51
|
Liang L, Cui P, Wang Q, Wu T, Ågren H, Tu Y. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Adv 2013. [DOI: 10.1039/c2ra22109h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
52
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
53
|
Comer J, Ho A, Aksimentiev A. Toward detection of DNA-bound proteins using solid-state nanopores: insights from computer simulations. Electrophoresis 2012; 33:3466-79. [PMID: 23147918 PMCID: PMC3789251 DOI: 10.1002/elps.201200164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 11/07/2022]
Abstract
Through all-atom molecular dynamics simulations, we explore the use of nanopores in thin synthetic membranes for detection and identification of DNA binding proteins. Reproducing the setup of a typical experiment, we simulate electric field driven transport of DNA-bound proteins through nanopores smaller in diameter than the proteins. As model systems, we use restriction enzymes EcoRI and BamHI specifically and nonspecifically bound to a fragment of dsDNA, and streptavidin and NeutrAvidin proteins bound to dsDNA and ssDNA via a biotin linker. Our simulations elucidate the molecular mechanics of nanopore-induced rupture of a protein-DNA complex, the effective force applied to the DNA-protein bond by the electrophoretic force in a nanopore, and the role of DNA-surface interactions in the rupture process. We evaluate the ability of the nanopore ionic current and the local electrostatic potential measured by an embedded electrode to report capture of DNA, capture of a DNA-bound protein, and rupture of the DNA-protein bond. We find that changes in the strain on dsDNA can reveal the rupture of a protein-DNA complex by altering both the nanopore ionic current and the potential of the embedded electrode. Based on the results of our simulations, we suggest a new method for detection of DNA binding proteins that utilizes peeling of a nicked double strand under the electrophoretic force in a nanopore.
Collapse
Affiliation(s)
- Jeffrey Comer
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
54
|
Tian Y, Wen L, Hou X, Hou G, Jiang L. Bioinspired Ion-Transport Properties of Solid-State Single Nanochannels and Their Applications in Sensing. Chemphyschem 2012; 13:2455-70. [DOI: 10.1002/cphc.201200057] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Indexed: 12/27/2022]
|
55
|
Abstract
It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNA's flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global thermodynamic and kinetic picture of the binding landscape of DNA will become available in a few years. MD will become a crucial tool in areas such as biomolecular engineering and synthetic biology. MD has also been shown to be an excellent source of parameters for mesoscopic models of DNA flexibility. Such models can be refined through atomistic MD simulations on small duplexes and then applied to the study of entire chromosomes. Recent evidence suggests that MD-derived elastic models can successfully predict the position of regulatory regions in DNA and can help advance our understanding of nucleosome positioning and chromatin plasticity. If these results are confirmed, MD simulations can become the ultimate tool to decipher a physical code that can contribute to gene regulation. We are entering the golden age of MD simulations of DNA. Undoubtedly, the expectations are high, but the challenges are also enormous. These include the need for more accurate potential energy functionals and for longer and more complex simulations in more realistic systems. The joint research effort of several groups will be crucial for adapting the technique to the requirements of the coming decade.
Collapse
Affiliation(s)
- Alberto Pérez
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| | - F. Javier Luque
- Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal 643, Barcelona 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain, and Instituto Nacional de Bioinformàtica, Parc Científic de Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| |
Collapse
|
56
|
Edmonds CM, Hudiono YC, Ahmadi AG, Hesketh PJ, Nair S. Polymer translocation in solid-state nanopores: Dependence of scaling behavior on pore dimensions and applied voltage. J Chem Phys 2012; 136:065105. [DOI: 10.1063/1.3682777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
57
|
Comer J, Aksimentiev A. Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:3376-3393. [PMID: 22606364 PMCID: PMC3350822 DOI: 10.1021/jp210641j] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It has become possible to distinguish DNA molecules of different nucleotide sequences by measuring ion current passing through a narrow pore containing DNA. To assist experimentalists in interpreting the results of such measurements and to improve the DNA sequence detection method, we have developed a computational approach that has both the atomic-scale accuracy and the computational efficiency required to predict DNA sequence-specific differences in the nanopore ion current. In our Brownian dynamics method, the interaction between the ions and DNA is described by three-dimensional potential of mean force maps determined to a 0.03 nm resolution from all-atom molecular dynamics simulations. While this atomic-resolution Brownian dynamics method produces results with orders of magnitude less computational effort than all-atom molecular dynamics requires, we show here that the ion distributions and ion currents predicted by the two methods agree. Finally, using our Brownian dynamics method, we find that a small change in the sequence of DNA within a pore can cause a large change in the ion current, and validate this result with all-atom molecular dynamics.
Collapse
Affiliation(s)
- Jeffrey Comer
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
58
|
Di Ventra M, Krems M, Wilson J, Pershin YV. DNA characterization by transverse electrical current in a nanochannel. Methods Mol Biol 2012; 870:149-63. [PMID: 22528263 DOI: 10.1007/978-1-61779-773-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We review an approach for the characterization of single-stranded DNA based on the statistical identification of single bases via transverse electronic transport while DNA translocates in a nanopore or nanochannel. We describe the theoretical methods used to demonstrate this method for experimentally realizable systems and discuss the different physical processes involved. Recent experimental reports have shown the validity of this approach, although further work is necessary to make this a practical fast sequencing tool.
Collapse
|
59
|
Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores. Methods Mol Biol 2012; 870:165-86. [PMID: 22528264 DOI: 10.1007/978-1-61779-773-6_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA-ion interactions, and the ionic current through a nanopore.
