51
|
Dias RS, Pais AACC. Polyelectrolyte condensation in bulk, at surfaces, and under confinement. Adv Colloid Interface Sci 2010; 158:48-62. [PMID: 20347064 DOI: 10.1016/j.cis.2010.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/05/2010] [Accepted: 02/14/2010] [Indexed: 11/18/2022]
Abstract
In this review we discuss recent results from computer simulations based on coarse-grained polyion models representing aqueous solutions of polyelectrolytes. The focus will be directed to the conformation of the polyions and, in particular, their condensation in bulk, induced by multivalent ions and oppositely charged polyelectrolytes, at responsive surfaces and under confinement.
Collapse
Affiliation(s)
- R S Dias
- Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | | |
Collapse
|
52
|
Abstract
The authors investigate membrane composition-mediated interactions between proteins adsorbed onto a two-component lipid bilayer close to critical demixing using coarse-grained molecular dynamics simulations and a phenomenological Ginzburg-Landau theory. The simulations consist of three-bead lipids and platelike proteins, which adsorb onto the membrane by binding preferentially to one of the two lipid species. The composition profile around one protein and the pair correlation function between two proteins are measured and compared to the analytical predictions. The theoretical framework is applicable to any scalar field embedded in the membrane, and although in this work the authors treat flat membranes, the methodology extends readily to curved geometries. Neglecting fluctuations, both lipid composition profile and induced protein pair potential are predicted to follow a zeroth order modified Bessel function of the second kind with the same characteristic decay length. These predictions are consistent with our molecular dynamics simulations, except that the interaction range is found to be larger than the single profile correlation length.
Collapse
|
53
|
Adsorption of proteins on a lipid bilayer. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1477-82. [DOI: 10.1007/s00249-010-0604-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/11/2010] [Accepted: 03/24/2010] [Indexed: 11/25/2022]
|
54
|
Liang Q, Chen QH, Ma YQ. Membrane-Mediated Interactions between Nanoparticles on a Substrate. J Phys Chem B 2010; 114:5359-64. [DOI: 10.1021/jp910852d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China, Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Qing-Hu Chen
- Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China, Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yu-qiang Ma
- Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China, Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
55
|
Haque F, Pandey AP, Cambrea LR, Rochet JC, Hovis JS. Adsorption of alpha-synuclein on lipid bilayers: modulating the structure and stability of protein assemblies. J Phys Chem B 2010; 114:4070-81. [PMID: 20187615 PMCID: PMC2855901 DOI: 10.1021/jp1006704] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of alpha-synuclein with phospholipid membranes has been examined using supported lipid bilayers and epi-fluorescence microscopy. The membranes contained phosphatidylcholine (PC) and phosphatidic acid (PA), which mix at physiological pH. Upon protein adsorption, the lipids undergo fluid-fluid phase separation into PC-rich and PA-rich regions. The protein preferentially adsorbs to the PA-rich regions. The adsorption and subsequent aggregation of alpha-synuclein was probed by tuning several parameters: the charge on the lipids, the charge on the protein, and the screening environment. Conditions which promoted the greatest extent of adsorption resulted in structurally heterogeneous aggregates, while comparatively homogeneous aggregates were observed under conditions whereby adsorption did not occur as readily. Our observation that different alterations to the system lead to different degrees of aggregation and different aggregate structures poses a challenge for drug discovery. Namely, therapies aimed at neutralizing alpha-synuclein must target a broad range of potentially toxic, membrane-bound assemblies.
Collapse
Affiliation(s)
- Farzin Haque
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Anjan P. Pandey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Lee R. Cambrea
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Jennifer S. Hovis
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
56
|
Acosta EJ, Policova Z, Lee S, Dang A, Hair ML, Neumann AW. Restoring the activity of serum-inhibited bovine lung extract surfactant (BLES) using cationic additives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:489-97. [DOI: 10.1016/j.bbamem.2010.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
57
|
Abstract
Cellular membrane systems delimit and organize the intracellular space. Most of the morphological rearrangements in cells involve the coordinated remodeling of the lipid bilayer, the core of the membranes. This process is generally thought to be initiated and coordinated by specialized protein machineries. Nevertheless, it has become increasingly evident that the most essential part of the geometric information and energy required for membrane remodeling is supplied via the cooperative and synergistic action of proteins and lipids, as cellular shapes are constructed using the intrinsic dynamics, plasticity and self-organizing capabilities provided by the lipid bilayer. Here, we analyze the essential role of proteo-lipid membrane domains in conducting and coordinating morphological remodeling in cells.
