51
|
Zhao L, Li Z, Zhao L, Zhang C. In Vivo Determination of Reduced Thiols in Rat Cerebellum Paraflocculus Following Salicylate-Induced Tinnitus by Fluorescence. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1186170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lingzhi Zhao
- Institute of Pharmacology, Department of Pharmacy, Xi’an Medical College, Xi’an, Shaanxi Province, China
| | - Zhao Li
- Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Department of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, China
| | - Liu Zhao
- Beijing Research Center of Agricultural Standards and Testing, Beijing, China
| | - Chenxiao Zhang
- Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Department of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
52
|
Specific immediate early gene expression induced by high doses of salicylate in the cochlear nucleus and inferior colliculus of the rat. Braz J Otorhinolaryngol 2016; 83:155-161. [PMID: 27174774 PMCID: PMC9442733 DOI: 10.1016/j.bjorl.2016.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 12/08/2015] [Accepted: 02/16/2016] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Salicylate at high doses induces tinnitus in humans and experimental animals. However, the mechanisms and loci of action of salicylate in inducing tinnitus are still not well known. The expression of Immediate Early Genes (IEG) is traditionally associated with long-term neuronal modifications but it is still not clear how and where IEGs are activated in animal models of tinnitus. OBJECTIVES Here we investigated the expression of c-fos and Egr-1, two IEGs, in the Dorsal Cochlear Nucleus (DCN), the Inferior Colliculus (IC), and the Posterior Ventral Cochlear Nucleus (pVCN) of rats. METHODS Rats were treated with doses known to induce tinnitus in rats (300mg/kg i.p. daily, for 3 days), and c-fos and Egr-1 protein expressions were analyzed using western blot and immunocytochemistry. RESULTS After administration of salicylate, c-fos protein expression increased significantly in the DCN, pVCN and IC when assayed by western blot. Immunohistochemistry staining showed a more intense labeling of c-fos in the DCN, pVCN and IC and a significant increase in c-fos positive nuclei in the pVCN and IC. We did not detect increased Egr-1 expression in any of these areas. CONCLUSION Our data show that a high dose of salicylate activates neurons in the DCN, pVCN and IC. The expression of these genes by high doses of salicylate strongly suggests that plastic changes in these areas are involved in the genesis of tinnitus.
Collapse
|
53
|
Yi B, Hu S, Zuo C, Jiao F, Lv J, Chen D, Ma Y, Chen J, Mei L, Wang X, Huang Z, Wu H. Effects of long-term salicylate administration on synaptic ultrastructure and metabolic activity in the rat CNS. Sci Rep 2016; 6:24428. [PMID: 27068004 PMCID: PMC4828705 DOI: 10.1038/srep24428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/30/2016] [Indexed: 11/17/2022] Open
Abstract
Tinnitus is associated with neural hyperactivity in the central nervous system (CNS). Salicylate is a well-known ototoxic drug, and we induced tinnitus in rats using a model of long-term salicylate administration. The gap pre-pulse inhibition of acoustic startle test was used to infer tinnitus perception, and only rats in the chronic salicylate-treatment (14 days) group showed evidence of experiencing tinnitus. After small animal positron emission tomography scans were performed, we found that the metabolic activity of the inferior colliculus (IC), the auditory cortex (AC), and the hippocampus (HP) were significantly higher in the chronic treatment group compared with saline group (treated for 14 days), which was further supported by ultrastructural changes at the synapses. The alterations all returned to baseline 14 days after the cessation of salicylate-treatment (wash-out group), indicating that these changes were reversible. These findings indicate that long-term salicylate administration induces tinnitus, enhanced neural activity and synaptic ultrastructural changes in the IC, AC, and HP of rats due to neuroplasticity. Thus, an increased metabolic rate and synaptic transmission in specific areas of the CNS may contribute to the development of tinnitus.
Collapse
Affiliation(s)
- Bin Yi
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province China
| | - Chuantao Zuo
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai China
| | - Fangyang Jiao
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai China
| | - Jingrong Lv
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China
| | - Dongye Chen
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Yufei Ma
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China
| | - Jianyong Chen
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Ling Mei
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Xueling Wang
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Zhiwu Huang
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| |
Collapse
|
54
|
Zhang-Hooks Y, Agarwal A, Mishina M, Bergles DE. NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea. Neuron 2016; 89:337-50. [PMID: 26774161 PMCID: PMC4724245 DOI: 10.1016/j.neuron.2015.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 10/08/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
Spontaneous bursts of activity in developing sensory pathways promote maturation of neurons, refinement of neuronal connections, and assembly of appropriate functional networks. In the developing auditory system, inner hair cells (IHCs) spontaneously fire Ca(2+) spikes, each of which is transformed into a mini-burst of action potentials in spiral ganglion neurons (SGNs). Here we show that NMDARs are expressed in SGN dendritic terminals and play a critical role during transmission of activity from IHCs to SGNs before hearing onset. NMDAR activation enhances glutamate-mediated Ca(2+) influx at dendritic terminals, promotes repetitive firing of individual SGNs in response to each synaptic event, and enhances coincident activity of neighboring SGNs that will eventually encode similar frequencies of sound. Loss of NMDAR signaling from SGNs reduced their survival both in vivo and in vitro, revealing that spontaneous activity in the prehearing cochlea promotes maturation of auditory circuitry through periodic activation of NMDARs in SGNs.