Collapse
|
60
|
Wanunu M, Bhattacharya S, Xie Y, Tor Y, Aksimentiev A, Drndic M. Nanopore analysis of individual RNA/antibiotic complexes. ACS NANO 2011; 5:9345-53. [PMID: 22067050 PMCID: PMC3253136 DOI: 10.1021/nn203764j] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanopores in thin solid-state membranes are used to rapidly analyze individual RNA/drug complexes. The interactions of a truncated A-site RNA model of the prokaryotic ribosome with aminoglycoside antibiotics are characterized by passing individual molecules through a 3-3.5 nm diameter pore fabricated in a 8-10 nm thick silicon nitride membrane. Complexes of the A-site RNA with aminoglycosides can be distinguished from unbound A-site based on the ion current signatures produced as they pass through the nanopores. Counting the fraction of free and drug-bound molecules affords label-free drug-RNA binding isotherms consistent with literature reports and with data generated using independent fluorescence-based assays. Our measurements are supported by molecular dynamics simulations, which illustrate the relationship between the ionic current and complexation of the A-site RNA with paramomycin, a prototypical aminoglycoside antibiotic.
Collapse
Affiliation(s)
- Meni Wanunu
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University
- Corresponding authors: ; ;
| | | | - Yun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, Urbana, IL
- Corresponding authors: ; ;
| | - Marija Drndic
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University
- Corresponding authors: ; ;
| |
Collapse
|
61
|
Sathe C, Zou X, Leburton JP, Schulten K. Computational investigation of DNA detection using graphene nanopores. ACS NANO 2011; 5:8842-51. [PMID: 21981556 PMCID: PMC3222720 DOI: 10.1021/nn202989w] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanopore-based single-molecule detection and analysis have been pursued intensively over the past decade. One of the most promising applications in this regard is DNA sequencing achieved through DNA translocation-induced blockades in ionic current. Recently, nanopores fabricated in graphene sheets were used to detect double-stranded DNA. Due to its subnanometer thickness, graphene nanopores show great potential to realize DNA sequencing at single-base resolution. Resolving at the atomic level electric field-driven DNA translocation through graphene nanopores is crucial to guide the design of graphene-based sequencing devices. Molecular dynamics simulations, in principle, can achieve such resolution and are employed here to investigate the effects of applied voltage, DNA conformation, and sequence as well as pore charge on the translocation characteristics of DNA. We demonstrate that such simulations yield current characteristics consistent with recent measurements and suggest that under suitable bias conditions A-T and G-C base pairs can be discriminated using graphene nanopores.
Collapse
|
62
|
STARIKOV EB, HENNIG D, YAMADA H, GUTIERREZ R, NORDÉN B, CUNIBERTI G. SCREW MOTION OF DNA DUPLEX DURING TRANSLOCATION THROUGH PORE I: INTRODUCTION OF THE COARSE-GRAINED MODEL. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009000995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Based upon the structural properties of DNA duplexes and their counterion-water surrounding in solution, we have introduced here a screw model which may describe translocation of DNA duplexes through artificial nanopores of the proper diameter (where the DNA counterion–hydration shell can be intact) in a qualitatively correct way. This model represents DNA as a kind of "screw," whereas the counterion-hydration shell is a kind of "nut." Mathematical conditions for stable dynamics of the DNA screw model are investigated in detail. When an electrical potential is applied across an artificial membrane with a nanopore, the "screw" and "nut" begin to move with respect to each other, so that their mutual rotation is coupled with their mutual translation. As a result, there are peaks of electrical current connected with the mutual translocation of DNA and its counterion–hydration shell, if DNA is possessed of some non-regular base-pair sequence. The calculated peaks of current strongly resemble those observed in the pertinent experiments. An analogous model could in principle be applied to DNA translocation in natural DNA–protein complexes of biological interest, where the role of "nut" would be played by protein-tailored "channels." In such cases, the DNA screw model is capable of qualitatively explaining chemical-to-mechanical energy conversion in DNA–protein molecular machines via symmetry breaking in DNA–protein friction.
Collapse
Affiliation(s)
- E. B. STARIKOV
- Institute for Materials Science, Technical University of Dresden, D-01062 Dresden, Germany
- Institute for Theoretical Solid State Physics, University of Karlsruhe, Wolfgang-Gaede Str.1, D-76131 Karlsruhe, Germany
| | - D. HENNIG
- Institute for Physics, Humboldt University of Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| | - H. YAMADA
- Yamada Physics Research Laboratory, Aoyama 5-7-14-205, Niigata 950-2002, Japan
| | - R. GUTIERREZ
- Institute for Materials Science, Technical University of Dresden, D-01062 Dresden, Germany
| | - B. NORDÉN
- Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - G. CUNIBERTI
- Institute for Materials Science, Technical University of Dresden, D-01062 Dresden, Germany
| |
Collapse
|
63
|
de Zoysa RSS, Krishantha DMM, Zhao Q, Gupta J, Guan X. Translocation of single-stranded DNA through the α-hemolysin protein nanopore in acidic solutions. Electrophoresis 2011; 32:3034-41. [PMID: 21997574 DOI: 10.1002/elps.201100216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/02/2011] [Accepted: 06/09/2011] [Indexed: 11/12/2022]
Abstract
The effect of acidic pH on the translocation of single-stranded DNA through the α-hemolysin pore is investigated. Two significantly different types of events, i.e. deep blockades and shallow blockades, are observed at low pH. The residence times of the shallow blockades are not significantly different from those of the DNA translocation events obtained at or near physiological pH, whereas the deep blockades have much larger residence times and blockage amplitudes. With a decrease in the pH of the electrolyte solution, the percentage of the deep blockades in the total events increases. Furthermore, the mean residence time of these long-lived events is dependent on the length of DNA, and also varies with the nucleotide base, suggesting that they are appropriate for use in DNA analysis. In addition to being used as an effective approach to affect DNA translocation in the nanopore, manipulation of the pH of the electrolyte solution provides a potential means to greatly enhance the sensitivity of nanopore stochastic sensing.