Collapse
Affiliation(s)
- Anna V Shnyrova
- Laboratory of Cellular and Molecular Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | | | | |
Collapse
|
58
|
Acosta EJ, Policova Z, Lee S, Dang A, Hair ML, Neumann AW. Restoring the charge and surface activity of bovine lung extract surfactants with cationic and anionic polysaccharides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:882-90. [PMID: 20144883 DOI: 10.1016/j.bbamem.2010.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/25/2009] [Accepted: 01/25/2010] [Indexed: 11/24/2022]
Abstract
Chitosan, a cationic polysaccharide, has been found to improve the surface activity of lung surfactant extracts in the presence of various inhibitors. It has been proposed that chitosan binds to anionic lipids (e.g. phosphatidyl glycerols) in lung surfactants, producing stable lipid films at the air-water interface. This binding also reverses the net charge of the surfactant aggregates, from negative to positive. Unfortunately, positively charged aggregates may adsorb or interact with the negatively charged epithelial tissue, leading to poor surfactant performance. To address this issue an anionic polysaccharide, dextran sulfate (dexS), was used as a secondary coating to reverse the charge of chitosan-lung surfactant extracts without affecting the surface activity of the preparation. The dynamic surface tension and zeta potential of bovine lipid extract surfactant (BLES) containing chitosan chloride (chiCl) and dexS were evaluated as a function of dexS concentration. These studies were conducted in the absence and presence of sodium bicarbonate buffer, and in the absence and presence of bovine serum used as model inhibitor. It was determined that using an appropriate concentration of dexS, especially at physiological pH, it is possible to restore the negative charge of the surfactant aggregates, and retain their surface activity, even in the presence of bovine serum. High concentrations of dexS affect the binding of chiCl to BLES, and the surface activity of the preparation.
Collapse
Affiliation(s)
- Edgar J Acosta
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5, Canada.
| | | | | | | | | | | |
Collapse
|
59
|
Protein adsorption and desorption on lipid bilayers. Biophys Chem 2009; 146:60-4. [PMID: 19903579 DOI: 10.1016/j.bpc.2009.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 11/22/2022]
Abstract
The protein surface usually exhibits one or a few charged spots. If a lipid bilayer contains a significant amount of lipids with oppositely charged head groups, protein adsorption on a bilayer may be energetically favourable due to the protein-lipid electrostatic interaction. The specifics of this case are that the lipids are highly mobile and the protein adsorption is accompanied by the redistribution of lipids between the areas covered and not covered by protein. We present a kinetic model illustrating that this effect is especially interesting if the fraction of the surface covered by charged lipids is relatively low. In this situation, with increasing protein coverage, the protein desorption rate constant rapidly increases while the adsorption rate constant drops, so that there is critical fraction of the area covered by protein. Adsorption above this fraction is hindered both kinetically and thermodynamically.
Collapse
|
60
|
Park J, Lu W. Interaction of nanoparticles with lipid layers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:021607. [PMID: 19792139 DOI: 10.1103/physreve.80.021607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Indexed: 05/28/2023]
Abstract
Poly (amidoamine) dendrimer nanoparticles are used extensively in diverse biological and medical applications. Examples include gene and drug delivery, where nanoparticles disrupt cell membranes to allow the transport of material into cells. The size and surface chemistry of these particles have a strong effect on their interaction with membranes. This paper proposes a three-dimensional phase-field model to investigate how the interaction drives deformation and morphological evolution of the membrane. Attention is focused on the hole-formation process in the membrane. The simulations have demonstrated that a larger amine-terminated generation 7 dendrimer, which has positive charges, causes the formation of a hole in the membrane. The displaced membrane molecules enclose the particle and form a dendrimer-filled membrane vesicle. The effect is significantly reduced for a smaller dendrimer. An acetamide-terminated dendrimer, which has a neutral charge at the surface, does not cause hole formation. These results agree with experimental observations from atomic force microscopy. The study will provide insight into the design of appropriate nanoparticle surface properties for medical applications.
