51
|
Shiels HA, Galli GL. The Sarcoplasmic Reticulum and the Evolution of the Vertebrate Heart. Physiology (Bethesda) 2014; 29:456-69. [DOI: 10.1152/physiol.00015.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sarcoplasmic reticulum (SR) is crucial for contraction and relaxation of the mammalian cardiomyocyte, but its role in other vertebrate classes is equivocal. Recent evidence suggests differences in SR function across species may have an underlying structural basis. Here, we discuss how SR recruitment relates to the structural organization of the cardiomyocyte to provide new insight into the evolution of cardiac design and function in vertebrates.
Collapse
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Gina L.J. Galli
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
52
|
Mu YH, Zhao WC, Duan P, Chen Y, Zhao WD, Wang Q, Tu HY, Zhang Q. RyR2 modulates a Ca2+-activated K+ current in mouse cardiac myocytes. PLoS One 2014; 9:e94905. [PMID: 24747296 PMCID: PMC3991633 DOI: 10.1371/journal.pone.0094905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca) recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2), or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA) (p<0.05, p<0.01, respectively). The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively). We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA) exhibited a significant decrease in IK,Ca (p<0.05) and [Ca2+]i fluorescence intensity (p<0.01). An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.
Collapse
Affiliation(s)
- Yong-hui Mu
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Science, Xinxiang Medical College, Xinxiang, Henan, China
| | - Wen-chao Zhao
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Duan
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Chen
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei-da Zhao
- Department of Biological Engineering, University of Henan, Kaifeng, Henan, China
| | - Qian Wang
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui-yin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Qian Zhang
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- * E-mail:
| |
Collapse
|
53
|
Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA, Onofiok E, Erickson JR, Chen YJ, Horvath B, Shimkunas R, Xiao W, Li Y, Pan T, Chan J, Banyasz T, Tardiff JC, Chiamvimonvat N, Bers DM, Lam KS, Chen-Izu Y. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci Signal 2014; 7:ra27. [PMID: 24643800 DOI: 10.1126/scisignal.2005046] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy.
Collapse
Affiliation(s)
- Zhong Jian
- 1Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Terentyev D, Rochira JA, Terentyeva R, Roder K, Koren G, Li W. Sarcoplasmic reticulum Ca²⁺ release is both necessary and sufficient for SK channel activation in ventricular myocytes. Am J Physiol Heart Circ Physiol 2014; 306:H738-46. [PMID: 24381116 PMCID: PMC3949063 DOI: 10.1152/ajpheart.00621.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/27/2013] [Indexed: 12/18/2022]
Abstract
SK channels are upregulated in human patients and animal models of heart failure (HF). However, their activation mechanism and function in ventricular myocytes remain poorly understood. We aim to test the hypotheses that activation of SK channels in ventricular myocytes requires Ca(2+) release from sarcoplasmic reticulum (SR) and that SK currents contribute to reducing triggered activity. SK2 channels were overexpressed in adult rat ventricular myocytes using adenovirus gene transfer. Simultaneous patch clamp and confocal Ca(2+) imaging experiments in SK2-overexpressing cells demonstrated that depolarizations resulted in Ca(2+)-dependent outward currents sensitive to SK inhibitor apamin. SR Ca(2+) release induced by rapid application of 10 mM caffeine evoked repolarizing SK currents, whereas complete depletion of SR Ca(2+) content eliminated SK currents in response to depolarizations, despite intact Ca(2+) influx through L-type Ca(2+) channels. Furthermore, voltage-clamp experiments showed that SK channels can be activated by global spontaneous SR Ca(2+) release events Ca(2+) waves (SCWs). Current-clamp experiments revealed that SK overexpression reduces the amplitude of delayed afterdepolarizations (DADs) resulting from SCWs and shortens action potential duration. Immunolocalization studies showed that overexpressed SK channels are distributed both at external sarcolemmal membranes and along the Z-lines, resembling the distribution of endogenous SK channels. In summary, SR Ca(2+) release is both necessary and sufficient for the activation of SK channels in rat ventricular myocytes. SK currents contribute to repolarization during action potentials and attenuate DADs driven by SCWs. Thus SK upregulation in HF may have an anti-arrhythmic effect by reducing triggered activity.
Collapse
Affiliation(s)
- Dmitry Terentyev
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | | | | | |
Collapse
|
55
|
Levkovitch-Verbin H, Makarovsky D, Vander S. Comparison between axonal and retinal ganglion cell gene expression in various optic nerve injuries including glaucoma. Mol Vis 2013; 19:2526-41. [PMID: 24357921 PMCID: PMC3867164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 12/12/2013] [Indexed: 10/31/2022] Open
Abstract
PURPOSE The pathogenesis of retinal ganglion cell loss in glaucoma remains incompletely understood. Current evidence suggests that the optic nerve (ON) head and axons are the main site of injury in glaucoma. This study compares changes in prosurvival and proapoptotic gene expression in ONs with those in retinas in three models of ocular injury, specifically ON transection (ONTX), N-methyl-D-aspartate (NMDA) retinal toxicity, and experimental glaucoma. METHODS Rats (n=240) were divided into three models (ONTX, NMDA retinal toxicity, and experimental glaucoma). The experimental model was induced unilaterally and the contralateral eye served as control. Rats were sacrificed at 4-5 different time points specific for each model. ONs and retinas were isolated for real-time PCR investigation of expression of selected genes. Immunohistochemistry localized changes in inhibitor of apoptosis (IAP)-1 and X-linked IAP (XIAP) proteins in retinas and ONs. Colocalization was measured using Imaris colocalization software (three-dimensional analysis). RESULTS The earliest changes in gene expression occurred in ONs in the ONTX model and in retinas in the NMDA model, as expected. However, some gene changes occurred first in ONs, while others occurred first in retinas in the glaucoma model. The expression patterns of the prosurvival genes IAP-1 and XIAP differed between retinas and ONs of glaucomatous eyes: Both were upregulated in the retinas, but XIAP was downregulated in the ONs, while IAP-1 stayed unchanged. Colocalization of IAP-1, XIAP, glial fibrillary acidic protein, and Thymus cell antigen-1 (Thy-1) suggested that IAP-1 was colocalized mostly with Thy-1 and XIAP with glial fibrillary acidic protein in the ONs. Members of the B-cell lymphoma 2 (BCL-2) family were similarly involved in the ONs and retinas of glaucomatous, transected, and NMDA-injected eyes. The expression of the prosurvival genes, Bcl-2 and Bcl-xl, decreased significantly in both the ONs and retinas of injured eyes. The proapoptotic genes, BCL2-associated X protein (BAX) and Bcl-2-associated death promoter (BAD), were significantly upregulated in both injured retinas and ONs. CONCLUSIONS The overexpression of XIAP and IAP-1 genes in the retinas was not associated with similar changes in the ONs of glaucomatous eyes. The lack of activation of these prosurvival genes in the ONs may explain the increased vulnerability of ONs to elevated intraocular pressure.