Collapse
Affiliation(s)
- Ranulu S S de Zoysa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | | | | | | | | |
Collapse
|
64
|
Rowghanian P, Grosberg AY. Force-driven polymer translocation through a nanopore: an old problem revisited. J Phys Chem B 2011; 115:14127-35. [PMID: 21780746 DOI: 10.1021/jp204014r] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider DNA translocation through a pore in a planar membrane. The pore is so narrow that only one DNA segment can fit in. Assuming that the biasing force f acts inside the pore only, and that the DNA monomer number N is asymptotically large, we modify the previously developed treatment of the stretched part of the pre-translocated polymer by introducing the concept of "iso-flux trumpet". We show that friction of a moving chain in the trumpet, although it determines the speed of the process, provides only a marginal fraction of overall dissipation in the process. The dominant dissipation turns out to be due to irreversible entropic squeezing of the chain into the small pore. We also discover that because of the role of the membrane a much larger amount of heat of order k(B)T per monomer gets transferred from the heat bath on the post-translocation side to that on the pre-translocation side.
Collapse
Affiliation(s)
- Payam Rowghanian
- Department of Physics, Center for Soft Matter Research, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
65
|
Carr R, Comer J, Ginsberg MD, Aksimentiev A. Microscopic Perspective on the Adsorption Isotherm of a Heterogeneous Surface. J Phys Chem Lett 2011; 2:1804-1807. [PMID: 22611479 PMCID: PMC3353733 DOI: 10.1021/jz200749d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Adsorption of dissolved molecules onto solid surfaces can be extremely sensitive to the atomic-scale properties of the solute and surface, causing difficulties for the design of fluidic systems in industrial, medical and technological applications. In this communication, we show that the Langmuir isotherm for adsorption of a small molecule to a realistic, heterogeneous surface can be predicted from atomic structures of the molecule and surface through molecular dynamics (MD) simulations. We highlight the method by studying the adsorption of dimethyl-methylphosphonate (DMMP) to amorphous silica substrates and show that subtle differences in the atomic-scale surface properties can have drastic effects on the Langmuir isotherm. The sensitivity of the method presented is sufficient to permit the optimization of fluidic devices and to determine fundamental design rules for controlling adsorption at the nanoscale.
Collapse
Affiliation(s)
- Rogan Carr
- Department of Physics, University of Illinois, Urbana, IL
| | - Jeffrey Comer
- Department of Physics, University of Illinois, Urbana, IL
| | | | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, Urbana, IL
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL
| |
Collapse
|
66
|
Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci U S A 2011; 108:10443-7. [PMID: 21670256 DOI: 10.1073/pnas.1103519108] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA interference-mediated gene silencing approach is promising for therapies based on the targeted inhibition of disease-relevant genes. Electropermeabilization is one of the nonviral methods successfully used to transfer siRNA into living cells in vitro and in vivo. Although this approach is effective in the field of gene silencing by RNA interference, very little is known about the basic processes supporting siRNA transfer. In this study, we investigated, by direct visualization at the single-cell level, the delivery of Alexa Fluor 546-labeled siRNA into murine melanoma cells stably expressing the enhanced green fluorescent protein (EGFP) as a target gene. The electrotransfer of siRNA was quantified by time lapse fluorescence microscopy and was correlated with the silencing of egfp expression. A direct transfer into the cell cytoplasm of the negatively charged siRNA was observed across the plasma membrane exclusively on the side facing the cathode. When added after electropulsation, the siRNA was inefficient for gene silencing because it did not penetrate the cells. Therefore, we report that an electric field acts on both the permeabilization of the cell plasma membrane and on the electrophoretic drag of the negatively charged siRNA molecules from the bulk phase into the cytoplasm. The transfer kinetics of siRNA are compatible with the creation of nanopores, which are described with the technique of synthetic nanopores. The mechanism involved was clearly specific for the physico-chemical properties of the electrotransferred molecule and was different from that observed with small molecules or plasmid DNA.
Collapse
|
67
|
Fyta M, Melchionna S, Succi S. Translocation of biomolecules through solid-state nanopores: Theory meets experiments. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/polb.22284] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
68
|
Ramachandran A, Guo Q, Iqbal SM, Liu Y. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores. J Phys Chem B 2011; 115:6138-48. [PMID: 21526788 PMCID: PMC3148180 DOI: 10.1021/jp101052x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state nanopores provide a direct means to detect and analyze DNA and proteins. In a typical setup, the DNA molecules travel through a nanopore under electrophoretic voltage bias. The nanopore is sandwiched between two chambers that are filled with ionic solution. A major challenge in using solid-state nanopores for DNA sequencing and gene detection is to improve their selectivity and detection sensitivity. To achieve these goals, one solution is to functionalize the nanopores by chemically modifying the pore walls with silanes or nucleic acids. However, little is known about molecular interactions in functionalized nanopores. This paper presents DNA translocation dynamics and the mechanism of DNA sequencing in a functionalized nanopore through a coarse-grained molecular dynamics model. The DNA nucleotide is coarse-grained into two interaction sites: one site corresponds to the base group and the other encompasses the phosphate and sugar groups. The water molecules are included in the model implicitly through Langevin dynamics. The coarse-grained model immensely improves the computational efficiency while still capturing the essential translocation dynamics. The model characterizes important physical properties of functionalized nanopores such as the effective pore diameter and effect of biasing voltage on the DNA translocation dynamics. The model reveals a nonlinear relationship between translocation speed of DNA and applied voltage. Moreover, DNA translocation in nanopores functionalized with hairpin-loop (HPL) DNA and single-stranded DNA (ss-DNA) shows significant differences: a target DNA is found to translocate through a ss-DNA coated nanopore 9 times faster than through an HPL coated one at a bias of 100 mV, putatively from lower stiffness of ss-DNA than that for HPL. The DNA translocation speed is also largely influenced by interaction potential between the DNA and surface-tethered molecules. The results reveal that such selective translocation, distinctly different translocation dynamics of target DNA molecules largely stem from the flexibility and orientation of the surface-tethered molecules. These findings can significantly impact the rational design of DNA transport experiments leading to rapid molecule-level diagnostics.
