51
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response. Neurobiol Learn Mem 2018; 155:143-156. [PMID: 30053576 PMCID: PMC6731038 DOI: 10.1016/j.nlm.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Conditioning-specific reflex modification (CRM) of the rabbit eyeblink response is an associative phenomenon characterized by increases in the frequency, size, and peak latency of the reflexive unconditioned eyeblink response (UR) when the periorbital shock unconditioned stimulus (US) is presented alone following conditioning, particularly to lower intensity USs that produced minimal responding prior to conditioning. Previous work has shown that CRM shares many commonalities with the conditioned eyeblink response (CR) including a similar response topography, suggesting the two may share similar neural substrates. The following study examined the hypothesis that the interpositus nucleus (IP) of the cerebellum, an essential part of the neural circuitry of eyeblink conditioning, is also required for the acquisition of CRM. Tests for CRM occurred following delay conditioning under muscimol inactivation of the IP and also after additional conditioning without IP inactivation. Results showed that IP inactivation blocked acquisition of CRs and the timing aspect of CRM but did not prevent increases in UR amplitude and area. Following the cessation of inactivation, CRs and CRM latency changes developed similarly to controls with intact IP functioning, but with some indication that CRs may have been facilitated in muscimol rabbits. In conclusion, CRM timing and CRs both likely require the development of plasticity in the IP, but other associative UR changes may involve non-cerebellar structures interacting with the eyeblink conditioning circuitry, a strong candidate being the amygdala, which is also likely involved in the facilitation of conditioning. Other candidates worth consideration include the cerebellar cortex, prefrontal and motor cortices.
Collapse
Affiliation(s)
- Lauren B Burhans
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Bernard G Schreurs
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
52
|
Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G. Absence of Parallel Fibre to Purkinje Cell LTD During Eyeblink Conditioning. Sci Rep 2018; 8:14777. [PMID: 30283004 PMCID: PMC6170427 DOI: 10.1038/s41598-018-32791-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/04/2018] [Indexed: 12/02/2022] Open
Abstract
Long-term depression (LTD) of parallel fibre/Purkinje cell synapses has been the favoured explanation for cerebellar motor learning such as classical eyeblink conditioning. Previous evidence against this interpretation has been contested. Here we wanted to test whether a classical conditioning protocol causes LTD. We applied a conditioning protocol, using a train of electrical pulses to the parallel fibres as the conditional stimulus. In order to rule out indirect effects caused by antidromic granule cell activation or output from Purkinje cells that might produce changes in Purkinje cell responsiveness, we focused the analysis on the first pulse in the conditional stimulus, that is, before any indirect effects would have time to occur. Purkinje cells learned to respond with a firing pause to the conditional stimulus. Yet, there was no depression of parallel fibre excitation after training.
Collapse
Affiliation(s)
- Fredrik Johansson
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden.,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden
| | - Dan-Anders Jirenhed
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden.,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden
| | - Anders Rasmussen
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden.,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden
| | - Riccardo Zucca
- Laboratory for Synthetic Perceptive, Emotive, and Cognitive Systems, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Germund Hesslow
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden. .,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden.
| |
Collapse
|
53
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
54
|
Boele HJ, Peter S, Ten Brinke MM, Verdonschot L, IJpelaar ACH, Rizopoulos D, Gao Z, Koekkoek SKE, De Zeeuw CI. Impact of parallel fiber to Purkinje cell long-term depression is unmasked in absence of inhibitory input. SCIENCE ADVANCES 2018; 4:eaas9426. [PMID: 30306129 PMCID: PMC6170036 DOI: 10.1126/sciadv.aas9426] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/23/2018] [Indexed: 05/03/2023]
Abstract
Pavlovian eyeblink conditioning has been used extensively to study the neural mechanisms underlying associative and motor learning. During this simple learning task, memory formation takes place at Purkinje cells in defined areas of the cerebellar cortex, which acquire a strong temporary suppression of their activity during conditioning. Yet, it is unknown which neuronal plasticity mechanisms mediate this suppression. Two potential mechanisms include long-term depression of parallel fiber to Purkinje cell synapses and feed-forward inhibition by molecular layer interneurons. We show, using a triple transgenic approach, that only concurrent disruption of both these suppression mechanisms can severely impair conditioning, highlighting that both processes can compensate for each other's deficits.
Collapse
Affiliation(s)
- Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | | | | | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
- Corresponding author.
| |
Collapse
|
55
|
Hall NJ, Yang Y, Lisberger SG. Multiple components in direction learning in smooth pursuit eye movements of monkeys. J Neurophysiol 2018; 120:2020-2035. [PMID: 30067122 DOI: 10.1152/jn.00261.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed behavioral features of smooth pursuit eye movements to characterize the course of acquisition and expression of multiple neural components of motor learning. Monkeys tracked a target that began to move in an initial "pursuit" direction and suddenly, but predictably, changed direction after a fixed interval of 250 ms. As the trial is repeated, monkeys learn to make eye movements that predict the change in target direction. Quantitative analysis of the learned response revealed evidence for multiple, dynamic, parallel processes at work during learning. 1) The overall learning followed at least two trial courses: a fast component grew and saturated rapidly over tens of trials, and a slow component grew steadily over up to 1,000 trials. 2) The temporal specificity of the learned response within each trial was crude during the first 100 trials but then improved gradually over the remaining trials. 3) External influences on the gain of pursuit initiation modulate the expression but probably not the acquisition of learning. The gain of pursuit initiation and the expression of the learned response decreased in parallel, both gradually through a 1,000-trial learning block and immediately between learning trials with different gains in the initiation of pursuit. We conclude that at least two distinct neural mechanisms drive the acquisition of pursuit learning over 100 to 1,000 trials (3 to 30 min). Both mechanisms generate underlying memory traces that are modulated in relation to the gain of pursuit initiation before expression in the final motor output. NEW & NOTEWORTHY We show that cerebellum-dependent direction learning in smooth pursuit eye movements grows in at least two components over 1,100 behavioral learning repetitions. One component grows over tens of trials and the other over hundreds. Within trials, learned temporal specificity gradually improves over hundreds of trials. The expression of each learning component on a given trial can be modified by external factors that do not affect the underlying memory trace.