Collapse
Affiliation(s)
- Jonghyun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
61
|
Gorbenko GP, Trusova VM, Molotkovsky JG, Kinnunen PK. Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidylglycerol model membranes as evidenced by resonance energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1358-65. [DOI: 10.1016/j.bbamem.2009.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
62
|
Loew S, Hinderliter A, May S. Stability of protein-decorated mixed lipid membranes: The interplay of lipid-lipid, lipid-protein, and protein-protein interactions. J Chem Phys 2009; 130:045102. [PMID: 19191415 DOI: 10.1063/1.3063117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Membrane-associated proteins are likely to contribute to the regulation of the phase behavior of mixed lipid membranes. To gain insight into the underlying mechanism, we study a thermodynamic model for the stability of a protein-decorated binary lipid layer. Here, proteins interact preferentially with one lipid species and thus locally sequester that species. We aim to specify conditions that lead to an additional macroscopic phase separation of the protein-decorated lipid membrane. Our model is based on a standard mean-field lattice-gas description for both the lipid mixture and the adsorbed protein layer. Besides accounting for the lipid-protein binding strength, we also include attractive lipid-lipid and protein-protein interactions. Our analysis characterizes the decrease in the membrane's critical interaction parameter as a function of the lipid-protein binding strength. For small and large binding strengths we provide analytical expressions; numerical results cover the intermediate range. Our results reiterate the crucial importance of the line tension associated with protein-induced compositional gradients and the presence of attractive lipid-lipid interactions within the membrane. Direct protein-protein attraction effectively increases the line tension and thus tends to further destabilize the membrane.
Collapse
Affiliation(s)
- Stephan Loew
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566, USA
| | | | | |
Collapse
|
63
|
Pandey AP, Haque F, Rochet JC, Hovis JS. Clustering of alpha-synuclein on supported lipid bilayers: role of anionic lipid, protein, and divalent ion concentration. Biophys J 2009; 96:540-51. [PMID: 19167303 DOI: 10.1016/j.bpj.2008.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Alpha-synuclein is the major component of Lewy body inclusions found in the brains of patients with Parkinson's disease. Several studies indicate that alpha-synuclein binds to negatively charged phospholipid bilayers. We examined the binding of alpha-synuclein to membranes containing different amounts of negatively charged lipids using supported lipid bilayers, epifluorescence microscopy, fluorescence recovery after photobleaching, and bulk fluorescence techniques. The membranes contained phosphatidylcholine and phosphatidylglycerol. In the absence of protein, these lipids mix uniformly. Our results show that the propensity of alpha-synuclein to cluster on the membrane increases as the concentration of anionic lipid and/or protein increases. Regions on the lipid bilayer where alpha-synuclein is clustered are enriched in phosphatidylglycerol. We also observe divalent metal ions stimulate protein cluster formation, primarily by promoting lipid demixing. The importance of protein structure, lipid demixing, and divalent ions, as well as the physiological implications, will be discussed. Because membrane-bound alpha-synuclein assemblies may play a role in neurotoxicity, it is of interest to determine how membranes can be used to tune the propensity of alpha-synuclein to aggregate.