Collapse
Affiliation(s)
- Abhijit Ramachandran
- Department of Bioengineering, Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center at Dallas, Arlington, Texas, 76019
| | - Qingjiang Guo
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 USA
| | - Samir M. Iqbal
- Department of Bioengineering, Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center at Dallas, Arlington, Texas, 76019
- Nanotechnology Research and Teaching Facility, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 USA
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
69
|
Arkhangelsky E, Sefi Y, Hajaj B, Rothenberg G, Gitis V. Kinetics and mechanism of plasmid DNA penetration through nanopores. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Carr R, Comer J, Ginsberg MD, Aksimentiev A. Modeling Pressure-Driven Transport of Proteins through a Nanochannel. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2011; 10:75-82. [PMID: 22611338 PMCID: PMC3353732 DOI: 10.1109/tnano.2010.2062530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Reducing the size of a nanofluidic channel not only creates new opportunities for high-precision manipulation of biological macromolecules, but also makes the performance of the entire nanofluidic system more susceptible to undesirable interactions between the transported biomolecules and the walls of the channel. In this manuscript, we report molecular dynamics simulations of a pressure-driven flow through a silica nanochannel that characterized, with atomic resolution, adsorption of a model protein to its surface. Although the simulated adsorption of the proteins was found to be nonspecific, it had a dramatic effect on the rate of the protein transport. To determine the relative strength of the protein-silica interactions in different adsorbed states, we simulated flow-induced desorption of the proteins from the silica surface. Our analysis of the protein conformations in the adsorbed states did not reveal any simple dependence of the adsorption strength on the size and composition of the protein-silica contact, suggesting that the heterogeneity of the silica surface may be a important factor.
Collapse
Affiliation(s)
- Rogan Carr
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | - Jeffrey Comer
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | | | - Aleksei Aksimentiev
- Department of Physics and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
71
|
Abstract
Using nanopores to sequence DNA rapidly and at a low cost has the potential to radically transform the field of genomic research. However, despite all the exciting developments in the field, sequencing DNA using a nanopore has yet to be demonstrated. Among the many problems that hinder development of the nanopore sequencing methods is the inability of current experimental techniques to visualize DNA conformations in a nanopore and directly relate the microscopic state of the system to the measured signal. We have recently shown that such tasks could be accomplished through computation. This chapter provides step-by-step instructions of how to build atomic scale models of biological and solid-state nanopore systems, use the molecular dynamics method to simulate the electric field-driven transport of ions and DNA through the nanopores, and analyze the results of such computational experiments.
Collapse
Affiliation(s)
- Jeffrey R Comer
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
72
|
Wanunu M, Cohen-Karni D, Johnson RR, Fields L, Benner J, Peterman N, Zheng Y, Klein ML, Drndic M. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J Am Chem Soc 2010; 133:486-92. [PMID: 21155562 DOI: 10.1021/ja107836t] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified DNA bases are widespread in biology. 5-Methylcytosine (mC) is a predominant epigenetic marker in higher eukaryotes involved in gene regulation, development, aging, cancer, and disease. Recently, 5-hydroxymethylcytosine (hmC) was identified in mammalian brain tissue and stem cells. However, most of the currently available assays cannot distinguish mC from hmC in DNA fragments. We investigate here the physical properties of DNA with modified cytosines, in efforts to develop a physical tool that distinguishes mC from hmC in DNA fragments. Molecular dynamics simulations reveal that polar cytosine modifications affect internal base pair dynamics, while experimental evidence suggest a correlation between the modified cytosine's polarity, DNA flexibility, and duplex stability. On the basis of these physical differences, solid-state nanopores can rapidly discriminate among DNA fragments with mC or hmC modification by sampling a few hundred molecules in the solution. Further, the relative proportion of hmC in the sample can be determined from the electronic signature of the intact DNA fragment.
Collapse
Affiliation(s)
- Meni Wanunu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Luan B, Aksimentiev A. Control and reversal of the electrophoretic force on DNA in a charged nanopore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454123. [PMID: 21339610 PMCID: PMC3159955 DOI: 10.1088/0953-8984/22/45/454123] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Electric field driven transport of DNA through solid-state nanopores is the key process in nanopore-based DNA sequencing that promises dramatic reduction of genome sequencing costs. A major hurdle in the development of this sequencing method is that DNA transport through the nanopores occurs too quickly for the DNA sequence to be detected. By means of all-atom molecular dynamics simulations, we demonstrate that the velocity of DNA transport through a nanopore can be controlled by the charge state of the nanopore surface. In particular, we show that the charge density of the nanopore surface controls the magnitude and/or direction of the electro-osmotic flow through the nanopore and thereby can significantly reduce or even reverse the effective electrophoretic force on DNA. Our work suggests a physical mechanism to control DNA transport in a nanopore by chemical, electrical or electrochemical modification of the nanopore surface.
Collapse
Affiliation(s)
- Binquan Luan
- T. J. Watson Research Center, IBM, 1101 Kitchawan Road, Yorktown heights, New York, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana Champaign, 1110 West Green Street, Urbana, Illinois, USA
| |
Collapse
|
74
|
Viasnoff V, Chiaruttini N, Muzard J, Bockelmann U. Force fluctuations assist nanopore unzipping of DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454122. [PMID: 21339609 DOI: 10.1088/0953-8984/22/45/454122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order k(B)T/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.
Collapse
Affiliation(s)
- V Viasnoff
- Nanobiophysics Lab, UMR CNRS Gulliver, ESPCI, 10 rue Vauquelin, F-75005 Paris, France.
| | | | | | | |
Collapse
|
75
|
Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. NATURE NANOTECHNOLOGY 2010; 5:807-14. [PMID: 20972437 DOI: 10.1038/nnano.2010.202] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/14/2010] [Indexed: 05/24/2023]
Abstract
Small RNA molecules have an important role in gene regulation and RNA silencing therapy, but it is challenging to detect these molecules without the use of time-consuming radioactive labelling assays or error-prone amplification methods. Here, we present a platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA. In this platform, a target microRNA is first hybridized to a probe. This probe:microRNA duplex is then enriched through binding to the viral protein p19. Finally, the abundance of the duplex is quantified using a nanopore. Reducing the thickness of the membrane containing the nanopore to 6 nm leads to increased signal amplitudes from biomolecules, and reducing the diameter of the nanopore to 3 nm allows the detection and discrimination of small nucleic acids based on differences in their physical dimensions. We demonstrate the potential of this approach by detecting picogram levels of a liver-specific miRNA from rat liver RNA.