Collapse
Affiliation(s)
- YingXin Zhang-Hooks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Masayoshi Mishina
- Brain Science Laboratory, the Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
55
|
Sodium salicylate potentiates the GABAB-GIRK pathway to suppress rebound depolarization in neurons of the rat's medial geniculate body. Hear Res 2015; 332:104-112. [PMID: 26688177 DOI: 10.1016/j.heares.2015.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
Rebound depolarization (RD) is a voltage response to the offset from pre-hyperpolarization of neuronal membrane potential, which manifests a particular form of the postsynaptic membrane potential response to inhibitory presynaptic inputs. We previously demonstrated that sodium salicylate (NaSal), a tinnitus inducer, can drastically suppress the RD in neurons of rat medial geniculate body (MGB) (Su et al, 2012; PLoS ONE 7, e46969). The purpose of the present study was to investigate the underlying cellular mechanism by using whole-cell patch-clamp recordings in rat MGB slices. NaSal (1.4 mM) had no effects on the current mediated by T-type Ca(2+) channels, indicating that it does not target these channels to suppress the RD. Instead, NaSal was shown to hyperpolarize the resting membrane potential to suppress the RD. NaSal had no effects on the current mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, indicating that it does not target these channels to hyperpolarize the resting membrane potential. NaSal induced an outward leak current that could be abolished by CGP55845, a GABAB receptor blocker, or respectively by Ba(2+) and Tertiapin-Q, blockers for G-protein-gated inwardly rectifying potassium (GIRK) channels, indicating that NaSal potentiates the GABAB-GIRK pathway to hyperpolarize the resting membrane potential. Our study demonstrates that NaSal targets GABAB receptors to alter functional behaviors of MGB neurons, which may be implicated in NaSal-induced tinnitus.
Collapse
|
56
|
Goutman JD, Elgoyhen AB, Gómez-Casati ME. Cochlear hair cells: The sound-sensing machines. FEBS Lett 2015; 589:3354-61. [PMID: 26335749 PMCID: PMC4641020 DOI: 10.1016/j.febslet.2015.08.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022]
Abstract
The sensory epithelium of the mammalian inner ear contains two types of mechanosensory cells: inner (IHC) and outer hair cells (OHC). They both transduce mechanical force generated by sound waves into electrical signals. In their apical end, these cells possess a set of stereocilia representing the mechanosensing organelles. IHC are responsible for detecting sounds and transmitting the acoustic information to the brain by converting graded depolarization into trains of action potentials in auditory nerve fibers. OHC are responsible for the active mechanical amplification process that leads to the fine tuning and high sensitivity of the mammalian inner ear. This active amplification is the consequence of the ability of OHC to alter their cell length in response to changes in membrane potential, and is controlled by an efferent inhibitory innervation. Medial olivocochlear efferent fibers, originating in the brainstem, synapse directly at the base of OHC and release acetylcholine. A very special type of nicotinic receptor, assembled by α9α10 subunits, participates in this synapse. Here we review recent knowledge and the role of both afferent and efferent synapse in the inner ear.
Collapse
Affiliation(s)
- Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor N Torres" (CONICET-UBA), Vuelta de Obligado 2490, Buenos Aires, Argentina.
| | - A Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor N Torres" (CONICET-UBA), Vuelta de Obligado 2490, Buenos Aires, Argentina; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, Argentina
| | - María Eugenia Gómez-Casati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor N Torres" (CONICET-UBA), Vuelta de Obligado 2490, Buenos Aires, Argentina; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, Argentina.
| |
Collapse
|
57
|
Jiang Q, Guo Z, Zhao Y, Wang F, Mao L. In vivo fluorescence sensing of the salicylate-induced change of zinc ion concentration in the auditory cortex of rat brain. Analyst 2015; 140:197-203. [PMID: 25298977 DOI: 10.1039/c4an01443j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study demonstrates a fluorescence method for in vivo sensing of the dynamic change of Zn(2+) concentration in auditory cortex microdialysates induced by salicylate with N'-(7-nitro-2,1,3-benzoxadiazole-4-yl)-N,N,N'-tris(pyridine-2-ylmethyl) ethane-1,2-diamine (NBD-TPEA) as a probe. The excellent properties of the NBD-TPEA probe make it possible to achieve a high selectivity for Zn(2+) sensing with the co-existence of amino acids and other metal ions as well as the species commonly existing in the cerebral system. To validate the method for in vivo fluorescence sensing of Zn(2+) in the rat brain, we pre-mix the microdialysates in vivo sampled from the auditory cortex with the NBD-TPEA probe and then perfuse the mixtures into a fluorescent cuvette for continuous-flow fluorescence detection. The method demonstrated here shows a linear relationship between the signal output and Zn(2+) concentration within the concentration range from 0.5 μM to 4 μM, with a detection limit of 156 nM (S/N = 3). The basal level of extracellular Zn(2+) in auditory cortex microdialysates is determined to be 0.52 ± 0.082 μM (n = 4). This value is increased by the injection of 100 mg mL(-1) of salicylate (1 μL min(-1), 5 min, i.p.), reaches a peak at the time point of 90 min, and levels off with time. Such an increase is attenuated by the injection of MK-801, a potent and specific NMDA receptor antagonist, after the pre-injection of 100 mg mL(-1) salicylate for 5 min. This study offers a fluorescence method for in vivo sensing of Zn(2+) in the rat brain that could be useful for the investigations of chemical processes involved in brain functions.