Collapse
Affiliation(s)
- Anjan P Pandey
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
64
|
Wang Q, Zhang X, Zhang L, He F, Zhang G, Jamrich M, Wensel TG. Activation-dependent hindrance of photoreceptor G protein diffusion by lipid microdomains. J Biol Chem 2008; 283:30015-24. [PMID: 18713731 DOI: 10.1074/jbc.m803953200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dynamics of G protein-mediated signal transduction depend on the two-dimensional diffusion of membrane-bound G proteins and receptors, which has been suggested to be rate-limiting for vertebrate phototransduction, a highly amplified G protein-coupled signaling pathway. Using fluorescence recovery after photobleaching (FRAP), we measured the diffusion of the G protein transducin alpha-subunit (Galpha(t)) and the G protein-coupled receptor rhodopsin on disk membranes of living rod photoreceptors from transgenic Xenopus laevis. Treatment with either methyl-beta-cyclodextrin or filipin III to disrupt cholesterol-containing lipid microdomains dramatically accelerated diffusion of Galpha(t) in its GTP-bound state and of the rhodopsin-Galphabetagamma(t) complex but not of rhodopsin or inactive GDP-bound Galphabetagamma. These results imply an activity-dependent sequestration of G proteins into cholesterol-dependent lipid microdomains, which limits diffusion and exclude the majority of free rhodopsin and the free G protein heterotrimer. Our data offer a novel demonstration of lipid microdomains in the internal membranes of living sensory neurons.
Collapse
Affiliation(s)
- Qiong Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Epand RM. Proteins and cholesterol-rich domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1576-82. [DOI: 10.1016/j.bbamem.2008.03.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 12/21/2022]
|
66
|
The "electrostatic-switch" mechanism: Monte Carlo study of MARCKS-membrane interaction. Biophys J 2008; 95:1745-57. [PMID: 18502797 DOI: 10.1529/biophysj.108.132522] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binding of the myristoylated alanine-rich C kinase substrate (MARCKS) to mixed, fluid, phospholipid membranes is modeled with a recently developed Monte Carlo simulation scheme. The central domain of MARCKS is both basic (zeta = +13) and hydrophobic (five Phe residues), and is flanked with two long chains, one ending with the myristoylated N-terminus. This natively unfolded protein is modeled as a flexible chain of "beads" representing the amino acid residues. The membranes contain neutral (zeta = 0), monovalent (zeta = -1), and tetravalent (zeta = -4) lipids, all of which are laterally mobile. MARCKS-membrane interaction is modeled by Debye-Hückel electrostatic potentials and semiempirical hydrophobic energies. In agreement with experiment, we find that membrane binding is mediated by electrostatic attraction of the basic domain to acidic lipids and membrane penetration of its hydrophobic moieties. The binding is opposed by configurational entropy losses and electrostatic membrane repulsion of the two long chains, and by lipid demixing upon adsorption. The simulations provide a physical model for how membrane-adsorbed MARCKS attracts several PIP(2) lipids (zeta = -4) to its vicinity, and how phosphorylation of the central domain (zeta = +13 to zeta = +7) triggers an "electrostatic switch", which weakens both the membrane interaction and PIP(2) sequestration. This scheme captures the essence of "discreteness of charge" at membrane surfaces and can examine the formation of membrane-mediated multicomponent macromolecular complexes that function in many cellular processes.
Collapse
|
67
|
Gorbenko GP, Ioffe VM, Molotkovsky JG, Kinnunen PK. Resonance energy transfer study of lysozyme–lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1213-21. [DOI: 10.1016/j.bbamem.2007.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/06/2007] [Accepted: 09/17/2007] [Indexed: 11/24/2022]
|
68
|
Lorenz CD, Faraudo J, Travesset A. Hydrogen bonding and binding of polybasic residues with negatively charged mixed lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1654-1658. [PMID: 18211111 DOI: 10.1021/la703550t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phosphoinositides, phosphorylated products of phosphatidylinositol, are a family of phospholipids present in tiny amounts (1% or less) in the cytosolic surface of cell membranes, yet they play an astonishingly rich regulatory role, particularly in signaling processes. In this letter, we use molecular dynamics simulations on a model system of mixed lipid monolayers to investigate the interaction of phosphatidylinositol 4,5-bisphosphate (PIP2), the most common of the phosphoinositides, with a polybasic peptide consisting of 13 lysines. Our results show that the polybasic peptide sequesters three PIP2 molecules, forming a complex stabilized by the formation of multiple hydrogen bonds between PIP2 and the Lys residues. We also show that the polybasic peptide does not sequester other charged phospholipids such as phosphatidylserine because of the inability to form long-lived stable hydrogen bonds.