Collapse
|
56
|
Levkovitch-Verbin H, Vander S, Makarovsky D, Lavinsky F. Increase in retinal ganglion cells' susceptibility to elevated intraocular pressure and impairment of their endogenous neuroprotective mechanism by age. Mol Vis 2013; 19:2011-22. [PMID: 24146536 PMCID: PMC3783363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To investigate age-associated changes in retinal ganglion cell (RGC) response to elevated intraocular pressure (IOP), and to explore the mechanism underlying these changes. Specifically, the effect of aging on inhibitor of apoptosis (IAP) gene family expression was investigated in glaucomatous eyes. METHODS IOP was induced unilaterally in 82 Wistar rats using the translimbal photocoagulation laser model. IOP was measured using a TonoLab tonometer. RGC survival was evaluated in 3-, 6-, 13-, and 18-month-old animals. Changes in the RNA profiles of young (3-month-old) and old glaucomatous retinas were examined by PCR array for apoptosis; changes in selected genes were validated by real-time PCR; and changes in selected proteins were localized by immunohistochemistry. RESULTS There were no significant IOP differences between the age groups. However, there was a natural significant loss of RGCs with aging and this was more prevalent in glaucomatous eyes. The number of RGCs in glaucomatous eyes decreased from 669±123 RGC/mm² at 3 months to 486±114 RGC/mm² at 6 months and 189±46.5 RGC/mm² at 18 months (n=4-8, p=0.048, analysis of variance). The PCR array revealed different changes in proapoptotic and prosurvival genes between young and old eyes. The two important prosurvival genes, IAP-1 and X-linked IAP (XIAP), acted in opposite directions in 3-month-old and 15-month-old rats, and were significantly decreased in aged glaucomatous retinas, while their expression increased significantly in young glaucomatous eyes. P53 levels did not vary between young glaucomatous and normal fellow eyes, but were reduced with age. B-cell leukemia/lymphoma 2 (Bcl-2) family members and tumor necrosis factor (TNF)-α expression were unaffected by age. Immunohistochemistry results suggested that the sources of changes in IAP-1 protein expression are RGCs and glial cells, and that most XIAP secretion comes from RGCs. CONCLUSIONS Decreased IAP-1 and XIAP gene expression in aged eyes may predispose RGCs to increased vulnerability to glaucomatous damage. These findings suggest that aging impairs the endogenous neuroprotective mechanism of RGCs evoked by elevated IOP.
Collapse
|
57
|
Haq KT, Daniels RE, Miller LS, Miura M, ter Keurs HEDJ, Bungay SD, Stuyvers BD. Evoked centripetal Ca(2+) mobilization in cardiac Purkinje cells: insight from a model of three Ca(2+) release regions. J Physiol 2013; 591:4301-19. [PMID: 23897231 DOI: 10.1113/jphysiol.2013.253583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite strong suspicion that abnormal Ca(2+) handling in Purkinje cells (P-cells) is implicated in life-threatening forms of ventricular tachycardias, the mechanism underlying the Ca(2+) cycling of these cells under normal conditions is still unclear. There is mounting evidence that P-cells have a unique Ca(2+) handling system. Notably complex spontaneous Ca(2+) activity was previously recorded in canine P-cells and was explained by a mechanistic hypothesis involving a triple layered system of Ca(2+) release channels. Here we examined the validity of this hypothesis for the electrically evoked Ca(2+) transient which was shown, in the dog and rabbit, to occur progressively from the periphery to the interior of the cell. To do so, the hypothesis was incorporated in a model of intracellular Ca(2+) dynamics which was then used to reproduce numerically the Ca(2+) activity of P-cells under stimulated conditions. The modelling was thus performed through a 2D computational array that encompassed three distinct Ca(2+) release nodes arranged, respectively, into three consecutive adjacent regions. A system of partial differential equations (PDEs) expressed numerically the principal cellular functions that modulate the local cytosolic Ca(2+) concentration (Cai). The apparent node-to-node progression of elevated Cai was obtained by combining Ca(2+) diffusion and 'Ca(2+)-induced Ca(2+) release'. To provide the modelling with a reliable experimental reference, we first re-examined the Ca(2+) mobilization in swine stimulated P-cells by 2D confocal microscopy. As reported earlier for the dog and rabbit, a centripetal Ca(2+) transient was readily visible in 22 stimulated P-cells from six adult Yucatan swine hearts (pacing rate: 0.1 Hz; pulse duration: 25 ms, pulse amplitude: 10% above threshold; 1 mm Ca(2+); 35°C; pH 7.3). An accurate replication of the observed centripetal Ca(2+) propagation was generated by the model for four representative cell examples and confirmed by statistical comparisons of simulations against cell data. Selective inactivation of Ca(2+) release regions of the computational array showed that an intermediate layer of Ca(2+) release nodes with an ~30-40% lower Ca(2+) activation threshold was required to reproduce the phenomenon. Our computational analysis was therefore fully consistent with the activation of a triple layered system of Ca(2+) release channels as a mechanism of centripetal Ca(2+) signalling in P-cells. Moreover, the model clearly indicated that the intermediate Ca(2+) release layer with increased sensitivity for Ca(2+) plays an important role in the specific intracellular Ca(2+) mobilization of Purkinje fibres and could therefore be a relevant determinant of cardiac conduction.
Collapse
Affiliation(s)
- Kazi T Haq
- B. D. Stuyvers: Memorial University, Faculty of Medicine, Division of BioMedical Sciences, 300 Prince Phillip Bd, St John's, NL, A1B 3V6, Canada.
| | | | | | | | | | | | | |
Collapse
|
58
|
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 2013; 8:863-84. [PMID: 23176689 DOI: 10.2217/fca.12.58] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia-reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia-reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular & Cellular Pharmacology, University of Miami Medical Center, FL 33101, USA.
| |
Collapse
|
59
|
Abstract
Ca(2+) waves were probably first observed in the early 1940s. Since then Ca(2+) waves have captured the attention of an eclectic mixture of mathematicians, neuroscientists, muscle physiologists, developmental biologists, and clinical cardiologists. This review discusses the current state of mathematical models of Ca(2+) waves, the normal physiological functions Ca(2+) waves might serve in cardiac cells, as well as how the spatial arrangement of Ca(2+) release channels shape Ca(2+) waves, and we introduce the idea of Ca(2+) phase waves that might provide a useful framework for understanding triggered arrhythmias.
Collapse
Affiliation(s)
- Leighton T Izu
- Department of Pharmacology, University of California, Davis, USA.
| | | | | | | | | |
Collapse
|
60
|
Dibb KM, Clarke JD, Eisner DA, Richards MA, Trafford AW. A functional role for transverse (t-) tubules in the atria. J Mol Cell Cardiol 2013; 58:84-91. [PMID: 23147188 DOI: 10.1016/j.yjmcc.2012.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/17/2022]
Abstract
Mammalian ventricular myocytes are characterised by the presence of an extensive transverse (t-) tubule network which is responsible for the synchronous rise of intracellular Ca(2+) concentration ([Ca(2+)]i) during systole. Disruption to the ventricular t-tubule network occurs in various cardiac pathologies and leads to heterogeneous changes of [Ca(2+)]i which are thought to contribute to the reduced contractility and increased susceptibility to arrhythmias of the diseased ventricle. Here we review evidence that, despite the long-held dogma of atrial cells having no or very few t-tubules, there is indeed an extensive and functionally significant t-tubule network present in atrial myocytes of large mammals including human. Moreover, the atrial t-tubule network is highly plastic in nature and undergoes far more extensive remodelling in heart disease than is the case in the ventricle with profound consequences for the resulting systolic Ca(2+) transient. In addition to considering the functional role of the t-tubule network in the healthy and diseased atria we also provide an overview of recent data concerning the putative factors controlling the formation of t-tubules and conclude by posing some important questions that currently remain to be addressed and whether or not targeting t-tubules offers potential novel therapeutic possibilities for heart disease.