Collapse
Affiliation(s)
- Meni Wanunu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
76
|
Ayub M, Ivanov A, Instuli E, Cecchini M, Chansin G, McGilvery C, Hong J, Baldwin G, McComb D, Edel JB, Albrecht T. Nanopore/electrode structures for single-molecule biosensing. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.03.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
77
|
Grosberg AY, Rabin Y. DNA capture into a nanopore: Interplay of diffusion and electrohydrodynamics. J Chem Phys 2010; 133:165102. [DOI: 10.1063/1.3495481] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
78
|
Wells DB, Aksimentiev A. Mechanical properties of a complete microtubule revealed through molecular dynamics simulation. Biophys J 2010; 99:629-37. [PMID: 20643083 DOI: 10.1016/j.bpj.2010.04.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
Microtubules (MTs) are the largest type of cellular filament, essential in processes ranging from mitosis and meiosis to flagellar motility. Many of the processes depend critically on the mechanical properties of the MT, but the elastic moduli, notably the Young's modulus, are not directly revealed in experiment, which instead measures either flexural rigidity or response to radial deformation. Molecular dynamics (MD) is a method that allows the mechanical properties of single biomolecules to be investigated through computation. Typically, MD requires an atomic resolution structure of the molecule, which is unavailable for many systems, including MTs. By combining structural information from cryo-electron microscopy and electron crystallography, we have constructed an all-atom model of a complete MT and used MD to determine its mechanical properties. The simulations revealed nonlinear axial stress-strain behavior featuring a pronounced softening under extension, a possible plastic deformation transition under radial compression, and a distinct asymmetry in response to the two senses of twist. This work demonstrates the possibility of combining different levels of structural information to produce all-atom models suitable for quantitative MD simulations, which extends the range of systems amenable to the MD method and should enable exciting advances in our microscopic knowledge of biology.
Collapse
Affiliation(s)
- David B Wells
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|
79
|
Mirsaidov U, Comer J, Dimitrov V, Aksimentiev A, Timp G. Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix. NANOTECHNOLOGY 2010; 21:395501. [PMID: 20808032 PMCID: PMC3170403 DOI: 10.1088/0957-4484/21/39/395501] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is now possible to slow and trap a single molecule of double-stranded DNA (dsDNA), by stretching it using a nanopore, smaller in diameter than the double helix, in a solid-state membrane. By applying an electric force larger than the threshold for stretching, dsDNA can be impelled through the pore. Once a current blockade associated with a translocating molecule is detected, the electric field in the pore is switched in an interval less than the translocation time to a value below the threshold for stretching. According to molecular dynamics (MD) simulations, this leaves the dsDNA stretched in the pore constriction with the base-pairs tilted, while the B-form canonical structure is preserved outside the pore. In this configuration, the translocation velocity is substantially reduced from 1 bp/10 ns to approximately 1 bp/2 ms in the extreme, potentially facilitating high fidelity reads for sequencing, precise sorting, and high resolution (force) spectroscopy.
Collapse
Affiliation(s)
- Utkur Mirsaidov
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
80
|
Gai D, Chang YP, Chen XS. Origin DNA melting and unwinding in DNA replication. Curr Opin Struct Biol 2010; 20:756-62. [PMID: 20870402 DOI: 10.1016/j.sbi.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/25/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on recent advances in the structural and biochemical studies of the initiators and the replicative helicases in multiple replication systems, with emphasis on the systems in archaeal and eukaryotic cells. These studies have yielded insights into the plausible mechanisms of the early stages of DNA replication.
Collapse
Affiliation(s)
- Dahai Gai
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
81
|
Chen W, Wu ZQ, Xia XH, Xu JJ, Chen HY. Anomalous Diffusion of Electrically Neutral Molecules in Charged Nanochannels. Angew Chem Int Ed Engl 2010; 49:7943-7. [DOI: 10.1002/anie.201002711] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
82
|
Chen W, Wu ZQ, Xia XH, Xu JJ, Chen HY. Anomalous Diffusion of Electrically Neutral Molecules in Charged Nanochannels. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
83
|
Cruz-Chu ER, Schulten K. Computational microscopy of the role of protonable surface residues in nanoprecipitation oscillations. ACS NANO 2010; 4:4463-74. [PMID: 20597534 PMCID: PMC2927718 DOI: 10.1021/nn100399f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A novel phenomenon has recently been reported in polymeric nanopores. This phenomenon, so-called nanoprecipitation, is characterized by the transient formation of precipitates in the nanopore lumen, producing a sequence of low and high conductance states in the ionic current through the pore. By means of all-atom molecular dynamics simulations, we studied nanoprecipitation for polyethylene terephthalate nanopore immersed in electrolytic solution containing calcium phosphate, covering a total simulation time of 1.24 micros. Our results suggest that protonable surface residues at the nanopore surface, namely carboxyl groups, trigger the formation of precipitates that strongly adhere to the surface, blocking the pore and producing the low conductance state. On the basis of the simulations, we propose a mechanism for the formation of the high conductance state; the mechanism involves detachment of the precipitate from the surface due to reprotonation of carboxyl groups and subsequent translocation of the precipitate out of the pore.