Collapse
Affiliation(s)
- Nathan J Hall
- Department of Neurobiology, Duke University School of Medicine , Durham, North Carolina
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,University of Chinese Academy of Sciences , Beijing , China
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine , Durham, North Carolina
| |
Collapse
|
56
|
Brown ST, Raman IM. Sensorimotor Integration and Amplification of Reflexive Whisking by Well-Timed Spiking in the Cerebellar Corticonuclear Circuit. Neuron 2018; 99:564-575.e2. [PMID: 30017394 DOI: 10.1016/j.neuron.2018.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
To test how cerebellar crus I/II Purkinje cells and their targets in the lateral cerebellar nuclei (CbN) integrate sensory and motor-related inputs and contribute to reflexive movements, we recorded extracellularly in awake, head-fixed mice during non-contact whisking. Ipsilateral or contralateral air puffs elicited changes in population Purkinje simple spike rates that matched whisking kinematics (∼1 Hz/1° protraction). Responses remained relatively unaffected when ipsilateral sensory feedback was removed by lidocaine but were reduced by optogenetically inhibiting the reticular nuclei. Optogenetically silencing cerebellar output suppressed movements. During puff-evoked whisks, both Purkinje and CbN cells generated well-timed spikes in sequential 2- to 4-ms windows at response onset, such that they alternately elevated their firing rates just before protraction. With spontaneous whisks, which were smaller than puff-evoked whisks, well-timed spikes were absent and CbN cells were inhibited. Thus, sensory input can facilitate millisecond-scale, well-timed spiking in Purkinje and CbN cells and amplify reflexive whisker movements.
Collapse
Affiliation(s)
- Spencer T Brown
- Northwestern University Interdepartmental Neuroscience Program, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Indira M Raman
- Northwestern University Interdepartmental Neuroscience Program, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
57
|
van der Vliet R, Jonker ZD, Louwen SC, Heuvelman M, de Vreede L, Ribbers GM, De Zeeuw CI, Donchin O, Selles RW, van der Geest JN, Frens MA. Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning. Brain Stimul 2018; 11:759-771. [DOI: 10.1016/j.brs.2018.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/04/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
|
58
|
Steinmetz AB, Freeman JH. Cannabinoid agonist administration within the cerebellar cortex impairs motor learning. Neurobiol Learn Mem 2018; 170:106896. [PMID: 29964164 DOI: 10.1016/j.nlm.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 02/01/2023]
Abstract
Systemic administration of cannabinoid agonists impairs cerebellum-dependent motor learning. The cannabinoid-induced impairment of motor learning has been hypothesized to be due to disruption of Purkinje cell plasticity within the cerebellar cortex. In the current study, we tested this hypothesis in rats with localized microinfusions of cannabinoid agonists and antagonists into the cerebellar cortex during eyeblink conditioning, a type of cerebellum-dependent motor learning. Infusions of the cannabinoid agonists WIN55,212-2 or ACEA directly into the eyeblink conditioning microzone of the cerebellar cortex severely impaired acquisition of eyeblink conditioning, whereas the CB1R antagonist SR141716A did not produce a significant impairment. Infusions of WIN55,212-2 outside of the eyeblink conditioning microzone did not impair motor learning, establishing anatomical specificity for the agonist effects. The motor learning impairment caused by WIN55,212-2 and ACEA was rescued by SR141716A, indicating that the learning deficit was produced through CB1Rs. The current findings demonstrate that the effects of cannabinoid receptor agonists on motor learning are localized to CB1Rs within a discrete microzone of the cerebellar cortex.
Collapse
Affiliation(s)
- Adam B Steinmetz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | - John H Freeman
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
59
|
Ten Brinke MM, Boele HJ, De Zeeuw CI. Conditioned climbing fiber responses in cerebellar cortex and nuclei. Neurosci Lett 2018; 688:26-36. [PMID: 29689340 DOI: 10.1016/j.neulet.2018.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
The eyeblink conditioning paradigm captures an elementary form of associative learning in a neural circuitry that is understood to an extraordinary degree. Cerebellar cortical Purkinje cell simple spike suppression is widely regarded as the main process underlying conditioned responses (CRs), leading to disinhibition of neurons in the cerebellar nuclei that innervate eyelid muscles downstream. However, recent work highlights the addition of a conditioned Purkinje cell complex spike response, which at the level of the interposed nucleus seems to translate to a transient spike suppression that can be followed by a rapid spike facilitation. Here, we review the characteristics of these responses at the cerebellar cortical and nuclear level, and discuss possible origins and functions.
Collapse
Affiliation(s)
- M M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| | - H J Boele
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
60
|
Geminiani A, Casellato C, Antonietti A, D’Angelo E, Pedrocchi A. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Int J Neural Syst 2018; 28:1750017. [DOI: 10.1142/s0129065717500174] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.
Collapse
Affiliation(s)
- Alice Geminiani
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Claudia Casellato
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy
- Brain Connectivity Center, Istituto Neurologico, IRCCS Fondazione C. Mondino Via, Mondino 2, I-27100, Pavia, Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
61
|
Sarnaik R, Raman IM. Control of voluntary and optogenetically perturbed locomotion by spike rate and timing of neurons of the mouse cerebellar nuclei. eLife 2018; 7:29546. [PMID: 29659351 PMCID: PMC5902160 DOI: 10.7554/elife.29546] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/30/2018] [Indexed: 11/13/2022] Open
Abstract
Neurons of the cerebellar nuclei (CbN), which generate cerebellar output, are inhibited by Purkinje cells. With extracellular recordings during voluntary locomotion in head-fixed mice, we tested how the rate and coherence of inhibition influence CbN cell firing and well-practiced movements. Firing rates of Purkinje and CbN cells were modulated systematically through the stride cycle (~200–300 ms). Optogenetically stimulating ChR2-expressing Purkinje cells with light steps or trains evoked either asynchronous or synchronous inhibition of CbN cells. Steps slowed CbN firing. Trains suppressed CbN cell firing less effectively, but consistently altered millisecond-scale spike timing. Steps or trains that perturbed stride-related modulation of CbN cell firing rates correlated well with irregularities of movement, suggesting that ongoing locomotion is sensitive to alterations in modulated CbN cell firing. Unperturbed locomotion continued more often during trains than steps, however, suggesting that stride-related modulation of CbN spiking is less readily disrupted by synchronous than asynchronous inhibition.