Collapse
Affiliation(s)
- Katharine M Dibb
- Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, 3.08 Core Technology Facility, 46 Grafton Street, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
61
|
Qu Z, Nivala M, Weiss JN. Calcium alternans in cardiac myocytes: order from disorder. J Mol Cell Cardiol 2013; 58:100-9. [PMID: 23104004 PMCID: PMC3570622 DOI: 10.1016/j.yjmcc.2012.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/22/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022]
Abstract
Calcium alternans is associated with T-wave alternans and pulsus alternans, harbingers of increased mortality in the setting of heart disease. Recent experimental, computational, and theoretical studies have led to new insights into the mechanisms of Ca alternans, specifically how disordered behaviors dominated by stochastic processes at the subcellular level become organized into ordered periodic behaviors. In this article, we summarize the recent progress in this area, outlining a holistic theoretical framework in which the complex effects of Ca cycling proteins on Ca alternans are linked to three key properties of the cardiac Ca cycling network: randomness, refractoriness, and recruitment. We also illustrate how this '3R theory' can reconcile many seemingly contradictory experimental observations.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
62
|
Shkryl VM, Blatter LA. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging. PLoS One 2013; 8:e61525. [PMID: 23637847 PMCID: PMC3630194 DOI: 10.1371/journal.pone.0061525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/11/2013] [Indexed: 02/02/2023] Open
Abstract
The spatio-temporal properties of Ca2+ transients during excitation-contraction coupling and elementary Ca2+ release events (Ca2+ sparks) were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca2+ sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR) release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca2+ sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical. Ca2+ spark recording in line scan mode at 40,000 lines/s uncovered step-like increases of [Ca2+]i. 2-D imaging of Ca2+ transients revealed an asynchronous activation of release sites and allowed the sequential recording of Ca2+ entry through surface membrane Ca2+ channels and subsequent activation of Ca2+-induced Ca2+ release. With a latency of 2.5 ms after application of an electrical stimulus, Ca2+ entry could be detected that was followed by SR Ca2+ release after an additional 3 ms delay. Maximum Ca2+ release was observed 4 ms after the beginning of release. The timing of Ca2+ entry and release was confirmed by simultaneous [Ca2+]i and membrane current measurements using the whole cell voltage-clamp technique. In atrial cells activation of discrete individual release sites of the j-SR led to spatially restricted Ca2+ release events that fused into a peripheral ring of elevated [Ca2+]i that subsequently propagated in a wave-like fashion towards the center of the cell. In ventricular myocytes asynchronous Ca2+ release signals from discrete sites with no preferential subcellular location preceded the whole-cell Ca2+ transient. In summary, ultra-fast confocal imaging allows investigation of Ca2+ signals with a time resolution similar to patch clamp technique, however in a less invasive fashion.
Collapse
Affiliation(s)
- Vyacheslav M. Shkryl
- Deptartment of General Physiology of the Nervous System, A. A. Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Lothar A. Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
63
|
|
64
|
Jayasinghe I, Crossman D, Soeller C, Cannell M. Comparison of the organization of T-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium. Clin Exp Pharmacol Physiol 2013; 39:469-76. [PMID: 21790719 DOI: 10.1111/j.1440-1681.2011.05578.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. It is apparent from the literature that there are significant differences in excitation-contraction coupling between species, particularly in the density of calcium transporting proteins in the t-system and sarcoplasmic reticulum (SR) Ca(2+) release channels. Unfortunately, there is a lack of information as to how the principal structures that link electrical excitation to the activation of calcium-induced calcium release (CICR) are different between human and animal models (particularly rat). 2. Comparison of wheat germ agglutinin and caveolin-3 labelling revealed a non-uniform distribution of surface membrane glycosylation in the rat, rabbit and human, and that the rat t-system appeared more complex in geometry than the latter species. Analysis of the t-system skeleton showed that the t-system was highly branched in the rat compared with that of the human (0.8 ± 0.08 and 0.2 ± 0.07 branch points per μm(2) , respectively; P < 0.001). 3. We also compared the distribution of contractile machinery, sodium-calcium exchange, SR and ryanodine receptors (RyR) in rat and human. F-Actin and RyR labelling was used to estimate the area of contractile apparatus supplied by each RyR cluster. In the rat, each RyR cluster supplied an average cross-sectional area of contractile machinery of 0.36 ± 0.03μm(2) compared with 0.49 ± 0.04 μm(2) in human (P = 0.048). Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) labelling showed that the SR formed a tight network of loops surrounding contractile fibrils that were denser than the t-tubule network, but otherwise appeared similar in both species. 4. In general, the results show a higher density in structures involved in CICR in the rat compared with human.
Collapse
Affiliation(s)
- Id Jayasinghe
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
65
|
Kohl T, Westphal V, Hell SW, Lehnart SE. Superresolution microscopy in heart - cardiac nanoscopy. J Mol Cell Cardiol 2012; 58:13-21. [PMID: 23219451 DOI: 10.1016/j.yjmcc.2012.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/03/2012] [Accepted: 11/24/2012] [Indexed: 12/23/2022]
Abstract
Detailed understanding of the adaptive nature of cardiac cells in health and disease requires investigation of proteins and membranes in their native physiological environment, ideally by noninvasive optical methods. However, conventional light microscopy does not resolve the spatial characteristics of small fluorescently labeled protein or membrane structures in cells. Due to diffraction limiting resolution to half the wavelength of light, adjacent fluorescent molecules spaced at less than ~250 nm are not separately visualized. This fundamental problem has lead to a rapidly growing area of research, superresolution fluorescence microscopy, also called nanoscopy. We discuss pioneering applications of superresolution microscopy relevant to the heart, emphasizing different nanoscopy strategies toward new insight in cardiac cell biology. Here, we focus on molecular and structural readouts from subcellular nanodomains and organelles related to Ca(2+) signaling during excitation-contraction (EC) coupling, including live cell imaging strategies. Based on existing data and superresolution techniques, we suggest that an important future aim will be subcellular in situ structure-function analysis with nanometric resolving power in organotypic cells.
Collapse
Affiliation(s)
- Tobias Kohl
- Heart Research Center Goettingen, University Medicine Goettingen, Germany
| | | | | | | |
Collapse
|
66
|
Das T, Hoshijima M. Adding a new dimension to cardiac nano-architecture using electron microscopy: coupling membrane excitation to calcium signaling. J Mol Cell Cardiol 2012. [PMID: 23201225 DOI: 10.1016/j.yjmcc.2012.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Advances in microscopic imaging technologies and associated computational methods now allow descriptions of cellular anatomy to go beyond 2-dimensions, revealing new micro-domain dynamics at unprecedented resolutions. In cardiomyocytes, electron microscopy (EM) first described junctional membrane complexes between the sarcolemma and sarcoplasmic reticulum over a half-century ago. Since then, 3-dimensional EM technologies such as electron tomography have become successful in determining the realistic nano-geometry of membrane junctions (dyads and peripheral junctions) and associated structures such as transverse tubules (T-tubules, aka. T-system). Concomitantly, super-resolution light microscopy has gone beyond the diffraction-limit to determine the distribution of molecules, such as ryanodine receptors, with 10(-8) meter (10nm) order accuracy. This review provides the current structural perspective and functional interpretation of membrane junction complexes, which are the central machinery controlling cardiac excitation-contraction coupling via calcium signaling.
