCS3 deficiency. Interleukin 6, one of
the inflammatory cytokines found during retinal inflammation, activated STAT3
and decreased rhodopsin protein in adult retinal explants. This was enhanced
by inhibiting SOCS3 function in vitro, indicating that rhodopsin
reduction was not a secondary effect in the mutant mice. Interestingly, in the
inflamed SOCS3-deficient adult retina, rhodopsin decreased
post-transcriptionally at least partly through ubiquitin-proteasome-dependent
degradation accelerated by STAT3 activation and not transcriptionally as in
the developing retina, on which we reported previously. A STAT3-dependent E3
ubiquitin ligase, Ubr1, was responsible for rhodopsin degradation and was
up-regulated in the inflamed SOCS3-deficient retinas. These results
indicate that in wild-type animals, a decrease in rhodopsin during
inflammation is minimized by endogenous SOCS3. However, when STAT3 activation
exceeds some threshold beyond the compensatory activity of endogenous SOCS3,
rhodopsin levels decrease. These findings suggest SOCS3 as a potential
therapeutic target molecule for protecting photoreceptor cell function during
inflammation.
Collapse
Affiliation(s)
- Yoko Ozawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ueki Y, Wang J, Chollangi S, Ash JD. STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J Neurochem 2008; 105:784-96. [PMID: 18088375 DOI: 10.1111/j.1471-4159.2007.05180.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the interleukin-6 cytokine family, including leukemia inhibitory factor (LIF), signal through gp130. The neuroprotective role of gp130 activation has been widely demonstrated in both CNS and PNS, but the mechanism by which this is accomplished is not well established. We investigated temporal and cell-specific activation of signaling pathways induced by LIF in the mature mouse retina. Intravitreal injection of LIF preserved photoreceptor function and prevented photoreceptor cell death from light-induced oxidative damage in a dose-dependent manner (2 days post-injection). A therapeutic dose of LIF induced rapid and sustained activation of signal transducer and activator of transcription (STAT) 3. Activated STAT3 was localized to all the retinal neurons and glial cells, including photoreceptors. Activation of extracellular signal-regulated kinase 1 and 2 was robust but transient in Müller glial cells, and undetectable at the time of light exposure. Akt was not activated by LIF. We also show that at the time of neuroprotection, STAT3 but not extracellular signal-regulated kinase 1 and 2 or the Akt pathways was active in LIF-treated retinas, and activated STAT3 was clearly localized in transcriptionally active areas of photoreceptor nuclei. Our data suggest that photoreceptor protection in response to LIF can be directly mediated by activation of STAT3 in photoreceptors.
Collapse
Affiliation(s)
- Yumi Ueki
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | |
Collapse
|
64
|
Abstract
Over the last decade there have been major advances in our understanding of the molecular pathology of inherited retinal dystrophies. This paper reviews recent advances in the identification of genetic mutations underlying infantile-onset inherited retinal disorders and considers how this knowledge may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- P Moradi
- Institute of Ophthalmology UCL, London, UK
| | | |
Collapse
|
65
|
Buch PK, Bainbridge JW, Ali RR. AAV-mediated gene therapy for retinal disorders: from mouse to man. Gene Ther 2008; 15:849-57. [PMID: 18418417 DOI: 10.1038/gt.2008.66] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A wide range of retinal disorders can potentially be treated using viral vector-mediated gene therapy. The most widely used vectors for ocular gene delivery are based on adeno-associated virus (AAV), because they elicit minimal immune responses and mediate long-term transgene expression in a variety of retinal cell types. Proof-of-concept experiments have demonstrated the efficacy of AAV-mediated transgene delivery in a number of animal models of inherited and acquired retinal disorders. Following extensive preclinical evaluation in large animal models, gene therapy for one form of inherited retinal degeneration due to RPE65 deficiency is now being tested in three concurrent clinical trials. Here, we review different approaches for treating inherited retinal degenerations and more common acquired retinal disorders using AAV-based vectors.
Collapse
Affiliation(s)
- P K Buch
- Division of Molecular Therapy, UCL Institute of Ophthalmology and UCL/Moorfields Eye Hospital Biomedical Research Centre for Ophthalmology, London, UK
| | | | | |
Collapse
|
66
|
Systemic administration of nilvadipine delays photoreceptor degeneration of heterozygous retinal degeneration slow (rds) mouse. Exp Eye Res 2008; 86:60-9. [DOI: 10.1016/j.exer.2007.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 09/05/2007] [Accepted: 09/11/2007] [Indexed: 11/21/2022]
|
67
|
Beltran WA. On the role of CNTF as a potential therapy for retinal degeneration: Dr. Jekyll or Mr. Hyde? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:45-51. [PMID: 18188927 DOI: 10.1007/978-0-387-74904-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- William A Beltran
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
68
|
Wen R, Song Y, Liu Y, Li Y, Zhao L, Laties AM. CNTF negatively regulates the phototransduction machinery in rod photoreceptors: implication for light-induced photostasis plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:407-13. [PMID: 18188971 DOI: 10.1007/978-0-387-74904-4_48] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Rong Wen
- Department of Ophthalmology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Stieger K, Mendes-Madeira A, Meur GL, Weber M, Deschamps JY, Nivard D, Provost N, Moullier P, Rolling F. Oral administration of doxycycline allows tight control of transgene expression: a key step towards gene therapy of retinal diseases. Gene Ther 2007; 14:1668-73. [PMID: 17914405 DOI: 10.1038/sj.gt.3303034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene transfer of neurotrophic or antiangiogenic factors has been shown to improve photoreceptor survival in retinal degenerative disorders (that is retinitis pigmentosa) and to prevent neovascularization in retinal vascular diseases (that is age-related macular degeneration, diabetic retinopathy). Expression of such neurotrophic or antiangiogenic factors after gene transfer requires the use of a regulatory system to control transgene expression to avoid unwanted side effects in cases of overexpression. In a previous study, we demonstrated that rAAV-mediated gene transfer of the tetracycline-regulatable (tetR) system allows transgene regulation in the retina of nonhuman primates after intravenous administration of doxycycline (Dox). The purpose of this study was to evaluate oral administration of Dox to control transgene expression in the retina, since the pharmacokinetics after oral administration of the inducer drug represent a key factor when considering advancing to clinical trials. We report on the outcome of this evaluation and demonstrate that oral administration of Dox at a dose that is clinically used in humans (5 mg kg(-1) per day) is capable to continuously induce transgene expression in all macaques tested for 6 months. Moreover, control of transgene expression persists up to 4 years post-subretinal injection, with maximal induced levels of transgene product remaining stable over time.