Collapse
Affiliation(s)
- Eduardo R. Cruz-Chu
- Beckman Institute for Advanced Science and Technology - Center for Biophysics and Computational Biology - University of Illinois at Urbana-Champaign
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology - Center for Biophysics and Computational Biology - University of Illinois at Urbana-Champaign
- Department of Physics - University of Illinois at Urbana-Champaign
- Corresponding author.
| |
Collapse
|
84
|
Chen Z, Jiang Y, Dunphy DR, Adams DP, Hodges C, Liu N, Zhang N, Xomeritakis G, Jin X, Aluru NR, Gaik SJ, Hillhouse HW, Brinker CJ. DNA translocation through an array of kinked nanopores. NATURE MATERIALS 2010; 9:667-75. [PMID: 20651807 DOI: 10.1038/nmat2805] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Synthetic solid-state nanopores are being intensively investigated as single-molecule sensors for detection and characterization of DNA, RNA and proteins. This field has been inspired by the exquisite selectivity and flux demonstrated by natural biological channels and the dream of emulating these behaviours in more robust synthetic materials that are more readily integrated into practical devices. So far, the guided etching of polymer films, focused ion-beam sculpting, and electron-beam lithography and tuning of silicon nitride membranes have emerged as three promising approaches to define synthetic solid-state pores with sub-nanometre resolution. These procedures have in common the formation of nominally cylindrical or conical pores aligned normal to the membrane surface. Here we report the formation of 'kinked' silica nanopores, using evaporation-induced self-assembly, and their further tuning and chemical derivatization using atomic-layer deposition. Compared with 'straight through' proteinaceous nanopores of comparable dimensions, kinked nanopores exhibit up to fivefold reduction in translocation velocity, which has been identified as one of the critical issues in DNA sequencing. Additionally, we demonstrate an efficient two-step approach to create a nanopore array exhibiting nearly perfect selectivity for ssDNA over dsDNA. We show that a coarse-grained drift-diffusion theory with a sawtooth-like potential can reasonably describe the velocity and translocation time of DNA through the pore. By control of pore size, length and shape, we capture the main functional behaviours of protein pores in our solid-state nanopore system.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Chemical & Nuclear Engineering and Center for Micro-Engineered Materials, University of New Mexico, 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Mirsaidov UM, Wang D, Timp W, Timp G. Molecular diagnostics for personal medicine using a nanopore. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:367-81. [PMID: 20564464 PMCID: PMC5523111 DOI: 10.1002/wnan.86] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Semiconductor nanotechnology has created the ultimate analytical tool: a nanopore with single molecule sensitivity. This tool offers the intriguing possibility of high-throughput, low cost sequencing of DNA with the absolute minimum of material and preprocessing. The exquisite single molecule sensitivity obviates the need for costly and error-prone procedures like polymerase chain reaction amplification. Instead, nanopore sequencing relies on the electric signal that develops when a DNA molecule translocates through a pore in a membrane. If each base pair has a characteristic electrical signature, then ostensibly a pore could be used to analyze the sequence by reporting all of the signatures in a single read without resorting to multiple DNA copies. The potential for a long read length combined with high translocation velocity should make resequencing inexpensive and allow for haplotyping and methylation profiling in a chromosome.
Collapse
Affiliation(s)
- Utkur M Mirsaidov
- Stinson-Remick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
86
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
87
|
|
88
|
Cruz-Chu ER, Ritz T, Siwy ZS, Schulten K. Molecular control of ionic conduction in polymer nanopores. Faraday Discuss 2010; 143:47-62; discussion 81-93. [PMID: 20334094 DOI: 10.1039/b906279n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanopores show unique transport properties and have attracted a great deal of scientific interest as a test system to study ionic and molecular transport at the nanoscale. By means of all-atom molecular dynamics, we simulated the ion dynamics inside polymeric polyethylene terephthalate nanopores. For this purpose, we established a protocol to assemble atomic models of polymeric material into which we sculpted a nanopore model with the key features of experimental devices, namely a conical geometry and a negative surface charge density. Molecular dynamics simulations of ion currents through the pore show that the protonation state of the carboxyl group of exposed residues have a considerable effect on ion selectivity, by affecting ionic densities and electrostatic potentials inside the nanopores. The role of high concentrations of Ca2+ ions was investigated in detail.
Collapse
Affiliation(s)
- Eduardo R Cruz-Chu
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, USA
| | | | | | | |
Collapse
|
89
|
Timp W, Mirsaidov UM, Wang D, Comer J, Aksimentiev A, Timp G. Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2010; 9:281-294. [PMID: 21572978 PMCID: PMC3092306 DOI: 10.1109/tnano.2010.2044418] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sequencing a single molecule of deoxyribonucleic acid (DNA) using a nanopore is a revolutionary concept because it combines the potential for long read lengths (>5 kbp) with high speed (1 bp/10 ns), while obviating the need for costly amplification procedures due to the exquisite single molecule sensitivity. The prospects for implementing this concept seem bright. The cost savings from the removal of required reagents, coupled with the speed of nanopore sequencing places the $1000 genome within grasp. However, challenges remain: high fidelity reads demand stringent control over both the molecular configuration in the pore and the translocation kinetics. The molecular configuration determines how the ions passing through the pore come into contact with the nucleotides, while the translocation kinetics affect the time interval in which the same nucleotides are held in the constriction as the data is acquired. Proteins like α-hemolysin and its mutants offer exquisitely precise self-assembled nanopores and have demonstrated the facility for discriminating individual nucleotides, but it is currently difficult to design protein structure ab initio, which frustrates tailoring a pore for sequencing genomic DNA. Nanopores in solid-state membranes have been proposed as an alternative because of the flexibility in fabrication and ease of integration into a sequencing platform. Preliminary results have shown that with careful control of the dimensions of the pore and the shape of the electric field, control of DNA translocation through the pore is possible. Furthermore, discrimination between different base pairs of DNA may be feasible. Thus, a nanopore promises inexpensive, reliable, high-throughput sequencing, which could thrust genomic science into personal medicine.