Collapse
Affiliation(s)
- Tapaswini Das
- The Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
67
|
Super-resolution imaging of EC coupling protein distribution in the heart. J Mol Cell Cardiol 2012; 58:32-40. [PMID: 23159441 DOI: 10.1016/j.yjmcc.2012.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 11/20/2022]
Abstract
The cardiac ryanodine receptor (RyR) plays a central role in the control of contractile function of the heart. In cardiac ventricular myocytes RyRs and associated Ca(2+) handling proteins, including membrane Ca(2+) channels, Ca(2+) pumps and other sarcolemmal and sarcoplasmic reticulum proteins interact to set the time course and amplitude of the electrically triggered cytosolic Ca(2+) transient. It has become increasingly clear that protein distribution and clustering on the nanometer scale is critical in determining the interaction of these proteins and the resulting properties of cardiac Ca(2+) handling. Such intricate near-molecular scale detail cannot be visualized with conventional fluorescence microscopy techniques (e.g. confocal microscopy) but it has recently become accessible with optical super-resolution techniques. These techniques retain the advantages of fluorescent marker technology, i.e. high specificity and excellent contrast, but have a spatial resolution approaching 10nm, i.e. objects not much further apart than 10nm can be distinguished, previously only attainable with electron microscopy. We review the use of these novel imaging techniques for the study of protein distribution in cardiac ventricular myocytes and discuss technical considerations as well as recent findings using super-resolution imaging. An emphasis is on single molecule localization based super-resolution approaches and their use to reveal the complexity of RyR cluster morphology, placement and relationship to other excitation-contraction coupling proteins. Super-resolution imaging approaches have already demonstrated their utility for the study of cardiac structure-function relationships and we anticipate that their use will rapidly increase and help improve our understanding of cardiac Ca(2+) regulation.
Collapse
|
68
|
Li Y, Eisner DA, O'Neill SC. Do calcium waves propagate between cells and synchronize alternating calcium release in rat ventricular myocytes? J Physiol 2012; 590:6353-61. [PMID: 23090944 DOI: 10.1113/jphysiol.2012.245241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim was to investigate the propagation of Ca(2+) waves between cells and determine whether this synchronizes alternating Ca(2+) release between cells. Experiments were carried out on electrically coupled cell pairs; spontaneous Ca(2+) waves were produced by elevating external Ca(2+). There was a significant difference in the ability of these waves to propagate between cells depending on the orientation of the pairs. Although almost all pairs connected by side-to-side contacts showed propagating Ca(2+) release, this was very uncommon in end-to-end cell pairs. Confocal studies showed that there was a gap at the intercalated disc consisting of cell membranes and a region of cytoplasm devoid of sarcoplasmic reticulum. This gap was 2.3 μm in length and is suggested to interfere with Ca(2+) wave propagation. The gap measured was much smaller between side-to-side contacts: 1.5 μm and so much less likely to interfere with propagation. Subsequent experiments investigated the synchronization between cells of Ca(2+) alternans produced by small depolarizing pulses. Although this alternation results from beat-to-beat alternation of intracellular Ca(2+) wave propagation, there was no evidence that propagation of Ca(2+) waves between cells contributed to synchronization of this alternans.
Collapse
Affiliation(s)
- Y Li
- Unit of Cardiac Physiology, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | | | | |
Collapse
|
69
|
Kekenes-Huskey PM, Cheng Y, Hake JE, Sachse FB, Bridge JH, Holst MJ, McCammon JA, McCulloch AD, Michailova AP. Modeling effects of L-type ca(2+) current and na(+)-ca(2+) exchanger on ca(2+) trigger flux in rabbit myocytes with realistic T-tubule geometries. Front Physiol 2012; 3:351. [PMID: 23060801 PMCID: PMC3463892 DOI: 10.3389/fphys.2012.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/16/2012] [Indexed: 12/26/2022] Open
Abstract
The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules) that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca2+ channel (LCC) clustering, and allosteric activation of Na+/Ca2+ exchanger by L-type Ca2+ current affects intracellular Ca2+ dynamics. Our model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres for rabbit ventricular myocytes. The effects of spatially distributed membrane ion-transporters (LCC, Na+/Ca2+ exchanger, sarcolemmal Ca2+ pump, and sarcolemmal Ca2+ leak), and stationary and mobile Ca2+ buffers (troponin C, ATP, calmodulin, and Fluo-3) are also considered. We used a coupled reaction-diffusion system to describe the spatio-temporal concentration profiles of free and buffered intracellular Ca2+. We obtained parameters from voltage-clamp protocols of L-type Ca2+ current and line-scan recordings of Ca2+ concentration profiles in rabbit cells, in which the sarcoplasmic reticulum is disabled. Our model results agree with experimental measurements of global Ca2+ transient in myocytes loaded with 50 μM Fluo-3. We found that local Ca2+ concentrations within the cytosol and sub-sarcolemma, as well as the local trigger fluxes of Ca2+ crossing the cell membrane, are sensitive to details of t-tubule micro-structure and membrane Ca2+ flux distribution. The model additionally predicts that local Ca2+ trigger fluxes are at least threefold to eightfold higher than the whole-cell Ca2+ trigger flux. We found also that the activation of allosteric Ca2+-binding sites on the Na+/Ca2+ exchanger could provide a mechanism for regulating global and local Ca2+ trigger fluxes in vivo. Our studies indicate that improved structural and functional models could improve our understanding of the contributions of L-type and Na+/Ca2+ exchanger fluxes to intracellular Ca2+ dynamics.
Collapse
|
70
|
Zahradníková A, Zahradník I. Construction of calcium release sites in cardiac myocytes. Front Physiol 2012; 3:322. [PMID: 22934071 PMCID: PMC3429091 DOI: 10.3389/fphys.2012.00322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Local character of calcium release in cardiac myocytes, as defined by confocal recordings of calcium sparks, implies independent activation of individual calcium release sites based on ryanodine receptor (RyR) channel recruitment. We constructed virtual calcium release sites (vCRSs) composed of a variable number of RyR channels distributed in clusters in accordance with the experimentally observed cluster size distribution. The vCRSs consisted either of a single virtual calcium release unit (vCRU), in which all clusters shared a common dyadic space, or of multiple virtual calcium release units (CRUs) containing one cluster each and having separate dyadic spaces. We explored the stochastic behavior of vCRSs to understand the activation and recruitment of RyRs during calcium sparks. RyRs were represented by the published allosteric gating model that included regulation by cytosolic Ca(2+) and Mg(2+). The interaction of Mg(2+) with the RyR Ca(2+)-binding sites and the refractory period of vCRSs were optimized to accord with the experimentally observed calcium dependence of calcium spark frequency. The Mg(2+)-binding parameters of RyRs that provided the best description of spark frequency depended on the number of RyRs assembled in the vCRSs. Adequate inhibitory effect of Mg(2+) on the calcium dependence of RyR open probability was achieved if the vCRSs contained at least three clusters. For the distribution of the number of open RyRs in evoked calcium sparks to correspond to the experimentally observed distribution of spark calcium release fluxes, at least three clusters had to share a common virtual CRU, in which ∼3 RyRs open to form an average spark. These results reconcile the small cluster size and stochastic placement of RyRs in the release sites with the estimates of the amount of RyR protein, volume density of calcium release sites, and the size of calcium release sites in rat cardiac myocytes.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences Bratislava, Slovakia
| | | |
Collapse
|
71
|
Janiek R, Zahradníková A, Poláková E, Pavelková J, Zahradník I, Zahradníková A. Calcium spike variability in cardiac myocytes results from activation of small cohorts of ryanodine receptor 2 channels. J Physiol 2012; 590:5091-106. [PMID: 22890710 DOI: 10.1113/jphysiol.2012.234823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammalian cardiac myocytes, the elementary calcium releases triggered by step voltage stimuli manifest either as solitary or as twin spikes that vary widely in kinetics and amplitude for unknown reasons. Here we examined the variability of calcium spikes measured using line-scanning confocal microscopy in patch-clamped rat ventricular myocytes. Amplitude distributions of the single and of the first of twin spikes were broader than those of the second spikes. All could be best approximated by a sum of a few elementary Gaussian probability distribution functions. The latency distributions of the single and the first spikes were identical, much shorter and less variable than those of the second spikes. The multimodal distribution of spike amplitudes and the probability of occurrence of twin spikes were stochastically congruent with activation of only a few of the many RyR2 channels present in the release site cluster. The occurrence of twin release events was rare due to refractoriness of release, induced with a probability proportional to the number of RyR2s activated in the primary release event. We conclude that the variability of the elementary calcium release events supports a calcium signalling mechanism that arises from stochastics of RyR2 gating and from inactivation of local origin.