Collapse
Affiliation(s)
- Christian D Lorenz
- Engineering Division, King's College, London Strand, London WC2R 2LS, U.K
| | | | | |
Collapse
|
69
|
Abstract
The adsorption of colloids of varying sizes and charges onto a surface that carries both negative and positive charges, representing a membrane, has been investigated using a simple model employing Monte Carlo simulations. The membrane is made of positive and negative charges (headgroups) that are allowed to move along the membrane, simulating the translational diffusion of the lipids, and are also allowed to protrude into the solution, giving rise to a fluid and soft membrane. When an uncharged colloid is placed in the vicinity of the membrane, a short-range repulsion between the colloid and the membrane is observed and the membrane will deflect to avoid coming into contact with the colloid. When the colloid is charged, the membrane response is twofold: the headgroups of the membrane move toward the colloid, as if to partly embrace it, and the positive headgroups of the membrane approach the oppositely charged colloid, inducing the demixing of the membrane lipids (polarization). The presence of protrusions enhances the polarization of the membrane. Potential of mean force calculations show that protrusions give rise to a more long-range attractive colloid-membrane potential which has a smaller magnitude at short separations.
Collapse
|
70
|
Kang N, Policova Z, Bankian G, Hair ML, Zuo YY, Neumann AW, Acosta EJ. Interaction between chitosan and bovine lung extract surfactants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:291-302. [DOI: 10.1016/j.bbamem.2007.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 09/27/2007] [Accepted: 10/02/2007] [Indexed: 11/28/2022]
|
71
|
Trusova VM, Gorbenko GP. Electrostatically-controlled protein adsorption onto lipid bilayer: modeling adsorbate aggregation behavior. Biophys Chem 2007; 133:90-103. [PMID: 18201814 DOI: 10.1016/j.bpc.2007.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
Abstract
Using adsorption models based on scaled particle (SPT) and double layer theories the electrostatically-controlled protein adsorption onto membrane surface has been simulated for non-associating and self-associating ligands. The binding isotherms of monomeric and oligomeric protein species have been calculated over a range of variable parameters including lipid and protein concentrations, protein and membrane charges, pH and ionic strength. Adsorption behavior of monomers appeared to be the most sensitive to the changes in the protein aggregation state. The hallmarks of the protein oligomerization are identified. The practical guides for optimal design of binding experiments focused on obtaining proofs of protein self-association are suggested.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Biological and Medical Physics, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine.
| | | |
Collapse
|
72
|
Gorfe AA, Babakhani A, McCammon JA. H-ras protein in a bilayer: interaction and structure perturbation. J Am Chem Soc 2007; 129:12280-6. [PMID: 17880077 PMCID: PMC2530826 DOI: 10.1021/ja073949v] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras GTPases become functionally active when anchored to membranes by inserting their lipid modified side chains. Their role in cell division, development, and cancer has made them targets of extensive research efforts, yet the mechanism of membrane insertion and the structure of the resulting complex remain elusive. Recently, the structure of the full-length H-ras protein in a DMPC bilayer has been computationally characterized. Here, the atomic interactions between the H-ras membrane anchor and the DMPC bilayer are investigated in detail. We find that the palmitoylated cysteines and Met182 have dual contributions to membrane affinity: hydrogen bonding by their amides and van der Waals interaction by their hydrophobic side chains. The polar side chains help maintain the orientation of the anchor. Although the overall structure of the bilayer is similar to that of a pure DMPC, there are localized perturbations. These perturbations depend on the insertion depth and backbone localization of the anchor, which in turn is modulated by the catalytic domain and the linker. The pattern of anchor amide-DMPC phosphate/carbonyl hydrogen bonds and the flexibility of Palm184 are important in discriminating between different modes of ras-DMPC interactions. The results provide structural arguments in support of the proposed participation of ras in the organization of membrane nanoclusters.