Collapse
Affiliation(s)
- K Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Koh SWM, Guo Y, Bernstein SL, Waschek JA, Liu X, Symes AJ. Vasoactive intestinal peptide induction by ciliary neurotrophic factor in donor human corneal endothelium in situ. Neurosci Lett 2007; 423:89-94. [PMID: 17692461 PMCID: PMC2045702 DOI: 10.1016/j.neulet.2007.05.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/13/2007] [Accepted: 05/22/2007] [Indexed: 12/01/2022]
Abstract
After peripheral nerve axotomy, vasoactive intestinal peptide (VIP) gene expression is upregulated in neurons, whereas ciliary neurotrophic factor (CNTF) accumulates extracellularly at the lesion site. Although CNTF-induced VIP gene expression has been reported in cultured sympathetic neurons and neuroblastoma cells, it still remains to be determined if CNTF and VIP play interrelated roles in nerve injury. The corneal endothelium, like sympathetic neurons, derives from the neural crest. Previously, we demonstrated that a sublethal-level of oxidative stress induces CNTF release from corneal endothelial (CE) cells in situ. Here, we show that human CE cells express the 53 kDa ligand-binding alpha subunit of the CNTF receptor (CNTFRalpha). We further demonstrate that CNTF induces VIP immunoreactivity in human donor corneas. To determine if the increase in VIP immunoreactivity was reflected by an increase in gene expression, donor human corneas were bisected and treated with CNTF or vehicle, and analyzed by real-time RT-qPCR. Two experiments using different sets of bisected corneas indicated that CNTF induced increases in VIP mRNA levels of 6.5+/-2.2-fold (N=7 corneas) and 2.3+/-0.6-fold (N=10 corneas) (mean+/-S.E.M.), respectively. Whereas VIP is produced as a CE autocrine factor against oxidative stress, the present study suggested that oxidative stress-released CNTF plays a role in protecting CE cells against oxidative stress injury by upregulating VIP expression.
Collapse
Affiliation(s)
- Shay-Whey M Koh
- Department of Ophthalmology & Visual Sciences, University of Maryland, Baltimore, United States.
| | | | | | | | | | | |
Collapse
|
71
|
Beltran WA, Wen R, Acland GM, Aguirre GD. Intravitreal injection of ciliary neurotrophic factor (CNTF) causes peripheral remodeling and does not prevent photoreceptor loss in canine RPGR mutant retina. Exp Eye Res 2007; 84:753-71. [PMID: 17320077 PMCID: PMC2709826 DOI: 10.1016/j.exer.2006.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 11/20/2006] [Accepted: 12/13/2006] [Indexed: 01/05/2023]
Abstract
Ciliary neurotrophic factor (CNTF) rescues photoreceptors in several animal models of retinal degeneration and is currently being evaluated as a potential treatment for retinitis pigmentosa in humans. This study was conducted to test whether CNTF prevents photoreceptor cell loss in XLPRA2, an early onset canine model of X-linked retinitis pigmentosa caused by a frameshift mutation in RPGR exon ORF15. Four different treatment regimens of CNTF were tested in XLPRA2 dogs. Under anesthesia, the animals received at different ages an intravitreal injection of 12 microg of CNTF in the left eye. The right eye served as a control and was injected with a similar volume of phosphate buffered saline (PBS). Ocular examinations were performed regularly during the treatment periods. At termination, the dogs were euthanatized, eyes collected and the retinas were processed for embedding in optimal cutting temperature (OCT) medium. The outer nuclear layer (ONL) thickness was evaluated on H&E sections and values in both CNTF- and PBS-treated eyes were compared. Morphologic alterations in the peripheral retina were characterized by immunohistochemistry using cell-specific markers. Cell proliferation in the retinas was examined on semi-thin plastic sections, and by BrdU pulse-labeling and Ki67 immunohistochemistry on cryosections. All CNTF-treated eyes showed early clinical signs of corneal epitheliopathy, subcapsular cataracts and uveitis. No statistically significant difference in ONL thickness was seen between the CNTF- and PBS-injected eyes. Prominent retinal remodeling that consisted in an abnormal increase in the number of rods, and in misplacement of some rods, cones, bipolar and Müller cells, was observed in the peripheral retina of CNTF-treated eyes. This was only seen when CNTF was in injected before the age at which the canine retina reaches full maturation. In XLPRA2 dogs, intravitreal injections of CNTF failed to prevent photoreceptors from undergoing cell death in the central and mid-peripheral retina. CNTF also caused ocular side-effects and morphologic alterations in the periphery that were consistent with cell dedifferentiation and proliferation. Our findings suggest that some inherited forms of retinal degeneration may not respond to CNTF's neuroprotective effects.
Collapse
Affiliation(s)
- William A Beltran
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|