Collapse
Affiliation(s)
- Radoslav Janiek
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vl´arska 5, 833 34 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
72
|
Varghese N, Shetye GS, Bandyopadhyay D, Gobalasingham N, Seo J, Wang JH, Theiler B, Luk YY. Emulsion of aqueous-based nonspherical droplets in aqueous solutions by single-chain surfactants: templated assembly by nonamphiphilic lyotropic liquid crystals in water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10797-10807. [PMID: 22726240 DOI: 10.1021/la302396c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ∼9 μm and a short axis of ∼3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.
Collapse
Affiliation(s)
- Nisha Varghese
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Thul R, Coombes S, Bootman MD. Persistence of pro-arrhythmic spatio-temporal calcium patterns in atrial myocytes: a computational study of ping waves. Front Physiol 2012; 3:279. [PMID: 22934033 PMCID: PMC3429053 DOI: 10.3389/fphys.2012.00279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/28/2012] [Indexed: 11/13/2022] Open
Abstract
Clusters of ryanodine receptors within atrial myocytes are confined to spatially separated layers. In many species, these layers are not juxtaposed by invaginations of the plasma membrane (transverse tubules; 'T-tubules'), so that calcium-induced-calcium signals rely on centripetal propagation rather than voltage-synchronized channel openings to invade the interior of the cell and trigger contraction. The combination of this specific cellular geometry and dynamics of calcium release can lead to novel autonomous spatio-temporal calcium waves, and in particular ping waves. These are waves of calcium release activity that spread as counter-rotating sectors of elevated calcium within a single layer of ryanodine receptors, and can seed further longitudinal calcium waves. Here we show, using a computational model, that these calcium waves can dominate the response of a cell to electrical pacing and hence are pro-arrhythmic. This highlights the importance of modeling internal cellular structures when investigating mechanisms of cardiac dysfunction such as atrial arrhythmia.
Collapse
Affiliation(s)
- Rüdiger Thul
- School of Mathematical Sciences, University of Nottingham Nottingham, UK
| | | | | |
Collapse
|
74
|
Nivala M, Qu Z. Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load. Am J Physiol Heart Circ Physiol 2012; 303:H341-52. [PMID: 22661509 DOI: 10.1152/ajpheart.00302.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular calcium (Ca) alternans in cardiac myocytes have been shown in many experimental studies, and the mechanisms remain incompletely understood. We recently developed a "3R theory" that links Ca sparks to whole cell Ca alternans through three critical properties: randomness of Ca sparks; recruitment of a Ca spark by neighboring Ca sparks; and refractoriness of Ca release units. In this study, we used computer simulation of a physiologically detailed mathematical model of a ventricular myocyte couplon network to study how sarcoplasmic reticulum (SR) Ca load and other physiological parameters, such as ryanodine receptor sensitivity, SR uptake rate, Na-Ca exchange strength, and Ca buffer levels affect Ca alternans in the context of 3R theory. We developed a method to calculate the parameters used in the 3R theory (i.e., the primary spark rate and the recruitment rate) from the physiologically detailed Ca cycling model and paced the model periodically to elicit Ca alternans. We show that alternans only occurs for an intermediate range of the SR Ca load, and the underlying mechanism can be explained via its effects on the 3Rs. Furthermore, we show that altering the physiological parameters not only directly changes the 3Rs but also alters the SR Ca load, having an indirect effect on the 3Rs as well. Therefore, our present study links the SR Ca load and other physiological parameters to whole cell Ca alternans through the framework of the 3R theory, providing a general mechanistic understanding of Ca alternans in ventricular myocytes.
Collapse
Affiliation(s)
- Michael Nivala
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | |
Collapse
|
75
|
Hatano A, Okada JI, Washio T, Hisada T, Sugiura S. A three-dimensional simulation model of cardiomyocyte integrating excitation-contraction coupling and metabolism. Biophys J 2012; 101:2601-10. [PMID: 22261047 DOI: 10.1016/j.bpj.2011.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/15/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022] Open
Abstract
Recent studies have revealed that Ca(2+) not only regulates the contraction of cardiomyocytes, but can also function as a signaling agent to stimulate ATP production by the mitochondria. However, the spatiotemporal resolution of current experimental techniques limits our investigative capacity to understand this phenomenon. Here, we created a detailed three-dimensional (3D) cardiomyocyte model to study the subcellular regulatory mechanisms of myocardial energetics. The 3D cardiomyocyte model was based on the finite-element method, with detailed subcellular structures reproduced, and it included all elementary processes involved in cardiomyocyte electrophysiology, contraction, and ATP metabolism localized to specific loci. The simulation results were found to be reproducible and consistent with experimental data regarding the spatiotemporal pattern of cytosolic, intrasarcoplasmic-reticulum, and mitochondrial changes in Ca(2+); as well as changes in metabolite levels. Detailed analysis suggested that although the observed large cytosolic Ca(2+) gradient facilitated uptake by the mitochondrial Ca(2+) uniporter to produce cyclic changes in mitochondrial Ca(2+) near the Z-line region, the average mitochondrial Ca(2+) changes slowly. We also confirmed the importance of the creatine phosphate shuttle in cardiac energy regulation. In summary, our 3D model provides a powerful tool for the study of cardiac function by overcoming some of the spatiotemporal limitations of current experimental approaches.