Collapse
Affiliation(s)
- Alemayehu A. Gorfe
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093-0365
- Correspondence: Tel. 858-822-0255; Fax. 858-534-4974;
| | - Arneh Babakhani
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093-0365
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093-0365
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA, 92093-0365
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, 92093-0365
| |
Collapse
|
73
|
Roux M, Moutard S, Perly B, Djedaini-Pilard F. Lipid lateral segregation driven by diacyl cyclodextrin interactions at the membrane surface. Biophys J 2007; 93:1620-9. [PMID: 17496041 PMCID: PMC1948046 DOI: 10.1529/biophysj.106.099945] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/30/2007] [Indexed: 11/18/2022] Open
Abstract
Cyclodextrins are hydrophilic molecular cages with a hydrophobic interior allowing the inclusion of water-insoluble drugs. Amphiphilic cyclodextrins obtained by appending a hydrophobic anchor were designed to improve the cell targeting of the drug-containing cavities through their liposome transportation in the organism. After insertion in model membranes, they were found to induce a lateral phase separation into a pure lipid phase and a fluid cyclodextrin-rich phase (L(CD)) with reduced acyl chain order parameters, as observed with a derivative containing a cholesterol anchor (M. Roux, R. Auzely-Velty, F. Djedaïni-Pilard, and B. Perly. 2002. Biophysical Journal, 8:813-822). We present another class of amphiphilic cyclodextrins obtained by grafting aspartic acid esterified by two lauryl chains on the oligosaccharide core via a succinyl spacer. The obtained dilauryl-beta-cyclodextrin (betaDLC) was inserted in chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) membranes and studied by deuterium NMR ((2)H-NMR). A laterally segregated mixed phase was found to sequester three times more lipids than the cholesteryl derivative (approximately 4-5 lipids per monomer of betaDLC), and a quasipure L(CD) phase could be obtained with a 20% molar concentration of betaDLC. When cooled below the main fluid-to-gel transition of DMPC-d54 the betaDLC-rich phase stays fluid, coexisting with pure lipid in the gel state, and exhibits a sharp transition to a gel phase with frozen DMPC acyl chains at 12.5 degrees C. No lateral phase separation was observed with partially or fully methylated betaDLC, confirming that the stability of the segregated L(CD) phase was governed through hydrogen-bond-mediated intermolecular interactions between cyclodextrin headgroups at the membrane surface. As opposed to native betaDLC, the methylated derivatives were found to strongly increase the orientational order of DMPC acyl chains as the temperature reaches the membrane fluid-to-gel transition. The results are discussed in relation to the "anomalous swelling" of saturated phosphatidylcholine multilamellar membranes known to occur in the vicinity of the main fluid-to-gel transition.
Collapse
Affiliation(s)
- Michel Roux
- Commissariat à l'Energie Atomique/Direction des Sciences du Vivant/Institut de Biologie et Technologies de Saclay, URA CNRS, Service de Bioénergétique, Biologie Structurale et Mécanismes, Gif sur Yvette Cedex, France.
| | | | | | | |
Collapse
|
74
|
Shi XQ, Ma YQ. Effective attraction interactions between like-charge macroions bound to binary fluid lipid membranes. J Chem Phys 2007; 126:125101. [PMID: 17411163 DOI: 10.1063/1.2714512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using integral equation theory of liquids to a binary mixed fluid lipid membrane, the authors study the membrane-mediated interactions between binding macroions and the redistribution of neutral and charged lipids due to the macroions. The authors find that when the concentration of binding macroions is infinitely dilute, the main contribution to the attractive potential between macroions is the line tension between neutral and charged lipids of the membrane. As the relative concentration of charged lipids is increased, the authors observe a repulsive-attractive-repulsive potential transition due to the competition between the line tension of mixed lipids and screened electrostatic macroion-macroion interactions. For the finite concentration of macroions, the main feature of the attraction is similar to the infinite-diluted case. However, the corresponding line tension of binary lipids under single macroion is lowered with the formation of multicomplexes by the charged lipids and the macroions, and the maximum of attractive potential will shift toward the higher values of charged lipid concentration.