Collapse
Affiliation(s)
- Qin Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | |
Collapse
|
58
|
Cheng H, Wang X, Wei H. Ratiometric Electrochemical Sensor for Effective and Reliable Detection of Ascorbic Acid in Living Brains. Anal Chem 2015; 87:8889-95. [DOI: 10.1021/acs.analchem.5b02014] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanjun Cheng
- Department of Biomedical
Engineering, College of Engineering and Applied Sciences, Collaborative
Innovation Center of Chemistry for Life Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaoyu Wang
- Department of Biomedical
Engineering, College of Engineering and Applied Sciences, Collaborative
Innovation Center of Chemistry for Life Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hui Wei
- Department of Biomedical
Engineering, College of Engineering and Applied Sciences, Collaborative
Innovation Center of Chemistry for Life Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
59
|
Eggermont JJ, Roberts LE. Tinnitus: animal models and findings in humans. Cell Tissue Res 2015; 361:311-36. [PMID: 25266340 PMCID: PMC4487353 DOI: 10.1007/s00441-014-1992-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic tinnitus (ringing of the ears) is a medically untreatable condition that reduces quality of life for millions of individuals worldwide. Most cases are associated with hearing loss that may be detected by the audiogram or by more sensitive measures. Converging evidence from animal models and studies of human tinnitus sufferers indicates that, while cochlear damage is a trigger, most cases of tinnitus are not generated by irritative processes persisting in the cochlea but by changes that take place in central auditory pathways when auditory neurons lose their input from the ear. Forms of neural plasticity underlie these neural changes, which include increased spontaneous activity and neural gain in deafferented central auditory structures, increased synchronous activity in these structures, alterations in the tonotopic organization of auditory cortex, and changes in network behavior in nonauditory brain regions detected by functional imaging of individuals with tinnitus and corroborated by animal investigations. Research on the molecular mechanisms that underlie neural changes in tinnitus is in its infancy and represents a frontier for investigation.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, and Department of Psychology, University of Calgary, 2500 University Drive N.W, Calgary, AB, Canada,
| | | |
Collapse
|
60
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
61
|
Noreña AJ. Revisiting the cochlear and central mechanisms of tinnitus and therapeutic approaches. Audiol Neurootol 2015; 20 Suppl 1:53-9. [PMID: 25997584 DOI: 10.1159/000380749] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This short review aims at revisiting some of the putative mechanisms of tinnitus. Cochlear-type tinnitus is suggested to result from aberrant activity generated before or at the cochlear nerve level. It is proposed that outer hair cells, through their role in regulating the endocochlear potential, can contribute to the enhancement of cochlear spontaneous activity. This hypothesis is attractive as it provides a possible explanation for cochlear tinnitus of different aetiologies, such as tinnitus produced by acute noise trauma, intense low-frequency sounds, middle-ear dysfunction or temporomandibular joint disorders. Other mechanisms, namely an excitatory drift in the operating point of the inner hair cells and activation of NMDA receptors, are also briefly reported. Central-type tinnitus is supposed to result from aberrant activity generated in auditory centres, i.e. in these patients, the tinnitus-related activity does not pre-exist in the cochlear nerve. A reduction in cochlear activity due to hearing loss is suggested to produce tinnitus-related plastic changes, namely cortical reorganisation, thalamic neuron hyperpolarisation, facilitation of non-auditory inputs and/or increase in central gain. These central changes can be associated with abnormal patterns of spontaneous activity in the auditory pathway, i.e. hyperactivity, hypersynchrony and/or oscillating activity. Therapeutic approaches aimed at reducing cochlear activity and/or tinnitus-related central changes are discussed.
Collapse
|
62
|
Wu H, Xu FL, Yin Y, Da P, You XD, Xu HM, Tang Y. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area. Mol Med Rep 2015; 12:1625-30. [PMID: 25873216 PMCID: PMC4464479 DOI: 10.3892/mmr.2015.3608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 08/14/2014] [Indexed: 11/21/2022] Open
Abstract
Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng-Lei Xu
- Department of Otolaryngology‑Head and Neck Surgery, Nanjing General Hospital of Nanjing Military Area, Nanjing, Jiangsu 210002, P.R. China
| | - Yong Yin
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Peng Da
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiao-Dong You
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui-Min Xu
- Department of Otolaryngology, Changshu First Hospital, Suzhou, Jiangsu 215500, P.R. China
| | - Yan Tang
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
63
|
Sun W, Liu J, Zhang C, Zhou N, Manohar S, Winchester W, Miranda JA, Salvi RJ. Potassium channel activator attenuates salicylate-induced cochlear hearing loss potentially ameliorating tinnitus. Front Neurol 2015; 6:77. [PMID: 25904892 PMCID: PMC4387930 DOI: 10.3389/fneur.2015.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 11/13/2022] Open
Abstract
High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10 mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs.
Collapse
Affiliation(s)
- Wei Sun
- Center for Hearing and Deafness, State University of New York at Buffalo , Buffalo, NY , USA
| | - Jun Liu
- Department of Otolaryngology, General Hospital of PLA , Beijing , China
| | - Chao Zhang
- Department of Otolaryngology, General Hospital of PLA , Beijing , China
| | - Na Zhou
- Department of Otolaryngology, Peking University Third Hospital , Beijing , China
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo , Buffalo, NY , USA
| | | | | | - Richard J Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo , Buffalo, NY , USA
| |
Collapse
|
64
|
Sanchez J, Ghelani S, Otto-Meyer S. From development to disease: Diverse functions of NMDA-type glutamate receptors in the lower auditory pathway. Neuroscience 2015; 285:248-59. [DOI: 10.1016/j.neuroscience.2014.11.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/07/2014] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
|
65
|
Efficacy and safety of AM-101 in the treatment of acute inner ear tinnitus--a double-blind, randomized, placebo-controlled phase II study. Otol Neurotol 2014; 35:589-97. [PMID: 24603353 PMCID: PMC3966923 DOI: 10.1097/mao.0000000000000268] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To evaluate the efficacy and safety of intratympanic AM-101 in patients with persistent acute inner ear tinnitus after acute acoustic trauma, idiopathic sudden sensorineural hearing loss (ISSNHL), or acute otitis media. Study Design Prospective, double-blind, randomized, placebo-controlled study with follow-up visits on Days 7, 30, and 90. Setting Twenty-eight European sites (academic tertiary referral centers and private ENT practices). Patients 248 patients aged 16 to 65 years. Interventions Three intratympanic injections of AM-101 (0.27 or 0.81 mg/ml) or placebo over 3 consecutive days. Main Outcome Measures Efficacy was assessed by changes in minimum masking level (MML; primary end point), loudness match, tinnitus loudness, tinnitus annoyance, and sleep difficulties on a 0 to 100 numerical rating scale, THI-12 questionnaire, and patient global impression of change. Safety was evaluated using the frequency of clinically relevant hearing deterioration and adverse events. Results The study overall failed to demonstrate a treatment benefit based on the change in MML. However, AM-101 0.81 mg/ml showed statistically significantly better improvement for tinnitus loudness, annoyance, sleep difficulties, and tinnitus impact in patients with tinnitus after noise trauma or otitis media. The subgroup of ISSNHL-related tinnitus patients did not show conclusive results. The study drug and I.T. injections were well tolerated. Conclusion The study established proof of concept for AM-101 in the treatment of tinnitus arising from cochlear glutamate excitotoxicity. Patient-reported outcomes seem to be more relevant and reliable efficacy measures for assessing treatment-related changes in tinnitus than psychoacoustic tests.