Collapse
Affiliation(s)
- Asuka Hatano
- Department of Frontier Science, The University of Tokyo, Kashiwa, Chiba, Japan.
| | | | | | | | | |
Collapse
|
76
|
Livshitz L, Acsai K, Antoons G, Sipido K, Rudy Y. Data-based theoretical identification of subcellular calcium compartments and estimation of calcium dynamics in cardiac myocytes. J Physiol 2012; 590:4423-46. [PMID: 22547631 DOI: 10.1113/jphysiol.2012.228791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In cardiac cells, Ca(2+) release flux (J(rel)) via ryanodine receptors (RyRs) from the sarcoplasmic reticulum (SR) has a complex effect on the action potential (AP). Coupling between J(rel) and the AP occurs via L-type Ca(2+) channels (I(Ca)) and the Na(+)/Ca(2+) exchanger (I(NCX)). We used a combined experimental and modelling approach to study interactions between J(rel), I(Ca) and I(NCX) in porcine ventricular myocytes.We tested the hypothesis that during normal uniform J(rel), the interaction between these fluxes can be represented as occurring in two myoplasmic subcompartments for Ca(2+) distribution, one (T-space) associated with RyR and enclosed by the junctional portion of the SR membrane and corresponding T-tubular portion of the sarcolemma, the other (M-space) encompassing the rest of the myoplasm. I(Ca) and I(NCX) were partitioned into subpopulations in the T-space and M-space sarcolemma. We denoted free Ca(2+) concentrations in T-space and M-space Ca(t) and Ca(m), respectively. Experiments were designed to allow separate measurements of I(Ca) and I(NCX) as a function of J(rel). Inclusion of T-space in themodel allowed us to reproduce in silico the following important experimental results: (1) hysteresis of I(NCX) dependence on Ca(m); (2) delay between peak I(NCX) and peak Ca(m) during caffeine application protocol; (3) delay between I(NCX) and Ca(m) during Ca(2+)-induced-Ca(2+)-release; (4) rapid I(Ca) inactivation (within 2 ms) due to J(rel), with magnitude graded as a function of the SR Ca(2+) content; (5) time delay between I(Ca) inactivation due to J(rel) and Ca(m). Partition of 25% NCX in T-space and 75% in M-space provided the best fit to the experimental data. Measured Ca(m) and I(Ca) or I(NCX) were used as input to the model for estimating Ca(t). The actual model-computed Ca(t), obtained by simulating specific experimental protocols, was used as a gold standard for comparison. The model predicted peak Ca(t) in the range of 6–25 μM, with time to equilibrium of Ca(t) with Ca(m) of ~350 ms. These Ca(t) values are in the range of LCC and RyR sensitivity to Ca(2+). An increase of the SR Ca(2+) load increased the time to equilibrium. The I(Ca)-based estimation method was most accurate during the ascending phase of Ca(t). The I(NCX)-based method provided a good estimate for the descending phase of Ca(t). Thus, application of both methods in combination provides the best estimate of the entire Ca(t) time course.
Collapse
Affiliation(s)
- Leonid Livshitz
- Cardiac Bioelectricity and Arrhythmia Centre, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | | | | | | | | |
Collapse
|
77
|
Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells. Biophys J 2012; 102:739-48. [PMID: 22385844 DOI: 10.1016/j.bpj.2012.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 01/10/2023] Open
Abstract
Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart.
Collapse
|
78
|
Sobie EA, Lederer WJ. Dynamic local changes in sarcoplasmic reticulum calcium: physiological and pathophysiological roles. J Mol Cell Cardiol 2012; 52:304-11. [PMID: 21767546 PMCID: PMC3217160 DOI: 10.1016/j.yjmcc.2011.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Evidence obtained in recent years indicates that, in cardiac myocytes, release of Ca(2+) from the sarcoplasmic reticulum (SR) is regulated by changes in the concentration of Ca(2+) within the SR. In this review, we summarize recent advances in our understanding of this regulatory role, with a particular emphasis on dynamic and local changes in SR [Ca(2+)]. We focus on five important questions that are to some extent unresolved and controversial. These questions concern: (1) the importance of SR [Ca(2+)] depletion in the termination of Ca(2+) release; (2) the quantitative extent of depletion during local release events such as Ca(2+) sparks; (3) the influence of SR [Ca(2+)] refilling on release refractoriness and the propensity for pathological Ca(2+) release; (4) dynamic changes in SR [Ca(2+)] during propagating Ca(2+) waves; and (5) the speed of Ca(2+) diffusion within the SR. With each issue, we discuss data supporting alternative viewpoints, and we identify fundamental questions that are being actively investigated. We conclude with a discussion of experimental and computational advances that will help to resolve controversies. This article is part of a special issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Eric A Sobie
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
79
|
Subcellular calcium dynamics in a whole-cell model of an atrial myocyte. Proc Natl Acad Sci U S A 2012; 109:2150-5. [PMID: 22308396 DOI: 10.1073/pnas.1115855109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we present an innovative mathematical modeling approach that allows detailed characterization of Ca(2+) movement within the three-dimensional volume of an atrial myocyte. Essential aspects of the model are the geometrically realistic representation of Ca(2+) release sites and physiological Ca(2+) flux parameters, coupled with a computationally inexpensive framework. By translating nonlinear Ca(2+) excitability into threshold dynamics, we avoid the computationally demanding time stepping of the partial differential equations that are often used to model Ca(2+) transport. Our approach successfully reproduces key features of atrial myocyte Ca(2+) signaling observed using confocal imaging. In particular, the model displays the centripetal Ca(2+) waves that occur within atrial myocytes during excitation-contraction coupling, and the effect of positive inotropic stimulation on the spatial profile of the Ca(2+) signals. Beyond this validation of the model, our simulation reveals unexpected observations about the spread of Ca(2+) within an atrial myocyte. In particular, the model describes the movement of Ca(2+) between ryanodine receptor clusters within a specific z disk of an atrial myocyte. Furthermore, we demonstrate that altering the strength of Ca(2+) release, ryanodine receptor refractoriness, the magnitude of initiating stimulus, or the introduction of stochastic Ca(2+) channel activity can cause the nucleation of proarrhythmic traveling Ca(2+) waves. The model provides clinically relevant insights into the initiation and propagation of subcellular Ca(2+) signals that are currently beyond the scope of imaging technology.
Collapse
|
80
|
Hatano A, Okada JI, Hisada T, Sugiura S. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes. J Biomech 2012; 45:815-23. [PMID: 22226404 DOI: 10.1016/j.jbiomech.2011.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 11/27/2022]
Abstract
T-tubules in mammalian ventricular myocytes constitute an elaborate system for coupling membrane depolarization with intracellular Ca(2+) signaling to control cardiac contraction. Deletion of t-tubules (detubulation) has been reported in heart diseases, although the complex nature of the cardiac excitation-contraction (E-C) coupling process makes it difficult to experimentally establish causal relationships between detubulation and cardiac dysfunction. Alternatively, numerical simulations incorporating the t-tubule system have been proposed to elucidate its functional role. However, the majority of models treat the subcellular spaces as lumped compartments, and are thus unable to dissect the impact of morphological changes in t-tubules. We developed a 3D finite element model of cardiomyocytes in which subcellular components including t-tubules, myofibrils, sarcoplasmic reticulum, and mitochondria were modeled and realistically arranged. Based on this framework, physiological E-C coupling was simulated by simultaneously solving the reaction-diffusion equation and the mechanical equilibrium for the mathematical models of electrophysiology and contraction distributed among these subcellular components. We then examined the effect of detubulation in this model by comparing with and without the t-tubule system. This model reproduced the Ca(2+) transients and contraction observed in experimental studies, including the response to beta-adrenergic stimulation, and provided detailed information beyond the limits of experimental approaches. In particular, the analysis of sarcomere dynamics revealed that the asynchronous contraction caused by a large detubulated region can lead to impairment of myocyte contractile efficiency. These data clearly demonstrate the importance of the t-tubule system for the maintenance of contractile function.