Collapse
Affiliation(s)
- Rashmi Sarnaik
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
62
|
Long RM, Pakan JMP, Graham DJ, Hurd PL, Gutierrez-Ibañez C, Wylie DR. Modulation of complex spike activity differs between zebrin-positive and -negative Purkinje cells in the pigeon cerebellum. J Neurophysiol 2018; 120:250-262. [PMID: 29589816 DOI: 10.1152/jn.00797.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII-). In the pigeon vestibulocerebellum, a ZII+/- stripe pair represents a functional unit, insofar as both ZII+ and ZII- PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII- PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII- PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII- PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII- PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII-).
Collapse
Affiliation(s)
- Rebecca M Long
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Janelle M P Pakan
- German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany.,Institute for Cognitive Neurology (IKND), Medical Faculty, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | | | - Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
63
|
No Medium-Term Spinocerebellar Input Plasticity in Deep Cerebellar Nuclear Neurons In Vivo? THE CEREBELLUM 2018; 16:638-647. [PMID: 28032320 PMCID: PMC5427151 DOI: 10.1007/s12311-016-0839-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of input plasticity in the deep cerebellar nuclear (DCN) cells of the adult cerebellum could have profound implications for our understanding of cerebellar function. Whereas the existence of plastic changes in mossy fiber (mf) synaptic responses in DCN neurons has been demonstrated in juvenile slices, there has so far been no direct demonstration of this form of plasticity in the adult cerebellum in vivo. In the present paper, we recorded from neurons in the anterior interposed nucleus (AIN) and stimulated the spinocerebellar tracts (SCT) directly or via the skin to obtain mf activation and the inferior olive to activate climbing fibers (cfs) in the nonanesthetized, adult, decerebrated cat. We used three different types of protocols that theoretically could be expected to induce plasticity, each of which involved episodically intense afferent activation lasting for 10 min. These were conjunctive mf-cf activation, which effectively induces plasticity in cortical neurons; mf and cf activation in a pattern resembling the protocol for inducing classical conditioning; and conjunctive activation of two excitatory mf inputs. None of these protocols had any statistically significant effect on the evoked responses in the AIN neurons. We conclude that the input plasticity for excitatory mfs in the AIN cells of the adult cerebellum in vivo is likely to be less effective than that of parallel fiber synaptic inputs in cerebellar cortical cells, at least in the timespan of 1 h.
Collapse
|
64
|
A cerebellar mechanism for learning prior distributions of time intervals. Nat Commun 2018; 9:469. [PMID: 29391392 PMCID: PMC5794805 DOI: 10.1038/s41467-017-02516-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/05/2017] [Indexed: 01/14/2023] Open
Abstract
Knowledge about the statistical regularities of the world is essential for cognitive and sensorimotor function. In the domain of timing, prior statistics are crucial for optimal prediction, adaptation and planning. Where and how the nervous system encodes temporal statistics is, however, not known. Based on physiological and anatomical evidence for cerebellar learning, we develop a computational model that demonstrates how the cerebellum could learn prior distributions of time intervals and support Bayesian temporal estimation. The model shows that salient features observed in human Bayesian time interval estimates can be readily captured by learning in the cerebellar cortex and circuit level computations in the cerebellar deep nuclei. We test human behavior in two cerebellar timing tasks and find prior-dependent biases in timing that are consistent with the predictions of the cerebellar model. Human timing behavior is biased towards previously encountered intervals and is predicted by Bayesian models. Here, the authors develop a computational model based in properties of the cerebellum to show how we might encode time estimates based on prior experience.
Collapse
|
65
|
The PMCA pumps in genetically determined neuronal pathologies. Neurosci Lett 2018; 663:2-11. [DOI: 10.1016/j.neulet.2017.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
|
66
|
Cerebellar-dependent associative learning is impaired in very preterm born children and young adults. Sci Rep 2017; 7:18028. [PMID: 29269751 PMCID: PMC5740078 DOI: 10.1038/s41598-017-18316-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
Preterm birth incorporates an increased risk for cerebellar developmental disorders likely contributing to motor and cognitive abnormalities. Experimental evidence of cerebellar dysfunction in preterm subjects, however, is sparse. In this study, classical eyeblink conditioning was used as a marker of cerebellar dysfunction. Standard delay conditioning was investigated in 20 adults and 32 preschool children born very preterm. Focal lesions were excluded based on structural magnetic resonance imaging. For comparison, an equal number of matched term born healthy peers were tested. Subgroups of children (12 preterm, 12 controls) were retested. Preterm subjects acquired significantly less conditioned responses (CR) compared to controls with slower learning rates. A likely explanation for these findings is that preterm birth impedes function of the cerebellum even in the absence of focal cerebellar lesions. The present findings are consistent with the assumption that prematurity results in long-term detrimental effects on the integrity of the cerebellum. It cannot be excluded, however, that extra-cerebellar pathology contributed to the present findings.
Collapse
|
67
|
The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. THE CEREBELLUM 2017; 16:230-252. [PMID: 27193702 DOI: 10.1007/s12311-016-0787-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.
Collapse
|
68
|
Matsuda K, Yoshida M, Kawakami K, Hibi M, Shimizu T. Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum. Sci Rep 2017; 7:11865. [PMID: 28928404 PMCID: PMC5605521 DOI: 10.1038/s41598-017-10794-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Although previous studies show that the cerebellum is involved in classical fear conditioning, it is not clear which components in the cerebellum control it or how. We addressed this issue using a delayed fear-conditioning paradigm with late-stage zebrafish larvae, with the light extinguishment as the conditioned stimulus (CS) and an electric shock as the unconditioned stimulus (US). The US induced bradycardia in the restrained larvae. After paired-associate conditioning with the CS and US, a substantial population of the larvae displayed CS-evoked bradycardia responses. To investigate the roles of the zebrafish cerebellum in classical fear conditioning, we expressed botulinum toxin or the Ca2+ indicator GCaMP7a in cerebellar neurons. The botulinum-toxin-dependent inhibition of granule-cell transmissions in the corpus cerebelli (CCe, the medial lobe) did not suppress the CS-evoked bradycardia response, but rather prolonged the response. We identified cerebellar neurons with elevated CS-evoked activity after the conditioning. The CS-evoked activity of these neurons was progressively upregulated during the conditioning and was downregulated with repetition of the unpaired CS. Some of these neurons were activated immediately upon the CS presentation, whereas others were activated after a delay. Our findings indicate that granule cells control the recovery from conditioned fear responses in zebrafish.