Collapse
|
66
|
Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats. Inflammation 2014; 37:365-73. [PMID: 24092407 DOI: 10.1007/s10753-013-9748-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aspirin (salicylate), as a common drug that is frequently used for long-term treatment in a clinical setting, has the potential to cause reversible tinnitus. However, few reports have examined the inflammatory cytokines expression and alteration of synaptic ultrastructure in the cochlear nucleus (CN) in a rat model of tinnitus. The tinnitus-like behavior of rats were detected by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. We investigated the expression levels of the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), N-methyl D-aspartate receptor subunit 2A (NR2A) mRNA and protein in the CN and compared synapses ultrastructure in the CN of tinnitus rats with normal ones. GPIAS showed that rats with long-term administration of salicylate were experiencing tinnitus, and the mRNA and protein expression levels of TNF-α and NR2A were up-regulated in chronic treatment groups, and they returned to baseline 14 days after cessation of treatment. Furthermore, compared to normal rats, repetitive salicylate-treated rats showed a greater number of presynaptic vesicles, thicker and longer postsynaptic densities, increased synaptic interface curvature. These data revealed that chronic salicylate administration markedly, but reversibly, induces tinnitus possibly via augmentation of the expression of TNF-α and NR2A and cause changes in synaptic ultrastructure in the CN. Long-term administration of salicylate causes neural plasticity changes at the CN level.
Collapse
|
67
|
Cederroth CR, Canlon B, Langguth B. Hearing loss and tinnitus--are funders and industry listening? Nat Biotechnol 2014; 31:972-4. [PMID: 24213768 DOI: 10.1038/nbt.2736] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
68
|
Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol 2014; 5:206. [PMID: 25386157 PMCID: PMC4208401 DOI: 10.3389/fneur.2014.00206] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/30/2014] [Indexed: 12/02/2022] Open
Abstract
Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Paulo V Rodrigues
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|
69
|
Both central and peripheral auditory systems are involved in salicylate-induced tinnitus in rats: a behavioral study. PLoS One 2014; 9:e108659. [PMID: 25269067 PMCID: PMC4182535 DOI: 10.1371/journal.pone.0108659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/24/2014] [Indexed: 11/19/2022] Open
Abstract
Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus.
Collapse
|
70
|
RALLI M, TROIANI D, PODDA M, PACIELLO F, ERAMO S, DE CORSO E, SALVI R, PALUDETTI G, FETONI A. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2014; 34:198-204. [PMID: 24882929 PMCID: PMC4035835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/27/2013] [Indexed: 11/15/2022]
Abstract
Short-term tinnitus develops shortly after the administration of a high dose of salicylate. Since salicylate selectively potentiates N-methyl- D-aspartate (NMDA) currents in spiral ganglion neurons, it may play a vital role in tinnitus by amplifying NMDA-mediated neurotransmission. The aim of this study was to determine whether systemic treatment with a NMDA channel blocker, memantine, could prevent salicylate-induced tinnitus in animals. Additional experiments were performed to evaluate the effect of memantine on the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to test for changes in hearing function. Thirty-six rats were divided into 3 groups and treated daily for four consecutive days. One group (n = 12) was injected with salicylate (300 mg/kg/d, IP), the second (n = 12) was treated with memantine (5 mg/kg/d, IP) and the third group (n = 12) was injected with salicylate and memantine. All rats were tested for tinnitus and hearing loss at 2, 24, 48 and 72 h after the first drug administration and 24 h post treatment; tinnituslike behaviour was assessed with gap prepulse inhibition of acoustic startle (GPIAS), and hearing function was measured with DPOAE, ABR and noise burst prepulse inhibition of acoustic startle (NBPIAS). Rats in the salicylate group showed impaired GPIAS indicative of transient tinnitus-like behaviour near 16 kHz that recovered 24 h after the last salicylate treatment. Memantine did not cause a significant change in GPIAS. Combined injection of salicylate and memantine significantly attenuated GPIAS tinnitus-like behaviour at 48 hours after the first injection. None of the treatments induced permanent threshold shifts in the ABR and DPOAE, which recovered completely within one day post treatment. Animals treated with salicylate plus memantine showed results comparable to animals treated with salicylate alone, confirming that there is no effect of memantine on DPOAE which reflects OHC function. The present study confirms the role of cochlear NMDA receptors in the induction of salicylate-induced tinnitus.
Collapse
Affiliation(s)
- M. RALLI
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Roma, Italy;,Address for correspondence: Massimo Ralli, Institute of Otolaryngology, Università Cattolica del Sacro Cuore, largo A. Gemelli 8, Rome Italy. E-mail:
| | - D. TROIANI
- Institute of Physiology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - M.V. PODDA
- Institute of Physiology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - F. PACIELLO
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - S.L.M. ERAMO
- Institute of Physiology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - E. DE CORSO
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - R. SALVI
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, NY
| | - G. PALUDETTI
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - A.R. FETONI
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
71
|
Gold JR, Bajo VM. Insult-induced adaptive plasticity of the auditory system. Front Neurosci 2014; 8:110. [PMID: 24904256 PMCID: PMC4033160 DOI: 10.3389/fnins.2014.00110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023] Open
Abstract
The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple—if not all—levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.
Collapse
Affiliation(s)
- Joshua R Gold
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
72
|
Abstract
Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients.