Collapse
Affiliation(s)
- Asuka Hatano
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | | | | | | |
Collapse
|
81
|
ter Keurs HEDJ. The interaction of Ca2+ with sarcomeric proteins: role in function and dysfunction of the heart. Am J Physiol Heart Circ Physiol 2012; 302:H38-50. [PMID: 22021327 PMCID: PMC3334233 DOI: 10.1152/ajpheart.00219.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 10/11/2011] [Indexed: 12/28/2022]
Abstract
The hallmarks of the normal heartbeat are both rapid onset of contraction and rapid relaxation as well as an inotropic response to both increased end-diastolic volume and increased heart rate. At the microscopic level, Ca(2+) plays a crucial role in normal cardiac contraction. This paper reviews the cycle of Ca(2+) fluxes during the normal heartbeat, which underlie the coupling between excitation and contraction and permit a highly synchronized action of cardiac sarcomeres. Length dependence of the response of the regulatory sarcomeric proteins mediates the Frank-Starling Law of the heart. However, Ca(2+) transport may go astray in heart disease such as in congestive heart failure, and both jeopardize systole and diastole and triggering arrhythmias. The interaction between weak and strong segments in nonuniform cardiac muscle allows partial preservation of force of contraction but may further lead to mechanoelectric feedback or reverse excitation-contraction coupling mediating an early diastolic Ca(2+) transient caused by the rapid force decrease during the relaxation phase. These rapid force changes in nonuniform muscle may cause arrhythmogenic Ca(2+) waves to propagate by the activation of neighboring sarcoplasmic reticulum by diffusing Ca(2+) ions.
Collapse
|
82
|
Fearnley CJ, Roderick HL, Bootman MD. Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect Biol 2011; 3:a004242. [PMID: 21875987 DOI: 10.1101/cshperspect.a004242] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calcium (Ca(2+)) is a critical regulator of cardiac myocyte function. Principally, Ca(2+) is the link between the electrical signals that pervade the heart and contraction of the myocytes to propel blood. In addition, Ca(2+) controls numerous other myocyte activities, including gene transcription. Cardiac Ca(2+) signaling essentially relies on a few critical molecular players--ryanodine receptors, voltage-operated Ca(2+) channels, and Ca(2+) pumps/transporters. These moieties are responsible for generating Ca(2+) signals upon cellular depolarization, recovery of Ca(2+) signals following cellular contraction, and setting basal conditions. Whereas these are the central players underlying cardiac Ca(2+) fluxes, networks of signaling mechanisms and accessory proteins impart complex regulation on cardiac Ca(2+) signals. Subtle changes in components of the cardiac Ca(2+) signaling machinery, albeit through mutation, disease, or chronic alteration of hemodynamic demand, can have profound consequences for the function and phenotype of myocytes. Here, we discuss mechanisms underlying Ca(2+) signaling in ventricular and atrial myocytes. In particular, we describe the roles and regulation of key participants involved in Ca(2+) signal generation and reversal.
Collapse
Affiliation(s)
- Claire J Fearnley
- Laboratory of Signalling and Cell Fate, The Babraham Institute, Babraham, Cambridge CB22 3AT, United Kingdom
| | | | | |
Collapse
|
83
|
Collins TP, Bayliss R, Churchill GC, Galione A, Terrar DA. NAADP influences excitation-contraction coupling by releasing calcium from lysosomes in atrial myocytes. Cell Calcium 2011; 50:449-58. [PMID: 21906808 DOI: 10.1016/j.ceca.2011.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
In atrial myocytes, the sarcoplasmic reticulum (SR) has an essential role in regulating the force of contraction as a consequence of its involvement in excitation-contraction coupling (ECC). Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca(2+) mobilizing messenger that acts to release Ca(2+) from an acidic store in mammalian cells. The photorelease of NAADP in atrial myocytes increased Ca(2+) transient amplitude with no effect on accompanying action potentials or the L-type Ca(2+) current. NAADP-AM, a cell permeant form of NAADP, increased Ca(2+) spark amplitude and frequency. The effect on Ca(2+) spark frequency could be prevented by bafilomycin A1, a vacuolar H(+)-ATPase inhibitor, or by disruption of lysosomes by GPN. Bafilomycin prevented staining of acidic stores with LysoTracker red by increasing lysosomal pH. NAADP-AM also produced an increase in the lysosomal pH, as detected by a reduction in LysoSensor green fluorescence. These effects of NAADP were associated with an increase in the amount of caffeine-releasable Ca(2+) in the SR and may be regulated by β-adrenoceptor stimulation with isoprenaline. These observations are consistent with a role for NAADP in regulating ECC in atrial myocytes by releasing Ca(2+) from an acidic store, which enhances SR Ca(2+) release by increasing SR load.
Collapse
Affiliation(s)
- Thomas P Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, UK.
| | | | | | | | | |
Collapse
|
84
|
Effects of stochastic channel gating and distribution on the cardiac action potential. J Theor Biol 2011; 281:84-96. [DOI: 10.1016/j.jtbi.2011.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/18/2022]
|
85
|
Cannell MB, Kong CHT. Local control in cardiac E-C coupling. J Mol Cell Cardiol 2011; 52:298-303. [PMID: 21586292 DOI: 10.1016/j.yjmcc.2011.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
The development of local control theories in cardiac excitation-contraction coupling solved a major problem in the calcium-induced calcium release (CICR) hypothesis. Local control explained how regeneration, inherent in the CICR mechanism, might be limited spatially to enable graded Ca release (and force production). The key lies in the stochastic recruitment of individual calcium release units (couplons or CRUs) where adjacent CRUs are partially uncoupled by the distance between them. In the CRU, individual groups of sarcoplasmic reticulum calcium release channels (RyRs) are very close to the surface membrane where calcium influx, controlled by membrane depolarization, leads to high local Ca levels that enable a high speed response from RyRs that have a very low probability to opening at resting Ca levels. However, calcium diffusion from an activated CRU results in adjacent CRUs being exposed to much lower levels of Ca and probability of activation. This effectively uncouples the CRUs and limits overall regenerative gain to enable stability without compromising sensitivity. Nevertheless, it is still unclear how the CRU terminates its release of calcium on the physiological timescale, and possible mechanisms (and problems) are briefly reviewed. We suggest that modulation in RyR gating may serve to control average SR Ca levels to regulate other metabolic functions of the sarco(endo)plasmic reticulum beyond regulating contractility. This article is part of a special issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- M B Cannell
- School of Physiology & Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | | |
Collapse
|
86
|
Bootman MD, Smyrnias I, Thul R, Coombes S, Roderick HL. Atrial cardiomyocyte calcium signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:922-34. [DOI: 10.1016/j.bbamcr.2011.01.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
|
87
|
Scriven DRL, Asghari P, Schulson MN, Moore EDW. Analysis of Cav1.2 and ryanodine receptor clusters in rat ventricular myocytes. Biophys J 2011; 99:3923-9. [PMID: 21156134 DOI: 10.1016/j.bpj.2010.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/26/2022] Open
Abstract
We analyzed the distribution of ryanodine receptor (RyR) and Cav1.2 clusters in adult rat ventricular myocytes using three-dimensional object-based colocalization metrics. We found that ∼75% of the Cav1.2 clusters and 65% of the RyR clusters were within couplons, and both were roughly two and a half times larger than their extradyadic counterparts. Within a couplon, Cav1.2 was concentrated near the center of the underlying RyR cluster and accounted for ∼67% of its size. These data, together with previous findings from binding studies, enable us to estimate that a couplon contains 74 RyR tetramers and 10 copies of the α-subunit of Cav1.2. Extradyadic clusters of RyR contained ∼30 tetramers, whereas the extradyadic Cav1.2 clusters contained, on average, only four channels. Between 80% and 85% of both RyR and Cav1.2 molecules are within couplons. RyR clusters were in the closest proximity, with a median nearest-neighbor distance of 552 nm; comparable values for Cav1.2 clusters and couplons were 619 nm and 735 nm, respectively. Extradyadic RyR clusters were significantly closer together (624 nm) and closer to the couplons (674 nm) than the couplons were to each other. In contrast, the extradyadic clusters of Cav1.2 showed no preferential localization and were broadly distributed. These results provide a wealth of morphometric data that are essential for understanding intracellular Ca2+ regulation and modeling Ca2+ dynamics.