Collapse
Affiliation(s)
- Koji Matsuda
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| | - Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8528, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University of Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Masahiko Hibi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan.
| | - Takashi Shimizu
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| |
Collapse
|
69
|
Voges K, Wu B, Post L, Schonewille M, De Zeeuw CI. Mechanisms underlying vestibulo-cerebellar motor learning in mice depend on movement direction. J Physiol 2017; 595:5301-5326. [PMID: 28586131 PMCID: PMC5538199 DOI: 10.1113/jp274346] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Directionality, inherent to movements, has behavioural and neuronal correlates. Direction of vestibular stimulation determines motor learning efficiency. Vestibulo-ocular reflex gain-increase correlates with Purkinje cell simple spike potentiation. The locus of neural correlates for vestibulo-ocular reflex adaptation is paradigm specific. ABSTRACT Compensatory eye movements elicited by head rotation, also known as vestibulo-ocular reflex (VOR), can be adapted with the use of visual feedback. The cerebellum is essential for this type of movement adaptation, although its neuronal correlates remain to be clarified. In the present study, we show that the direction of vestibular input determines the magnitude of eye movement adaptation induced by mismatched visual input in mice, with larger changes during contraversive head rotation. Moreover, the location of the neural correlate of this changed behaviour depends on the type of paradigm. Gain-increase paradigms induce increased simple spike (SS) activity in ipsilateral cerebellar Purkinje cells (PC), which is in line with eye movements triggered by optogenetic PC activation. By contrast, gain-decrease paradigms do not induce changes in SS activity, indicating that the murine vestibulo-cerebellar cortical circuitry is optimally designed to enhance ipsiversive eye movements.
Collapse
Affiliation(s)
- Kai Voges
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,SINAPSE, Singapore National University, Singapore
| | - Bin Wu
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands
| |
Collapse
|
70
|
Harmon TC, Magaram U, McLean DL, Raman IM. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish. eLife 2017; 6:e22537. [PMID: 28541889 PMCID: PMC5444900 DOI: 10.7554/elife.22537] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish.
Collapse
Affiliation(s)
- Thomas C Harmon
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| | - Uri Magaram
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| |
Collapse
|
71
|
Abstract
Associative learning in the cerebellum has previously focused on single movements. In eyeblink conditioning, for instance, a subject learns to blink at the right time in response to a conditional stimulus (CS), such as a tone that is repeatedly followed by an unconditional corneal stimulus (US). During conditioning, the CS and US are transmitted by mossy/parallel fibers and climbing fibers to cerebellar Purkinje cells that acquire a precisely timed pause response that drives the overt blink response. The timing of this conditional Purkinje cell response is determined by the CS-US interval and is independent of temporal patterns in the input signal. In addition to single movements, the cerebellum is also believed to be important for learning complex motor programs that require multiple precisely timed muscle contractions, such as, for example, playing the piano. In the present work, we studied Purkinje cells in decerebrate ferrets that were conditioned using electrical stimulation of mossy fiber and climbing fiber afferents as CS and US, while alternating between short and long interstimulus intervals. We found that Purkinje cells can learn double pause responses, separated by an intermediate excitation, where each pause corresponds to one interstimulus interval. The results show that individual cells can not only learn to time a single response but that they also learn an accurately timed sequential response pattern.
Collapse
|
72
|
Fuchs JR, Darlington SW, Green JT, Morielli AD. Cerebellar learning modulates surface expression of a voltage-gated ion channel in cerebellar cortex. Neurobiol Learn Mem 2017; 142:252-262. [PMID: 28512010 DOI: 10.1016/j.nlm.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 11/30/2022]
Abstract
Numerous experiments using ex vivo electrophysiology suggest that mammalian learning and memory involves regulation of voltage-gated ion channels in terms of changes in function. Yet, little is known about learning-related regulation of voltage-gated ion channels in terms of changes in expression. In two experiments, we examined changes in cell surface expression of the voltage-gated potassium channel alpha-subunit Kv1.2 in a discrete region of cerebellar cortex after eyeblink conditioning (EBC), a well-studied form of cerebellar-dependent learning. Kv1.2 in cerebellar cortex is expressed almost entirely in basket cells, primarily in the axon terminal pinceaux (PCX) region, and Purkinje cells, primarily in dendrites. Cell surface expression of Kv1.2 was measured using both multiphoton microscopy, which allowed measurement confined to the PCX region, and biotinylation/western blot, which measured total cell surface expression. In the first experiment, rats underwent three sessions of EBC, explicitly unpaired stimulus exposure, or context-only exposure and the results revealed a decrease in Kv1.2 cell surface expression in the unpaired group as measured with microscopy but no change as measured with western blot. In the second experiment, the same three training groups underwent only one half of a session of training, and the results revealed an increase in Kv1.2 cell surface expression in the unpaired group as measured with western blot but no change as measured with microscopy. In addition, rats in the EBC group that did not express conditioned responses (CRs) exhibited the same increase in Kv1.2 cell surface expression as the unpaired group. The overall pattern of results suggests that cell surface expression of Kv1.2 is changed with exposure to EBC stimuli in the absence, or prior to the emergence, of CRs.