Collapse
|
73
|
SHEPPARD A, HAYES S, CHEN GD, RALLI M, SALVI R. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2014; 34:79-93. [PMID: 24843217 PMCID: PMC4025186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/06/2013] [Indexed: 11/24/2022]
Abstract
Salicylate's ototoxic properties have been well established, inducing tinnitus and a sensory hearing loss when administered in high doses. Peripherally, acute dosing of salicylate causes frequency dependent reductions in DPOAEs and CAP amplitudes in low (<10 kHz) and high (>20 kHz) frequencies more than mid frequencies (10-20 kHz), which interestingly corresponds to the pitch of behaviourally-matched salicylate-induced tinnitus. Chronic salicylate dosing affects the peripheral system by causing a compensatory temporary enhancement in DPOAE amplitudes and up-regulation of prestin mRNA and protein expression. Despite salicylate's antioxidant properties, cultured cochlea studies indicate it also impairs spiral ganglion neurons (SGNs) by paradoxically causing an upsurge of superoxide radicals leading to apoptosis. Centrally, salicylate alters γ-aminobutyric acid (GABA) and serotonin mediated neurotransmission in the central nervous system (CNS), which results in classical and non-classical auditory regions showing hyperactivity after salicylate administration. In the auditory cortex (AC) and lateral amygdala (LA), neuron characteristic frequencies (CF) shift upward and downward to mid frequencies (10-20 kHz) altering tonotopy following salicylate administration. Additionally, current source density (CSD) analysis showed enhanced current flow into the supergranular layer of the auditory cortex after a high systemic dose of salicylate. In humans, auditory perception changes following salicylate or aspirin, including decreased word discrimination and temporal integration ability. The results of previous studies have partially identified the mechanisms that are involved in salicylate-induced tinnitus and hearing loss, however to date some interactions remain convoluted. This review discusses current knowledge of salicylate ototoxicity and interactions.
Collapse
Affiliation(s)
- A. SHEPPARD
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, USA,,Address for correspondence: Adam M. Sheppard, Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA. Tel. +1-716-829-5300. Fax +1-716-829-5301. E-mail:
| | - S.H. HAYES
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, USA
| | - G.-D. CHEN
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, USA
| | - M. RALLI
- Institute of Otolaryngology, Catholic University of Sacred Heart Rome, Italy
| | - R. SALVI
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, USA
| |
Collapse
|
74
|
Chen J, Zheng Y, Xiong H, Ou Y. NMDA receptors are involved in the regulation of BMP4-mediated survival in rat cochlear epithelial cells. Neurosci Lett 2014; 566:275-9. [DOI: 10.1016/j.neulet.2014.02.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
|
75
|
Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality. Nat Neurosci 2014; 17:240-7. [PMID: 24441682 DOI: 10.1038/nn.3626] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022]
Abstract
The neuron-specific transcription factor T-box brain 1 (TBR1) regulates brain development. Disruptive mutations in the TBR1 gene have been repeatedly identified in patients with autism spectrum disorders (ASDs). Here, we show that Tbr1 haploinsufficiency results in defective axonal projections of amygdalar neurons and the impairment of social interaction, ultrasonic vocalization, associative memory and cognitive flexibility in mice. Loss of a copy of the Tbr1 gene altered the expression of Ntng1, Cntn2 and Cdh8 and reduced both inter- and intra-amygdalar connections. These developmental defects likely impair neuronal activation upon behavioral stimulation, which is indicated by fewer c-FOS-positive neurons and lack of GRIN2B induction in Tbr1(+/-) amygdalae. We also show that upregulation of amygdalar neuronal activity by local infusion of a partial NMDA receptor agonist, d-cycloserine, ameliorates the behavioral defects of Tbr1(+/-) mice. Our study suggests that TBR1 is important in the regulation of amygdalar axonal connections and cognition.
Collapse
|
76
|
Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111:17-33. [DOI: 10.1016/j.pneurobio.2013.08.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
77
|
Jia F, Du L, Hao Y, Liu S, Li N, Jiang H. Thioperamide treats neonatal hypoxic-ischemic encephalopathy by postsynaptic H1 receptors. Neural Regen Res 2013; 8:1814-22. [PMID: 25206478 PMCID: PMC4145950 DOI: 10.3969/j.issn.1673-5374.2013.19.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/25/2013] [Indexed: 11/22/2022] Open
Abstract
Thioperamide, a selective histamine H3 receptor antagonist, can increase histamine content in the brain, improve brain edema, and exert a neuroprotective effect. This study aimed to examine the mechanism of action of thioperamide during brain edema in a rat model of neonatal hypoxic-ischemic encephalopathy. Our results showed that thioperamide significantly decreased brain water content and malondialdehyde levels, while significantly increased histamine levels and superoxide dismutase activity in the hippocampus. This evidence demonstrates that thioperamide could prevent oxidative damage and attenuate brain edema following neonatal hypoxic-ischemic encephalolopathy. We further observed that changes in the above indexes occurred after combined treatment of thioperamide with the H1 receptor antagonist, pyrilamine, and the H2 receptor antagonist, tidine. Experimental findings indicated that pyrilamine reversed the effects of thioperamide; however, cimetidine had no significant influence on the effects of thioperamide. Our present findings suggest that thioperamide can increase brain histamine content and attenuate brain edema and oxidative damage by acting in combination with postsynaptic H1 receptors in a rat model of neonatal ic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Feiyong Jia
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Lin Du
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Yunpeng Hao
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Shicheng Liu
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Ning Li
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Huiyi Jiang
- Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China,
Corresponding author: Huiyi Jiang, Attending physician, Division of Pediatric Neurorehabilitation, Department of Pediatrics, Second Part of First Hospital of Jilin University, Changchun 130031, Jilin Province, China, . (N20110714001)
| |
Collapse
|
78
|
Song JJ, Adler HJ, Lee HS, Jang JH, Park MH, Lee JH, Chang SO, Oh SH. WDR1 expression in normal and noise-damaged Sprague-Dawley rat cochleae. J Comp Neurol 2013; 521:1470-81. [PMID: 22821633 DOI: 10.1002/cne.23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/07/2022]
Abstract
WD40 repeat protein 1 (WDR1) has been suggested as a protective mechanism or a sign of regeneration in avian cochlea. However, its role in mammalian cochlea has yet to be determined. Hence, we investigated WDR1 expression in sound-overstimulated Sprague-Dawley rats. Rats were divided into three groups (the permanent and temporary threshold shift [PTS and TTS] groups and the control group) according to the extent of noise exposure and euthanized immediately, 3, or 7 days after noise exposure for cochlear harvest. Immunocytochemistry localized WDR1 to outer hair cells, Deiter's cells, outer sulcus cells, and Reissner's membrane in the control group, and the PTS and TTS groups exhibited stronger WDR1 expression in the same cochlear regions than the controls. Moreover, WDR1 expression in these noise-exposed groups was extended to inner hair cells and basal cells of the stria vascularis. The expression of WDR1 in the PTS and TTS groups showed differences in intensity and shifts of localization, based on exposure length and recovery duration. Contrary to the avian cochlea, hair cell regeneration does not naturally occur in the acoustically damaged mammalian cochlea. Therefore, elevated WDR1 expression after acoustic overstimulation in the current experiments may provide a mechanism for protection against noise exposure.