Collapse
Affiliation(s)
- Winston Timp
- Center for Epigenetics, Department of Medicine, Johns Hopkins University, Baltimore, MD21205 USA
| | | | - Deqiang Wang
- University of Notre Dame, South Bend, IN 46556 USA
| | | | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Gregory Timp
- University of Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|
90
|
Aksimentiev A. Deciphering ionic current signatures of DNA transport through a nanopore. NANOSCALE 2010; 2:468-83. [PMID: 20644747 PMCID: PMC2909628 DOI: 10.1039/b9nr00275h] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Within just a decade from the pioneering work demonstrating the utility of nanopores for molecular sensing, nanopores have emerged as versatile systems for single-molecule manipulation and analysis. In a typical setup, a gradient of the electrostatic potential captures charged solutes from the solution and forces them to move through a single nanopore, across an otherwise impermeable membrane. The ionic current blockades resulting from the presence of a solute in a nanopore can reveal the type of the solute, for example, the nucleotide makeup of a DNA strand. Despite great success, the microscopic mechanisms underlying the functionality of such stochastic sensors remain largely unknown, as it is not currently possible to characterize the microscopic conformations of single biomolecules directly in a nanopore and thereby unequivocally establish the causal relationship between the observables and the microscopic events. Such a relationship can be determined using molecular dynamics-a computational method that can accurately predict the time evolution of a molecular system starting from a given microscopic state. This article describes recent applications of this method to the process of DNA transport through biological and synthetic nanopores.
Collapse
Affiliation(s)
- Aleksei Aksimentiev
- Department of Physics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
91
|
Postma HWC. Rapid sequencing of individual DNA molecules in graphene nanogaps. NANO LETTERS 2010; 10:420-5. [PMID: 20044842 DOI: 10.1021/nl9029237] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
I propose a technique for reading the base sequence of a single DNA molecule using a graphene nanogap to read the DNA's transverse conductance. Because graphene is a single atom thick, single-base resolution of the conductance is readily obtained. The nonlinear current-voltage characteristic is used to determine the base type independent of nanogap-width variations that cause the current to change by 5 orders of magnitude. The expected sequencing error rate is 0% up to a nanogap width of 1.6 nm.
Collapse
Affiliation(s)
- Henk W Ch Postma
- Department of Physics, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8268, USA.
| |
Collapse
|
92
|
Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. NATURE NANOTECHNOLOGY 2010; 5:160-5. [PMID: 20023645 PMCID: PMC2849735 DOI: 10.1038/nnano.2009.379] [Citation(s) in RCA: 529] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/12/2009] [Indexed: 04/14/2023]
Abstract
Solid-state nanopores are sensors capable of analysing individual unlabelled DNA molecules in solution. Although the critical information obtained from nanopores (for example, DNA sequence) comes from the signal collected during DNA translocation, the throughput of the method is determined by the rate at which molecules arrive and thread into the pores. Here, we study the process of DNA capture into nanofabricated SiN pores of molecular dimensions. For fixed analyte concentrations we find an increase in capture rate as the DNA length increases from 800 to 8,000 base pairs, a length-independent capture rate for longer molecules, and increasing capture rates when ionic gradients are established across the pore. Furthermore, we show that application of a 20-fold salt gradient allows the detection of picomolar DNA concentrations at high throughput. The salt gradients enhance the electric field, focusing more molecules into the pore, thereby advancing the possibility of analysing unamplified DNA samples using nanopores.
Collapse
Affiliation(s)
- Meni Wanunu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
93
|
Dorvel B, Sigalov G, Zhao Q, Comer J, Dimitrov V, Mirsaidov U, Aksimentiev A, Timp G. Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore. Nucleic Acids Res 2009; 37:4170-9. [PMID: 19433506 PMCID: PMC2709577 DOI: 10.1093/nar/gkp317] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/17/2009] [Accepted: 04/19/2009] [Indexed: 11/14/2022] Open
Abstract
Restriction endonucleases are used prevalently in recombinant DNA technology because they bind so stably to a specific target sequence and, in the presence of cofactors, cleave double-helical DNA specifically at a target sequence at a high rate. Using synthetic nanopores along with molecular dynamics (MD), we have analyzed with atomic resolution how a prototypical restriction endonuclease, EcoRI, binds to the DNA target sequence--GAATTC--in the absence of a Mg(2+) ion cofactor. We have previously shown that there is a voltage threshold for permeation of DNA bound to restriction enzymes through a nanopore that is associated with a nanonewton force required to rupture the complex. By introducing mutations in the DNA, we now show that this threshold depends on the recognition sequence and scales linearly with the dissociation energy, independent of the pore geometry. To predict the effect of mutation in a base pair on the free energy of dissociation, MD is used to qualitatively rank the stability of bonds in the EcoRI-DNA complex. We find that the second base in the target sequence exhibits the strongest binding to the protein, followed by the third and first bases, with even the flanking sequence affecting the binding, corroborating our experiments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G. Timp
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
94
|
McCauley MJ, Williams MC. Optical tweezers experiments resolve distinct modes of DNA-protein binding. Biopolymers 2009; 91:265-82. [PMID: 19173290 DOI: 10.1002/bip.21123] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optical tweezers are ideally suited to perform force microscopy experiments that isolate a single biomolecule, which then provides multiple binding sites for ligands. The captured complex may be subjected to a spectrum of forces, inhibiting or facilitating ligand activity. In the following experiments, we utilize optical tweezers to characterize and quantify DNA binding of various ligands. High mobility group type B (HMGB) proteins, which bind to double-stranded DNA, are shown to serve the dual purpose of stabilizing and enhancing the flexibility of double stranded DNA. Unusual intercalating ligands are observed to thread into and lengthen the double-stranded structure. Proteins binding to both double- and single-stranded DNA, such as the alpha polymerase subunit of E. coli Pol III, are characterized, and the subdomains containing the distinct sites responsible for binding are isolated. Finally, DNA binding of bacteriophage T4 and T7 single-stranded DNA (ssDNA) binding proteins is measured for a range of salt concentrations, illustrating a binding model for proteins that slide along double-stranded DNA, ultimately binding tightly to ssDNA. These recently developed methods quantify both the binding activity of the ligand as well as the mode of binding.