Collapse
Affiliation(s)
- Jason R Fuchs
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - Shelby W Darlington
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - Anthony D Morielli
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
73
|
Ernst TM, Thürling M, Müller S, Kahl F, Maderwald S, Schlamann M, Boele HJ, Koekkoek SKE, Diedrichsen J, De Zeeuw CI, Ladd ME, Timmann D. Modulation of 7 T fMRI Signal in the Cerebellar Cortex and Nuclei During Acquisition, Extinction, and Reacquisition of Conditioned Eyeblink Responses. Hum Brain Mapp 2017; 38:3957-3974. [PMID: 28474470 DOI: 10.1002/hbm.23641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/07/2022] Open
Abstract
Classical delay eyeblink conditioning is likely the most commonly used paradigm to study cerebellar learning. As yet, few studies have focused on extinction and savings of conditioned eyeblink responses (CRs). Saving effects, which are reflected in a reacquisition after extinction that is faster than the initial acquisition, suggest that learned associations are at least partly preserved during extinction. In this study, we tested the hypothesis that acquisition-related plasticity is nihilated during extinction in the cerebellar cortex, but retained in the cerebellar nuclei, allowing for faster reacquisition. Changes of 7 T functional magnetic resonance imaging (fMRI) signals were investigated in the cerebellar cortex and nuclei of young and healthy human subjects. Main effects of acquisition, extinction, and reacquisition against rest were calculated in conditioned stimulus-only trials. First-level β values were determined for a spherical region of interest (ROI) around the acquisition peak voxel in lobule VI, and dentate and interposed nuclei ipsilateral to the unconditioned stimulus. In the cerebellar cortex and nuclei, fMRI signals were significantly lower in extinction compared to acquisition and reacquisition, but not significantly different between acquisition and reacquisition. These findings are consistent with the theory of bidirectional learning in both the cerebellar cortex and nuclei. It cannot explain, however, why conditioned responses reappear almost immediately in reacquisition following extinction. Although the present data do not exclude that part of the initial memory remains in the cerebellum in extinction, future studies should also explore changes in extracerebellar regions as a potential substrate of saving effects. Hum Brain Mapp 38:3957-3974, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas M Ernst
- Department of Neurology, Essen University Hospital, Essen, Germany.,Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Markus Thürling
- Department of Neurology, Essen University Hospital, Essen, Germany.,Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Sarah Müller
- Department of Neurology, Essen University Hospital, Essen, Germany
| | - Fabian Kahl
- Department of Neurology, Essen University Hospital, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Marc Schlamann
- Department for Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Neuroradiology, University Hospital of Giessen, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jörn Diedrichsen
- Department for Computer Science, University of Western Ontario, London, Ontario, Canada
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The Netherlands Institute for Neuroscience, Royal Academy of Arts & Sciences, Amsterdam, The Netherlands
| | - Mark E Ladd
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, Essen, Germany
| |
Collapse
|
74
|
Abstract
Several lines of evidence show that classical or Pavlovian conditioning of blink responses depends on the cerebellum. Recordings from cerebellar Purkinje cells that control the eyelid and the conditioned blink show that during training with a conditioning protocol, a Purkinje cell develops a pause response to the conditional stimulus. This conditioned cellular response has many of the properties that characterise the overt blink. The present paper argues that the learned Purkinje cell pause response is the memory trace and main driver of the overt conditioned blink and that it explains many well-known behavioural phenomena.
Collapse
|
75
|
Encoding Temporal Features of Skilled Movements-What, Whether and How? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 957:35-54. [PMID: 28035559 PMCID: PMC5638013 DOI: 10.1007/978-3-319-47313-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to reliably produce intelligible speech or fluently play a melody on a piano, learning the precise timing of muscle activations is essential. Surprisingly, the fundamental question of how memories of complex temporal dynamics of movement are stored across the brain is still unresolved. This review outlines the constraints that determine whether and how the timing of skilled movements is represented in the central nervous system and introduces different computational and neural mechanisms that can be harnessed for temporal encoding. It concludes by proposing a schematic model of how these different mechanisms may complement and interact with each other in fast feedback loops to achieve skilled motor timing.
Collapse
|
76
|
Turecek J, Jackman SL, Regehr WG. Synaptic Specializations Support Frequency-Independent Purkinje Cell Output from the Cerebellar Cortex. Cell Rep 2016; 17:3256-3268. [PMID: 28009294 PMCID: PMC5870134 DOI: 10.1016/j.celrep.2016.11.081] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022] Open
Abstract
The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells (PCs). Here, we characterize the properties of the PC-DCN synapse in juvenile and adult mice and find that prolonged high-frequency stimulation leads to steady-state responses that become increasingly frequency independent within the physiological firing range of PCs in older animals, resulting in a linear relationship between charge transfer and activation frequency. We used a low-affinity antagonist to show that GABAA-receptor saturation occurs at this synapse but does not underlie frequency-invariant transmission. We propose that PC-DCN synapses have two components of release: one prominent early in trains and another specialized to maintain transmission during prolonged activation. Short-term facilitation offsets partial vesicle depletion to produce frequency-independent transmission.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
77
|
Popa LS, Streng ML, Hewitt AL, Ebner TJ. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning. THE CEREBELLUM 2016; 15:93-103. [PMID: 26112422 DOI: 10.1007/s12311-015-0685-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.
Collapse
Affiliation(s)
- Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA
| | - Martha L Streng
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA
| | - Angela L Hewitt
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
78
|
Warren R, Sawtell NB. A comparative approach to cerebellar function: insights from electrosensory systems. Curr Opin Neurobiol 2016; 41:31-37. [PMID: 27504860 PMCID: PMC5123925 DOI: 10.1016/j.conb.2016.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
Despite its simple and highly-ordered circuitry the function of the cerebellum remains a topic of vigorous debate. This review explores connections between the cerebellum and sensory processing structures that closely resemble the cerebellum in terms of their evolution, development, patterns of gene expression, and circuitry. Recent studies of cerebellum-like structures involved in electrosensory processing in fish have provided insights into the functions of granule cells and unipolar brush cells-cell types shared with the cerebellum. We also discuss the possibility, supported by recent studies, that generating and subtracting predictions of the sensory consequences of motor commands may be core functions shared by both cerebellum-like structures and the cerebellum.