Collapse
Affiliation(s)
- Jae-Jin Song
- Department of Otorhinolaryngology Head-and-Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
80
|
Eggermont JJ. Hearing loss, hyperacusis, or tinnitus: What is modeled in animal research? Hear Res 2013; 295:140-9. [DOI: 10.1016/j.heares.2012.01.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/09/2012] [Accepted: 01/16/2012] [Indexed: 11/29/2022]
|
81
|
Salicylate enhances expression and function of NMDA receptors in cochlear spiral ganglion neurons. J Otol 2012. [DOI: 10.1016/s1672-2930(12)50003-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
82
|
Stolzberg D, Salvi RJ, Allman BL. Salicylate toxicity model of tinnitus. Front Syst Neurosci 2012; 6:28. [PMID: 22557950 PMCID: PMC3341117 DOI: 10.3389/fnsys.2012.00028] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/04/2012] [Indexed: 11/26/2022] Open
Abstract
Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs, or aging, which affects ∼14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed.
Collapse
Affiliation(s)
- Daniel Stolzberg
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo NY, USA
| | | | | |
Collapse
|
83
|
Guitton MJ. Tinnitus: pathology of synaptic plasticity at the cellular and system levels. Front Syst Neurosci 2012; 6:12. [PMID: 22408611 PMCID: PMC3297194 DOI: 10.3389/fnsys.2012.00012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/23/2012] [Indexed: 01/06/2023] Open
Abstract
Despite being more and more common, and having a high impact on the quality of life of sufferers, tinnitus does not yet have a cure. This has been mostly the result of limited knowledge of the biological mechanisms underlying this adverse pathology. However, the last decade has witnessed tremendous progress in our understanding on the pathophysiology of tinnitus. Animal models have demonstrated that tinnitus is a pathology of neural plasticity, and has two main components: a molecular, peripheral component related to the initiation phase of tinnitus; and a system-level, central component-related to the long-term maintenance of tinnitus. Using the most recent experimental data and the molecular/system dichotomy as a framework, we describe here the biological basis of tinnitus. We then discuss these mechanisms from an evolutionary perspective, highlighting similarities with memory. Finally, we consider how these discoveries can translate into therapies, and we suggest operative strategies to design new and effective combined therapeutic solutions using both pharmacological (local and systemic) and behavioral tools (e.g., using tele-medicine and virtual reality settings).
Collapse
Affiliation(s)
- Matthieu J Guitton
- Faculty of Medicine, Department of Oto-Rhino-Laryngology and Ophthalmology, Laval University, Quebec City QC, Canada
| |
Collapse
|
84
|
Eggermont JJ. Cortex: Way Station or Locus of the Tinnitus Percept? SPRINGER HANDBOOK OF AUDITORY RESEARCH 2012. [DOI: 10.1007/978-1-4614-3728-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
85
|
Knipper M, Müller M, Zimmermann U. Molecular Mechanism of Tinnitus. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2012. [DOI: 10.1007/978-1-4614-3728-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
86
|
Noreña AJ. Stimulating the Auditory System to Treat Tinnitus: From Alleviating the Symptoms to Addressing the Causes. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2012. [DOI: 10.1007/978-1-4614-3728-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
87
|
Conserved BK channel-protein interactions reveal signals relevant to cell death and survival. PLoS One 2011; 6:e28532. [PMID: 22174833 PMCID: PMC3235137 DOI: 10.1371/journal.pone.0028532] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 12/28/2022] Open
Abstract
The large-conductance Ca2+-activated K+ (BK) channel and its β-subunit underlie tuning in non-mammalian sensory or hair cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS) in the chicken cochlea and compared these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions, using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3γ, valosin-containing protein (VCP), stathmin (STMN), cortactin (CTTN), and prohibitin (PHB), of which 16 partners were verified by reciprocal coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-aspartate receptor (NMDAR) and ATP-synthase. Ortholog analyses across six species revealed conserved interactions involving apoptosis, Ca2+ binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, γ-actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species showed putative binding sites for 14-3-3, RAC-α serine/threonine-protein kinase 1 (Akt), glycogen synthase kinase-3β (GSK3β) and phosphoinositide-dependent kinase-1 (PDK1). Knockdown of 14-3-3 and Akt caused an increase in BK expression, whereas silencing of GSK3β and PDK1 had the opposite effect. This comparative systems approach suggests conservation in BK function across different species in addition to novel functions that may include the initiation of signals relevant to cell death/survival.
Collapse
|
88
|
Lu J, Lobarinas E, Deng A, Goodey R, Stolzberg D, Salvi RJ, Sun W. GABAergic neural activity involved in salicylate-induced auditory cortex gain enhancement. Neuroscience 2011; 189:187-98. [PMID: 21664433 PMCID: PMC3153886 DOI: 10.1016/j.neuroscience.2011.04.073] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/12/2011] [Accepted: 04/16/2011] [Indexed: 12/31/2022]
Abstract
Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate (SS)-induced hyperexcitability and "increased central gain," we examined the effects of GABA receptor agonists and antagonists on SS-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of SS significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of SS also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the SS-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the SS-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the SS-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by SS may arise from a SS-induced suppression of GABAergic inhibition in the AC.