Collapse
Affiliation(s)
- Xia-Qing Shi
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | | |
Collapse
|
75
|
Shafir A, Andelman D. Phase behavior of polyelectrolyte-surfactant complexes at planar surfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021803. [PMID: 17025462 DOI: 10.1103/physreve.74.021803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Indexed: 05/12/2023]
Abstract
We investigate theoretically the phase diagram of an insoluble charged surfactant monolayer in contact with a semidilute polyelectrolyte solution (of opposite charge). The polyelectrolytes are assumed to have long-range and attractive (electrostatic) interaction with the surfactant molecules. In addition, we introduce a short-range (chemical) interaction which is either attractive or repulsive. The surfactant monolayer can have a lateral phase separation between dilute and condensed phases. Three different regimes of the coupled system are investigated depending on system parameters. A regime where the polyelectrolyte is depleted due to short range repulsion from the surface, and two adsorption regimes, one being dominated by electrostatics, whereas the other by short range chemical attraction (similar to neutral polymers). When the polyelectrolyte is more attracted (or at least less repelled) by the surfactant molecules as compared with the bare water-air interface, it will shift upwards the surfactant critical temperature. For repulsive short-range interactions the effect is opposite. Finally, the addition of salt to the solution is found to increase the critical temperature for attractive surfaces, but does not show any significant effect for repulsive surfaces.
Collapse
Affiliation(s)
- Adi Shafir
- School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | | |
Collapse
|
76
|
Hinderliter A, May S. Cooperative adsorption of proteins onto lipid membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1257-S1270. [PMID: 21690839 DOI: 10.1088/0953-8984/18/28/s09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The adsorption of proteins onto a lipid membrane depends on and thus reflects the energetics of the underlying substrate. This is particularly relevant for mixed membranes that contain lipid species with different affinities for the adsorbed proteins. In this case, there is an intricate interplay between lateral membrane organization and the number of adsorbed proteins. Most importantly, proteins often tend to enhance the propensity of the lipid mixture to form clusters, domains, or to macroscopically phase separate. Sigmoidal binding isotherms are the typical signature of the corresponding cooperativity in protein adsorption. We discuss the underlying thermodynamic basis, and compare various theoretical binding models for protein adsorption onto mixed membranes. We also present experimental data for the adsorption of the C2A protein motif and analyse to what extent these data reflect cooperative binding.
Collapse
Affiliation(s)
- Anne Hinderliter
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | |
Collapse
|
77
|
Mbamala EC, Fahr A, May S. Electrostatic model for mixed cationic-zwitterionic lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:5129-36. [PMID: 16700604 DOI: 10.1021/la060180b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The current interest in mixed cationic-zwitterionic lipid membranes derives from their potential use as transfer vectors in nonviral gene therapy. Mixed cationic-zwitterionic lipid membranes have a number of structural properties that are distinct from the corresponding anionic-zwitterionic lipid membranes. As known from experiment and reproduced by computer simulations, the average cross-sectional area per lipid changes nonmonotonically with the mole fraction of the charged lipid, passing through a minimum at a roughly equimolar mixture. At the same time, the average orientation of the zwitterionic headgroup dipoles changes from more parallel to the membrane plane to more perpendicular. We suggest a simple mean-field model that reveals the physical mechanisms underlying the observed structural properties. To backup the mean-field calculations, we have also performed Monte Carlo simulations. Our model extends Poisson-Boltzmann theory to include (besides the cationic headgroup charges) the individual charges of the zwitterionic lipid headgroups. We model these charges to be arranged as dipoles of fixed length with rotational degrees of freedom. Our model includes, in a phenomenological manner, the changes in steric headgroup interactions upon reorientation of the zwitterionic headgroups. Our numerical results suggest that two different mechanisms contribute to the observed structural properties: one involves the lateral electrostatic pressure and the other the zwitterionic headgroup orientation, the latter modifying steric headgroup interactions. The two mechanisms operate in parallel as they both originate in the electrostatic properties of the involved lipids. We have also applied our model to a mixed anionic-zwitterionic lipid membrane for which neither a significant headgroup reorientation nor a nonmonotonic change in the average lateral cross-sectional area is predicted.