Collapse
Affiliation(s)
- Richard Warren
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY 10032, United States
| | - Nathaniel B Sawtell
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
79
|
Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci Biobehav Rev 2016; 71:739-755. [PMID: 27773690 DOI: 10.1016/j.neubiorev.2016.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
|
80
|
Sawtell NB. Neural Mechanisms for Predicting the Sensory Consequences of Behavior: Insights from Electrosensory Systems. Annu Rev Physiol 2016; 79:381-399. [PMID: 27813831 DOI: 10.1146/annurev-physiol-021115-105003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perception of the environment requires differentiating between external sensory inputs and those that are self-generated. Some of the clearest insights into the neural mechanisms underlying this process have come from studies of the electrosensory systems of fish. Neurons at the first stage of electrosensory processing generate negative images of the electrosensory consequences of the animal's own behavior. By canceling out the effects of predictable, self-generated inputs, negative images allow for the selective encoding of unpredictable, externally generated stimuli. Combined experimental and theoretical studies of electrosensory systems have led to detailed accounts of how negative images are formed at the level of synaptic plasticity rules, cells, and circuits. Here, I review these accounts and discuss their implications for understanding how predictions of the sensory consequences of behavior may be generated in other sensory structures and the cerebellum.
Collapse
Affiliation(s)
- Nathaniel B Sawtell
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
81
|
Ernst T, Beyer L, Mueller O, Göricke S, Ladd M, Gerwig M, Timmann D. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings. Neuropsychologia 2016; 85:287-300. [DOI: 10.1016/j.neuropsychologia.2016.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
|
82
|
Abstract
In classical eyeblink conditioning a subject learns to blink to a previously neutral stimulus. This conditional response is timed to occur just before an air puff to the eye. The learning is known to depend on the cerebellar cortex where Purkinje cells respond with adaptively timed pauses in their spontaneous firing. The pauses in the inhibitory Purkinje cells cause disinhibition of the cerebellar nuclei, which elicit the overt blinks. The timing of a Purkinje cell response was previously thought to require a temporal code in the input signal but recent work suggests that the Purkinje cells can learn to time their responses through an intrinsic mechanism that is activated by metabotropic glutamate receptors (mGluR7).
Collapse
Affiliation(s)
- Fredrik Johansson
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden. ; The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, 22184 Lund, Sweden
| | - Germund Hesslow
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden. ; The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, 22184 Lund, Sweden
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
83
|
Moberget T, Ivry RB. Cerebellar contributions to motor control and language comprehension: searching for common computational principles. Ann N Y Acad Sci 2016; 1369:154-71. [PMID: 27206249 PMCID: PMC5260470 DOI: 10.1111/nyas.13094] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Richard B. Ivry
- Department of Psychology, and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| |
Collapse
|
84
|
Yamaguchi K, Sakurai Y. Inactivation of Cerebellar Cortical Crus II Disrupts Temporal Processing of Absolute Timing but not Relative Timing in Voluntary Movements. Front Syst Neurosci 2016; 10:16. [PMID: 26941621 PMCID: PMC4764692 DOI: 10.3389/fnsys.2016.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
Several recent studies have demonstrated that the cerebellum plays an important role in temporal processing at the scale of milliseconds. However, it is not clear whether intrinsic cerebellar function involves the temporal processing of discrete or continuous events. Temporal processing during discrete events functions by counting absolute time like a stopwatch, while during continuous events it measures events at intervals. During the temporal processing of continuous events, animals might respond to rhythmic timing of sequential responses rather than to the absolute durations of intervals. Here, we tested the contribution of the cerebellar cortex to temporal processing of absolute and relative timings in voluntary movements. We injected muscimol and baclofen to a part of the cerebellar cortex of rats. We then tested the accuracy of their absolute or relative timing prediction using two timing tasks requiring almost identical reaching movements. Inactivation of the cerebellar cortex disrupted accurate temporal prediction in the absolute timing task. The rats formed two groups based on the changes to their timing accuracy following one of two distinct patterns which can be described as longer or shorter declines in the accuracy of learned intervals. However, a part of the cerebellar cortical inactivation did not affect the rats' performance of relative timing tasks. We concluded that a part of the cerebellar cortex, Crus II, contributes to the accurate temporal prediction of absolute timing and that the entire cerebellar cortex may be unnecessary in cases in which accurately knowing the absolute duration of an interval is not required for temporal prediction.
Collapse
Affiliation(s)
- Kenji Yamaguchi
- Department of Psychology, Graduate School of Letters, Kyoto UniversityKyoto, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University Kyotanabe, Japan
| |
Collapse
|
85
|
Raghavan RT, Prevosto V, Sommer MA. Contribution of Cerebellar Loops to Action Timing. Curr Opin Behav Sci 2016; 8:28-34. [PMID: 27933311 DOI: 10.1016/j.cobeha.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent studies of sensorimotor processing have benefited from decision-making paradigms that emphasize the selection of appropriate movements. Selecting when to make those responses, or action timing, is important as well. Although the cerebellum is commonly viewed as a controller of movement dynamics, its role in action timing is also firmly supported. Several lines of research have now extended this idea. Anatomical findings have revealed connections between the cerebellum and broader timing circuits, neurophysiological results have suggested mechanisms for timing within its microcircuitry, and theoretical work has indicated how temporal signals are processed through it and decoded by its targets. These developments are inspiring renewed studies of the role of the cerebellar loops in action timing.
Collapse
Affiliation(s)
- Ramanujan T Raghavan
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham NC 27708
| | - Vincent Prevosto
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham NC 27708; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708
| | - Marc A Sommer
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham NC 27708; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708; Center for Cognitive Neuroscience, Duke University, Durham NC 27708
| |
Collapse
|
86
|
Climbing Fiber Regulation of Spontaneous Purkinje Cell Activity and Cerebellum-Dependent Blink Responses(1,2,3). eNeuro 2016; 3:eN-TNWR-0067-15. [PMID: 26839917 PMCID: PMC4729836 DOI: 10.1523/eneuro.0067-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 11/21/2022] Open
Abstract
It has been known for a long time that GABAergic Purkinje cells in the cerebellar cortex, as well as their target neurons in the cerebellar nuclei, are spontaneously active. The cerebellar output will, therefore, depend on how input is integrated into this spontaneous activity. It has been shown that input from climbing fibers originating in the inferior olive controls the spontaneous activity in Purkinje cells. While blocking climbing fiber input to the Purkinje cells causes a dramatic increase in the firing rate, increased climbing fiber activity results in reduced Purkinje cell activity. However, the exact calibration of this regulation has not been examined systematically. Here we examine the relation between climbing fiber stimulation frequency and Purkinje cell activity in unanesthetized decerebrated ferrets. The results revealed a gradual suppression of Purkinje cell activity, starting at climbing fiber stimulation frequencies as low as 0.5 Hz. At 4 Hz, Purkinje cells were completely silenced. This effect lasted an average of 2 min after the stimulation rate was reduced to a lower level. We also examined the effect of sustained climbing fiber stimulation on overt behavior. Specifically, we analyzed conditioned blink responses, which are known to be dependent on the cerebellum, while stimulating the climbing fibers at different frequencies. In accordance with the neurophysiological data, the conditioned blink responses were suppressed at stimulation frequencies of ≥4 Hz.