Collapse
Affiliation(s)
- Jianzhong Lu
- Center for Hearing & Deafness, SUNY State University at Buffalo
| | - Edward Lobarinas
- Center for Hearing & Deafness, SUNY State University at Buffalo
- Department of Communicative Disorders and Sciences, University of Auckland, New Zealand
| | - Anchun Deng
- Center for Hearing & Deafness, SUNY State University at Buffalo
| | - Ronald Goodey
- Department of Surgery, University of Auckland, New Zealand
| | | | - Richard J. Salvi
- Center for Hearing & Deafness, SUNY State University at Buffalo
- Department of Communicative Disorders and Sciences, University of Auckland, New Zealand
| | - Wei Sun
- Center for Hearing & Deafness, SUNY State University at Buffalo
- Department of Communicative Disorders and Sciences, University of Auckland, New Zealand
| |
Collapse
|
89
|
Lendvai B, Halmos GB, Polony G, Kapocsi J, Horváth T, Aller M, Sylvester Vizi E, Zelles T. Chemical neuroprotection in the cochlea: The modulation of dopamine release from lateral olivocochlear efferents. Neurochem Int 2011; 59:150-8. [DOI: 10.1016/j.neuint.2011.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 01/16/2023]
|
90
|
Stolzberg D, Chen GD, Allman BL, Salvi RJ. Salicylate-induced peripheral auditory changes and tonotopic reorganization of auditory cortex. Neuroscience 2011; 180:157-64. [PMID: 21310217 PMCID: PMC3070811 DOI: 10.1016/j.neuroscience.2011.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/18/2011] [Accepted: 02/02/2011] [Indexed: 11/22/2022]
Abstract
The neuronal mechanism underlying the phantom auditory perception of tinnitus remains elusive at present. For over 25 years, temporary tinnitus following acute salicylate intoxication in rats has been used as a model to understand how a phantom sound can be generated. Behavioral studies have indicated that the pitch of salicylate-induced tinnitus in the rat is approximately 16 kHz. In order to better understand the origin of the tinnitus pitch measurements were made at the levels of auditory input and output; both cochlear and cortical physiological recordings were performed in ketamine/xylazine anesthetized rats. Both compound action potentials and distortion product otoacoustic emission measurements revealed a salicylate-induced band-pass-like cochlear deficit in which the reduction of cochlear input was least at 16 kHz and significantly greater at high and low frequencies. In a separate group of rats, frequency receptive fields of primary auditory cortex neurons were tracked using multichannel microelectrodes before and after systemic salicylate treatment. Tracking frequency receptive fields following salicylate revealed a population of neurons that shifted their frequency of maximum sensitivity (i.e. characteristic frequency) towards the tinnitus frequency region of the tonotopic axis (∼16 kHz). The data presented here supports the hypothesis that salicylate-induced tinnitus results from an expanded cortical representation of the tinnitus pitch determined by an altered profile of input from the cochlea. Moreover, the pliability of cortical frequency receptive fields during salicylate-induced tinnitus is likely due to salicylate's direct action on intracortical inhibitory networks. Such a disproportionate representation of middle frequencies in the auditory cortex following salicylate may result in a finer analysis of signals within this region which may pathologically enhance the functional importance of spurious neuronal activity concentrated at tinnitus frequencies.
Collapse
Affiliation(s)
- D Stolzberg
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
91
|
Noreña AJ. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev 2011; 35:1089-109. [PMID: 21094182 DOI: 10.1016/j.neubiorev.2010.11.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/20/2010] [Accepted: 11/12/2010] [Indexed: 02/03/2023]
|
92
|
Fioretti A, Eibenstein A, Fusetti M. New trends in tinnitus management. Open Neurol J 2011; 5:12-7. [PMID: 21541237 PMCID: PMC3085173 DOI: 10.2174/1874205x01105010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 11/22/2022] Open
Abstract
Tinnitus is a perception of sound in absence of sound stimulation. Tinnitus in many cases cannot be eliminated by conventional medical treatment with drugs or surgery. Some people who begin to notice tinnitus, whether spontaneous or induced by noise, trauma or other insult, will experience spontaneous resolution, but many patients will have persistent tinnitus. For some of them, tinnitus sensation will be joined by tinnitus suffering, with many adverse effects like anxiety, depression and sleep disorders. For these tinnitus sufferers the psychological and acoustic approach proposed by the Tinnitus Retraining Therapy and Acoustic Desensitization Protocol may be helpful. Periodically new treatments are suggested like low-frequency repetitive transcranial magnetic stimulation and sequential phase shift sound cancellation treatment based on the frequency and loudness matching of the tinnitus. The aim of this work is to review modern considerations for the treatment of tinnitus.
Collapse
|
93
|
Liberman LD, Wang H, Liberman MC. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 2011; 31:801-8. [PMID: 21248103 PMCID: PMC3290333 DOI: 10.1523/jneurosci.3389-10.2011] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 11/21/2022] Open
Abstract
The auditory system transduces sound-evoked vibrations over a range of input sound pressure levels spanning six orders of magnitude. An important component of the system mediating this impressive dynamic range is established in the cochlear sensory epithelium, where functional subtypes of cochlear nerve fibers differ in threshold sensitivity, and spontaneous discharge rate (SR), by more than a factor of 1000 (Liberman, 1978), even though, regardless of type, each fiber contacts only a single hair cell via a single ribbon synapse. To study the mechanisms underlying this remarkable heterogeneity in threshold sensitivity among the 5-30 primary sensory fibers innervating a single inner hair cell, we quantified the sizes of presynaptic ribbons and postsynaptic AMPA receptor patches in >1200 synapses, using high-power confocal imaging of mouse cochleas immunostained for CtBP2 (C-terminal binding protein 2, a major ribbon protein) and GluR2/3 (glutamate receptors 2 and 3). We document complementary gradients, most striking in mid-cochlear regions, whereby synapses from the modiolar face and/or basal pole of the inner hair cell have larger ribbons and smaller receptor patches than synapses located in opposite regions of the cell. The AMPA receptor expression gradient likely contributes to the differences in cochlear nerve threshold and SR seen on the two sides of the hair cell in vivo (Liberman, 1982a); the differences in ribbon size may contribute to the heterogeneity of EPSC waveforms seen in vitro (Grant et al., 2010).