Collapse
Affiliation(s)
- Emmanuel C Mbamala
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566, USA
| | | | | |
Collapse
|
78
|
Golebiewska U, Gambhir A, Hangyás-Mihályné G, Zaitseva I, Rädler J, McLaughlin S. Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. Biophys J 2006; 91:588-99. [PMID: 16648167 PMCID: PMC1483118 DOI: 10.1529/biophysj.106.081562] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several biologically important peripheral (e.g., myristoylated alanine-rich C kinase substrate) and integral (e.g., the epidermal growth factor receptor) membrane proteins contain clusters of basic residues that interact with acidic lipids in the plasma membrane. Previous measurements demonstrate that the polyvalent acidic lipid phosphatidylinositol 4,5-bisphosphate is bound electrostatically (i.e., sequestered) by membrane-adsorbed basic peptides corresponding to these clusters. We report here three experimental observations that suggest monovalent acidic lipids are not sequestered by membrane-bound basic peptides. 1), Binding of basic peptides to vesicles does not decrease when the temperature is lowered below the fluid-to-gel phase transition. 2), The binding energy of Lys-13 to lipid vesicles increases linearly with the fraction of monovalent acidic lipids. 3), Binding of basic peptides to vesicles produces no self-quenching of fluorescent monovalent acidic lipids. One potential explanation for these results is that membrane-bound basic peptides diffuse too rapidly for the monovalent lipids to be sequestered. Indeed, our fluorescence correlation spectroscopy measurements show basic peptides bound to phosphatidylcholine/phosphatidylserine membranes have a diffusion coefficient approximately twofold higher than that of lipids, and those bound to phosphatidylcholine/phosphatidylinositol 4,5-bisphosphate membranes have a diffusion coefficient comparable to that of lipids.
Collapse
Affiliation(s)
- Urszula Golebiewska
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | |
Collapse
|
79
|
Sperotto MM, May S, Baumgaertner A. Modelling of proteins in membranes. Chem Phys Lipids 2006; 141:2-29. [PMID: 16620797 DOI: 10.1016/j.chemphyslip.2006.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/20/2006] [Indexed: 11/17/2022]
Abstract
This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly affected by the lipid environment. Theoretical predictions are pointed out, and compared to experimental findings, if available. Among others, the following phenomena are discussed: interactions of interfacially adsorbed peptides, pore-forming amphipathic peptides, adsorption of charged proteins onto oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins.
Collapse
|
80
|
Srinivas G, Discher DE, Klein ML. Key roles for chain flexibility in block copolymer membranes that contain pores or make tubes. NANO LETTERS 2005; 5:2343-9. [PMID: 16351175 DOI: 10.1021/nl051515x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Block copolymer amphiphiles that self-assemble into membranes present robust and functionalizable alternatives to biological assemblies. Coarse-grained molecular dynamics shows that thick bilayers of A-B copolymers accommodate protein-like channels and also tend to regulate transport. This occurs as flexible, hydrophilic A chains insert into the pore and obstruct water entry. A-B-A triblocks that exploit "hairpin" and "straight" conformations also show assembly into novel nanotubules and further highlight the key roles for chain flexibility in biomimetic block copolymer assemblies.
Collapse
Affiliation(s)
- Goundla Srinivas
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
81
|
Tzlil S, Ben-Shaul A. Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations. Biophys J 2005; 89:2972-87. [PMID: 16126828 PMCID: PMC1366795 DOI: 10.1529/biophysj.105.068387] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein.
Collapse
Affiliation(s)
- Shelly Tzlil
- Department of Physical Chemistry and The Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|