Collapse
|
87
|
Abstract
This chapter reviews the past research toward identifying the brain circuit and its computation underlying the associative memory in eyeblink classical conditioning. In the standard delay eyeblink conditioning paradigm, the conditioned stimulus (CS) and eyeblink-eliciting unconditioned stimulus (US) converge in the cerebellar cortex and interpositus nucleus (IPN) through the pontine nuclei and inferior olivary nucleus. Repeated pairings of CS and US modify synaptic weights in the cerebellar cortex and IPN, enabling IPN neurons to activate the red nucleus and generate the conditioned response (CR). In a variant of the standard paradigm, trace eyeblink conditioning, the CS and US are separated by a brief stimulus-free trace interval. Acquisition in trace eyeblink conditioning depends on several forebrain regions, including the hippocampus and medial prefrontal cortex as well as the cerebellar-brainstem circuit. Details of computations taking place in these regions remain unclear; however, recent evidence supports a view that the forebrain encodes a temporal sequence of the CS, trace interval, and US in a specific environmental context and signals the cerebellar-brainstem circuit to execute the CR when the US is likely to occur. Together, delay eyeblink conditioning represents one of the most successful cases of understanding the neural substrates of long-term memory in mammals, while trace eyeblink conditioning demonstrates its utility for uncovering detailed computations in the whole brain network underlying long-term memory.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, Cell and Systems Biology, Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
88
|
Lennon W, Yamazaki T, Hecht-Nielsen R. A Model of In vitro Plasticity at the Parallel Fiber-Molecular Layer Interneuron Synapses. Front Comput Neurosci 2015; 9:150. [PMID: 26733856 PMCID: PMC4689869 DOI: 10.3389/fncom.2015.00150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022] Open
Abstract
Theoretical and computational models of the cerebellum typically focus on the role of parallel fiber (PF)—Purkinje cell (PKJ) synapses for learned behavior, but few emphasize the role of the molecular layer interneurons (MLIs)—the stellate and basket cells. A number of recent experimental results suggest the role of MLIs is more important than previous models put forth. We investigate learning at PF—MLI synapses and propose a mathematical model to describe plasticity at this synapse. We perform computer simulations with this form of learning using a spiking neuron model of the MLI and show that it reproduces six in vitro experimental results in addition to simulating four novel protocols. Further, we show how this plasticity model can predict the results of other experimental protocols that are not simulated. Finally, we hypothesize what the biological mechanisms are for changes in synaptic efficacy that embody the phenomenological model proposed here.
Collapse
Affiliation(s)
- William Lennon
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications Chofu, Japan
| | - Robert Hecht-Nielsen
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
89
|
Sudhakar SK, Torben-Nielsen B, De Schutter E. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses. PLoS Comput Biol 2015; 11:e1004641. [PMID: 26630202 PMCID: PMC4668013 DOI: 10.1371/journal.pcbi.1004641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/03/2015] [Indexed: 11/29/2022] Open
Abstract
Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. Neurons can transmit information by two different coding strategies: Rate coding, where the firing rate of the neuron is vital, and time coding where timing of individual spikes carries relevant information. In this study we analyze the importance of brief cessations in firing of the presynaptic neuron (pauses) on the spiking of the postsynaptic neuron. We perform this analysis on the inhibitory synaptic connection between Purkinje neurons (presynaptic) and nuclear neurons (postsynaptic) of the cerebellum. We employ a computational model of nuclear neurons and “synthetic” Purkinje neuron spike trains to study the effect of synchronous pauses on the spiking responses of nuclear neurons. We find that synchronous pauses can cause both well-timed spikes and increased firing rate in the nuclear neuron. In addition, we characterize the effect of pause length, amount and type of pause synchrony, and spike jitter. As such, we conclude that nuclear cells use both rate and time coding to relay upstream spiking information.
Collapse
Affiliation(s)
- Shyam Kumar Sudhakar
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
| | - Benjamin Torben-Nielsen
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Biocomputation Research Group, University of Hertfordshire, Hertfordshire, United Kingdom
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
- Laboratory of Theoretical Neurobiology and Neuro-engineering, University of Antwerp, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
90
|
Hu C, Zhang LB, Chen H, Xiong Y, Hu B. Neurosubstrates and mechanisms underlying the extinction of associative motor memory. Neurobiol Learn Mem 2015. [DOI: 10.1016/j.nlm.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
91
|
Johansson F, Carlsson H, Rasmussen A, Yeo C, Hesslow G. Activation of a Temporal Memory in Purkinje Cells by the mGluR7 Receptor. Cell Rep 2015; 13:1741-6. [DOI: 10.1016/j.celrep.2015.10.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/24/2015] [Accepted: 10/14/2015] [Indexed: 01/04/2023] Open
|
92
|
Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Rep 2015; 13:1977-88. [PMID: 26655909 PMCID: PMC4674627 DOI: 10.1016/j.celrep.2015.10.057] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval. Simple spike suppression correlates trial by trial to conditioned eyelid behavior Conditioned stimulus-related complex spikes relate to simple spikes and behavior Molecular layer interneuron (MLI) modulation correlates to behavior Transgenic deficits in MLI input result in partially impaired eyeblink conditioning
Collapse
|
93
|
Nees F, Heinrich A, Flor H. A mechanism-oriented approach to psychopathology: The role of Pavlovian conditioning. Int J Psychophysiol 2015; 98:351-364. [DOI: 10.1016/j.ijpsycho.2015.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 01/19/2023]
|
94
|
Purkinje cell activity during classical conditioning with different conditional stimuli explains central tenet of Rescorla–Wagner model [corrected]. Proc Natl Acad Sci U S A 2015; 112:14060-5. [PMID: 26504227 DOI: 10.1073/pnas.1516986112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A central tenet of Rescorla and Wagner's model of associative learning is that the reinforcement value of a paired trial diminishes as the associative strength between the presented stimuli increases. Despite its fundamental importance to behavioral sciences, the neural mechanisms underlying the model have not been fully explored. Here, we present findings that, taken together, can explain why a stronger association leads to a reduced reinforcement value, within the context of eyeblink conditioning. Specifically, we show that learned pause responses in Purkinje cells, which trigger adaptively timed conditioned eyeblinks, suppress the unconditional stimulus (US) signal in a graded manner. Furthermore, by examining how Purkinje cells respond to two distinct conditional stimuli and to a compound stimulus, we provide evidence that could potentially help explain the somewhat counterintuitive overexpectation phenomenon, which was derived from the Rescorla-Wagner model.