Collapse
Affiliation(s)
- Leslie D. Liberman
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts 02114-3096
| | - Haobing Wang
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts 02114-3096
| | - M. Charles Liberman
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts 02114-3096
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusett 02114, and
- Program in Speech and Hearing Biosciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts 02114
| |
Collapse
|
94
|
Zhang X, Yang P, Cao Y, Qin L, Sato Y. Salicylate induced neural changes in the primary auditory cortex of awake cats. Neuroscience 2011; 172:232-45. [DOI: 10.1016/j.neuroscience.2010.10.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
95
|
Haase GM, Prasad KN, Cole WC, Baggett-Strehlau JM, Wyatt SE. Antioxidant micronutrient impact on hearing disorders: concept, rationale, and evidence. Am J Otolaryngol 2011; 32:55-61. [PMID: 20015808 DOI: 10.1016/j.amjoto.2009.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/03/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Although auditory disorders are complex conditions, device-related modalities dominate current treatment. However, dysfunction from the central cortex to the inner ear apparatus is increasingly thought to be related to biochemical pathway abnormalities and to free radical-induced oxidative damage and chronic inflammation. Therefore, considering appropriate biologic therapy as an adjunct to standard care against these damaging factors may provide rational expansion of treatment options for otolaryngologists and audiologists. METHODS This review outlines the biologic concepts related to some auditory and vestibular conditions and details the current rationale for utilizing antioxidants for a spectrum of hearing disorders. The strategy is based on the authors' collective experience in antioxidant science and supported with published research, pilot animal data and preliminary clinical observations. RESULTS A comprehensive micronutrient approach was developed to exploit these pathways, and demonstrated safety and efficacy against oxidative damage and inflammation and clinically relevant neuroprotection. Cooperative research with Department of Defense institutions used prospective, randomized designs to show (1) reduction in oxidative damage measured in plasma and urine over six months, (2) protection against oxidative damage during 12 weeks of intense military training, (3) protection against inflammation after total body blast exposure (rodents), (4) strong neuroprotection against chemically-induced Parkinson's disease (rodents), (5) nerve VIII function improvement after concussive head injury in military personnel, and (6) tinnitus improvement in majority of patients after 90-day evaluation. CONCLUSION This systematic review of biologic strategies against hearing disorders combined with new animal and human observations may provide a rational basis for expanding current practice paradigms.
Collapse
|
96
|
Michel C, Nouvian R, Azevedo-Coste C, Puel JL, Bourien J. A computational model of the primary auditory neuron activity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:722-5. [PMID: 21095895 DOI: 10.1109/iembs.2010.5626273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sound translation into neural message at the first auditory synapse is of prime importance for providing organism with sound environment. Here, we compiled experimental features of the primary auditory neurons into a computational model, composed of two distinct compartments (i.e., afferent bouton and axon). Simulation of the model closely reproduces the whole biophysical properties of both excitatory post-synaptic currents and action potentials firing. This simple model provides a powerful tool to understand the synaptic disorders on the sound neural coding at the first auditory synapse.
Collapse
Affiliation(s)
- C Michel
- INSERM U583 - INM (80 rue Augustin Fliche, 34091 Montpellier - France)
| | | | | | | | | |
Collapse
|
97
|
Kim HJ, Lv P, Sihn CR, Yamoah EN. Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J Biol Chem 2010; 286:1517-27. [PMID: 20966080 DOI: 10.1074/jbc.m110.179010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Anesthesiology and Pain Medicine, Program in Communication Science, School of Medicine, University of California, Davis, California 95618, USA
| | | | | | | |
Collapse
|
98
|
Wei L, Ding D, Sun W, Xu-Friedman MA, Salvi R. Effects of sodium salicylate on spontaneous and evoked spike rate in the dorsal cochlear nucleus. Hear Res 2010; 267:54-60. [PMID: 20430089 PMCID: PMC2902663 DOI: 10.1016/j.heares.2010.03.088] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/20/2022]
Abstract
Spontaneous hyperactivity in the dorsal cochlear nucleus (DCN), particularly in fusiform cells, has been proposed as a neural generator of tinnitus. To determine if sodium salicylate, a reliable tinnitus inducer, could evoke hyperactivity in the DCN, we measured the spontaneous and depolarization-evoked spike rate in fusiform and cartwheel cells during salicylate superfusion. Five minute treatment with 1.4 mM salicylate suppressed spontaneous and evoked firing in fusiform cells; this decrease partially recovered after salicylate washout. Less suppression and greater recovery occurred with 3 min treatment using 1.4 mM salicylate. In contrast, salicylate had no effect on the spontaneous or evoked firing of cartwheel cells indicating that salicylate's suppressive effects are specific to fusiform cells. To determine if salicylate's suppressive effects were a consequence of increased synaptic inhibition, spontaneous inhibitory postsynaptic currents (IPSC) were measured during salicylate treatment. Salicylate unexpectedly reduced IPSC thereby ruling out increased inhibition as a mechanism to explain the depressed firing rates in fusiform cells. The salicylate-induced suppression of fusiform spike rate apparently arises from unidentified changes in the cell's intrinsic excitability.
Collapse
Affiliation(s)
- Lei Wei
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA.
| | | | | | | | | |
Collapse
|
99
|
Saino-Saito S, Suzuki R, Tokuda N, Abe H, Kondo H, Owada Y. Localization of fatty acid binding proteins (FABPs) in the cochlea of mice. Ann Anat 2010; 192:210-4. [DOI: 10.1016/j.aanat.2010.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/20/2010] [Accepted: 06/22/2010] [Indexed: 11/27/2022]
|
100
|
Knipper M, Zimmermann U, Müller M. Molecular aspects of tinnitus. Hear Res 2010; 266:60-9. [DOI: 10.1016/j.heares.2009.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 01/18/2023]
|