Collapse
Affiliation(s)
- Micah J McCauley
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | |
Collapse
|
95
|
Antibiotic translocation through membrane channels: temperature-dependent ion current fluctuation for catching the fast events. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:1141-5. [PMID: 19506850 DOI: 10.1007/s00249-009-0495-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Temperature-dependent facilitated permeation of antibiotics through membrane channels was investigated. Here we reconstituted single OmpF trimers from the outer membrane of Escherichia coli (E. coli) into a planar lipid bilayer. The penetration of ampicillin through OmpF causes fluctuation in the ion current, and analysis of the fluctuations at different temperatures allows us to determine the mode of permeation. The residence time of the drug inside the channel decays strongly with temperature, reaching the resolution limit of the instrument at 30 degrees C. The number of events increases exponentially with temperature up to 30 degrees C and then gradually decreases as temperature increases. At room temperature, we observe about 25 events per second per monomer of the trimeric channel and an extrapolation to 37 degrees C gives roughly 50 events. The activation energy for ampicillin translocation through OmpF is estimated to be around 13 kT. Temperature-dependent study gives new insights into the faster translocation of small substrates through biological nanopores.
Collapse
|
96
|
Maleki T, Mohammadi S, Ziaie B. A nanofluidic channel with embedded transverse nanoelectrodes. NANOTECHNOLOGY 2009; 20:105302. [PMID: 19417517 DOI: 10.1088/0957-4484/20/10/105302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this paper, we demonstrate fabrication and characterization of a nanofluidic channel with embedded transverse nanoelectrodes using a combination of conventional photolithography and focused ion beam technologies. Glass-capped silicon dioxide nanochannels having 20 nm depth, 50 nm width, and 2 microm length with embedded platinum nanoelectrodes were fabricated. Channel patency was verified through measurements of the resistivity in phosphate buffered saline and electrostatic action on charged fluorescent nanospheres. Platinum nanoelectrode functionality was also tested using transverse resistance measurements in nanochannels filled with air, deionized water, and saline solution.
Collapse
Affiliation(s)
- T Maleki
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
97
|
Vaitheeswaran S, Reddy G, Thirumalai D. Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores. J Chem Phys 2009; 130:094502. [PMID: 19275404 DOI: 10.1063/1.3080720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use Metropolis Monte Carlo and umbrella sampling to calculate the free energies of interaction of two methane molecules and their charged derivatives in cylindrical water-filled pores. Confinement strongly alters the interactions between the nonpolar solutes and completely eliminates the solvent separated minimum (SSM) that is seen in bulk water. The free energy profiles show that the methane molecules are either in contact or at separations corresponding to the diameter and the length of the cylindrical pore. Analytic calculations that estimate the entropy of the solutes, which are solvated at the pore surface, qualitatively explain the shape of the free energy profiles. Adding charges of opposite sign and magnitude 0.4e or e (where e is the electronic charge) to the methane molecules decreases their tendency for surface solvation and restores the SSM. We show that confinement induced ion-pair formation occurs whenever l(B)/D approximately O(1), where l(B) is the Bjerrum length and D is the pore diameter. The extent of stabilization of the SSM increases with ion charge density as long as l(B)/D<1. In pores with D<or=1.2 nm, in which the water is strongly layered, increasing the charge magnitude from 0.4e to e reduces the stability of the SSM. As a result, ion-pair formation that occurs with negligible probability in the bulk is promoted. In larger diameter pores that can accommodate a complete hydration layer around the solutes, the stability of the SSM is enhanced.
Collapse
Affiliation(s)
- S Vaitheeswaran
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
98
|
Aksimentiev A, Brunner RK, Cruz-Chú E, Comer J, Schulten K. Modeling Transport Through Synthetic Nanopores. IEEE NANOTECHNOLOGY MAGAZINE 2009; 3:20-28. [PMID: 21909347 DOI: 10.1109/mnano.2008.931112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article.
Collapse
|
99
|
Mirsaidov U, Timp W, Zou X, Dimitrov V, Schulten K, Feinberg A, Timp G. Nanoelectromechanics of methylated DNA in a synthetic nanopore. Biophys J 2009; 96:L32-4. [PMID: 19217843 PMCID: PMC2717226 DOI: 10.1016/j.bpj.2008.12.3760] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022] Open
Abstract
Methylation of cytosine is a covalent modification of DNA that can be used to silence genes, orchestrating a myriad of biological processes including cancer. We have discovered that a synthetic nanopore in a membrane comparable in thickness to a protein binding site can be used to detect methylation. We observe a voltage threshold for permeation of methylated DNA through a <2 nm diameter pore, which we attribute to the stretching transition; this can differ by >1 V/20 nm depending on the methylation level, but not the DNA sequence.
Collapse
Affiliation(s)
- U. Mirsaidov
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - W. Timp
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - X. Zou
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Physics, Peking University, Beijing, China
| | - V. Dimitrov
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - K. Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - A.P. Feinberg
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - G. Timp
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
100
|
Cruz-Chu ER, Aksimentiev A, Schulten K. Ionic Current Rectification Through Silica Nanopores. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2009; 113:1850. [PMID: 20126282 PMCID: PMC2658614 DOI: 10.1021/jp804724p] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanopores immersed in electrolytic solution and under the influence of an electric field can produce ionic current rectification, where ionic currents are higher for one voltage polarity than for the opposite polarity, resulting in an asymmetric current-voltage (I-V) curve. This behavior has been observed in polymer and silicon-based nanopores as well as in theoretically studied continuum models. By means of atomic level molecular dynamics (MD) simulations, we have performed a systematic investigation of KCl conductance in silica nanopores with a total simulation time of 680 ns. We found that ion-binding spots at the silica surfaces, such as dangling atoms, have effects on the ion concentration and electrostatic potential inside the nanopore, producing asymmetric I-V curves. Conversely, silica surfaces without ion-binding spots produce symmetric I-V curves.
Collapse
|