Collapse
|
95
|
Abstract
Although our ability to store semantic declarative information can nowadays be readily surpassed by that of simple personal computers, our ability to learn and express procedural memories still outperforms that of supercomputers controlling the most advanced robots. To a large extent, our procedural memories are formed in the cerebellum, which embodies more than two-thirds of all neurons in our brain. In this review, we will focus on the emerging view that different modules of the cerebellum use different encoding schemes to form and express their respective memories. More specifically, zebrin-positive zones in the cerebellum, such as those controlling adaptation of the vestibulo-ocular reflex, appear to predominantly form their memories by potentiation mechanisms and express their memories via rate coding, whereas zebrin-negative zones, such as those controlling eyeblink conditioning, appear to predominantly form their memories by suppression mechanisms and express their memories in part by temporal coding using rebound bursting. Together, the different types of modules offer a rich repertoire to acquire and control sensorimotor processes with specific challenges in the spatiotemporal domain.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | - Michiel M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
96
|
Relating cerebellar purkinje cell activity to the timing and amplitude of conditioned eyelid responses. J Neurosci 2015; 35:7813-32. [PMID: 25995469 DOI: 10.1523/jneurosci.3663-14.2015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How Purkinje cell (PC) activity may be altered by learning is central to theories of the cerebellum. Pavlovian eyelid conditioning, because of how directly it engages the cerebellum, has helped reveal many aspects of cerebellar learning and the underlying mechanisms. Theories of cerebellar learning assert that climbing fiber inputs control plasticity at synapses onto PCs, and thus PCs control the expression of learned responses. We tested this assertion by recording 184 eyelid PCs and 240 non-eyelid PCs during the expression of conditioned eyelid responses (CRs) in well trained rabbits. By contrasting the responses of eyelid and non-eyelid PCs and by contrasting the responses of eyelid PCs under conditions that produce differently timed CRs, we test the hypothesis that learning-related changes in eyelid PCs contribute to the learning and adaptive timing of the CRs. We used a variety of analyses to test the quantitative relationships between eyelid PC responses and the kinematic properties of the eyelid CRs. We find that the timing of eyelid PC responses varies systematically with the timing of the behavioral CRs and that there are differences in the magnitude of eyelid PC responses between larger-CR, smaller-CR, and non-CR trials. However, eyelid PC activity does not encode any single kinematic property of the behavioral CRs at a fixed time lag, nor does it linearly encode CR amplitude. Even so, the results are consistent with the hypothesis that learning-dependent changes in PC activity contribute to the adaptively timed expression of conditioned eyelid responses.
Collapse
|
97
|
Abstract
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections.
Collapse
Affiliation(s)
- John Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
98
|
Mapelli L, Pagani M, Garrido JA, D'Angelo E. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci 2015; 9:169. [PMID: 25999817 PMCID: PMC4419603 DOI: 10.3389/fncel.2015.00169] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Museo Storico Della Fisica e Centro Studi e Ricerche Enrico Fermi Rome, Italy
| | - Martina Pagani
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Jesus A Garrido
- Brain Connectivity Center, C. Mondino National Neurological Institute Pavia, Italy ; Department of Computer Architecture and Technology, University of Granada Granada, Spain
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Brain Connectivity Center, C. Mondino National Neurological Institute Pavia, Italy
| |
Collapse
|
99
|
Halverson HE, Poremba A, Freeman JH. Medial auditory thalamus is necessary for acquisition and retention of eyeblink conditioning to cochlear nucleus stimulation. Learn Mem 2015; 22:258-66. [PMID: 25878138 PMCID: PMC4408770 DOI: 10.1101/lm.036947.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/04/2015] [Indexed: 12/05/2022]
Abstract
Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the medial auditory thalamic nuclei (MATN), consisting of the medial division of the medial geniculate, suprageniculate, and posterior interlaminar nucleus have also been implicated as a critical auditory relay to the pontine nuclei for cerebellum-dependent motor learning. The MATN also conveys auditory information to the amygdala necessary for avoidance and fear conditioning. The current study used CN stimulation to increase activity in the pontine nuclei, relative to a tone stimulus, and possibly provide sufficient input to the cerebellum for acquisition or retention of eyeblink conditioning during MATN inactivation. Primary and secondary effects of CN stimulation and MATN inactivation were examined using 2-deoxy-glucose autoradiography. Stimulation of CN increased activity in the pontine nuclei, however, this increase was not sufficient for cerebellar learning during MATN inactivation. Results of the current experiment provide additional evidence indicating the MATN may be the critical auditory relay for many associative learning tasks.
Collapse
Affiliation(s)
- Hunter E Halverson
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Amy Poremba
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
100
|
Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 2015; 16:79-93. [PMID: 25601779 DOI: 10.1038/nrn3886] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise primarily through distinct patterns of input and output connectivity rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy, and there are now various lines of evidence indicating that the cerebellar cortex is not uniform. Here, we develop the hypothesis that regional differences in properties of cerebellar cortical microcircuits lead to important differences in information processing.
Collapse
|