Collapse
Affiliation(s)
- David R L Scriven
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
88
|
Electromechanical coupling in the cardiac myocyte; stretch-arrhythmia feedback. Pflugers Arch 2011; 462:165-75. [PMID: 21373861 DOI: 10.1007/s00424-011-0944-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/29/2022]
Abstract
The macroscopic hallmarks of the normal heartbeat are rapid onset of contraction and rapid relaxation and an inotropic response to both increased end diastolic volume and increased heart rate. At the microscopic level, the calcium ion (Ca(2+)) plays a crucial role in normal cardiac contraction. This paper reviews the cycle of Ca(2+) fluxes during the normal heartbeat, which underlie the coupling between excitation and contraction (ECC) and permit a highly synchronized action of cardiac sarcomeres. Length dependence of the response of the regulatory sarcomeric proteins mediates the Frank-Starling Law of the heart. However, Ca(2+) transport may go astray in heart disease and both jeopardize the exquisite mechanism of systole and diastole and triggering arrhythmias. The interplay between weakened and strong segments in nonuniform cardiac muscle may further lead to mechanoelectric feedback-or reverse excitation contraction coupling (RECC) mediating an early diastolic Ca(2+) transient caused by the rapid force decrease during the relaxation phase. These rapid force changes in nonuniform muscle may cause arrhythmogenic Ca(2+) waves to propagate by activation of neighbouring SR by diffusing Ca(2+) ions.
Collapse
|
89
|
Picht E, Zima AV, Shannon TR, Duncan AM, Blatter LA, Bers DM. Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circ Res 2011; 108:847-56. [PMID: 21311044 DOI: 10.1161/circresaha.111.240234] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Intra-sarcoplasmic reticulum (SR) free [Ca] ([Ca](SR)) provides the driving force for SR Ca release and is a key regulator of SR Ca release channel gating during normal SR Ca release or arrhythmogenic spontaneous Ca release events. However, little is known about [Ca](SR) spatiotemporal dynamics. OBJECTIVE To directly measure local [Ca](SR) with subsarcomeric spatiotemporal resolution during both normal global SR Ca release and spontaneous Ca sparks and to evaluate the quantitative implications of spatial [Ca](SR) gradients. METHODS AND RESULTS Intact and permeabilized rabbit ventricular myocytes were subjected to direct simultaneous measurement of cytosolic [Ca] and [Ca](SR) and FRAP (fluorescence recovery after photobleach). We found no detectable [Ca](SR) gradients between SR release sites (junctional SR) and Ca uptake sites (free SR) during normal global Ca release, clear spatiotemporal [Ca](SR) gradients during isolated Ca blinks, faster intra-SR diffusion in the longitudinal versus transverse direction, 3- to 4-fold slower diffusion of fluorophores in the SR than in cytosol, and that intra-SR Ca diffusion varies locally, dependent on local SR connectivity. A computational model clarified why spatiotemporal gradients are more detectable in isolated local releases versus global releases and provides a quantitative framework for understanding intra-SR Ca diffusion. CONCLUSIONS Intra-SR Ca diffusion is rapid, limiting spatial [Ca](SR) gradients during excitation-contraction coupling. Spatiotemporal [Ca](SR) gradients are apparent during Ca sparks, and these observations constrain models of dynamic Ca movement inside the SR. This has important implications for myocyte SR Ca handling, synchrony, and potentially arrhythmogenic spontaneous contraction.
Collapse
Affiliation(s)
- Eckard Picht
- Department of Pharmacology, University of California-Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
90
|
Tuan HTM, Williams GSB, Chikando AC, Sobie EA, Lederer WJ, Jafri MS. Stochastic simulation of cardiac ventricular myocyte calcium dynamics and waves. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:4677-80. [PMID: 22255381 PMCID: PMC3538105 DOI: 10.1109/iembs.2011.6091158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A three dimensional model of calcium dynamics in the rat ventricular myocyte was developed to study the mechanism of calcium homeostasis and pathological calcium dynamics during calcium overload. The model contains 20,000 calcium release units (CRUs) each containing 49 ryanodine receptors. The model simulates calcium sparks with a realistic spontaneous calcium spark rate. It suggests that in addition to the calcium spark-based leak, there is an invisible calcium leak caused by the stochastic opening of a small number of ryanodine receptors in each CRU without triggering a calcium spark. The model also explores the mechanism of calcium wave propagation between release sites under the conditions of calcium overload.
Collapse
Affiliation(s)
| | - George S. B. Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201 USA,
| | - Aristide C. Chikando
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201 USA
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, The Mount Sinai School of Medicine, New York, New York 10029 USA ()
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201 USA,
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Manassas, VA 20110 USA,
| |
Collapse
|
91
|
Gershome C, Lin E, Kashihara H, Hove-Madsen L, Tibbits GF. Colocalization of voltage-gated Na+ channels with the Na+/Ca2+ exchanger in rabbit cardiomyocytes during development. Am J Physiol Heart Circ Physiol 2011; 300:H300-11. [DOI: 10.1152/ajpheart.00798.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reverse-mode activity of the Na+/Ca2+ exchanger (NCX) has been previously shown to play a prominent role in excitation-contraction coupling in the neonatal rabbit heart, where we have proposed that a restricted subsarcolemmal domain allows a Na+ current to cause an elevation in the Na+ concentration sufficiently large to bring Ca2+ into the myocyte through reverse-mode NCX. In the present study, we tested the hypothesis that there is an overlapping expression and distribution of voltage-gated Na+ (Nav) channel isoforms and the NCX in the neonatal heart. For this purpose, Western blot analysis, immunocytochemistry, confocal microscopy, and image analyses were used. Here, we report the robust expression of skeletal Nav1.4 and cardiac Nav1.5 in neonatal myocytes. Both isoforms colocalized with the NCX, and Nav1.5-NCX colocalization was not statistically different from Nav1.4-NCX colocalization in the neonatal group. Western blot analysis also showed that Nav1.4 expression decreased by sixfold in the adult ( P < 0.01) and Nav1.1 expression decreased by ninefold ( P < 0.01), whereas Nav1.5 expression did not change. Although Nav1.4 underwent large changes in expression levels, the Nav1.4-NCX colocalization relationship did not change with age. In contrast, Nav1.5-NCX colocalization decreased ∼50% with development. Distance analysis indicated that the decrease in Nav1.5-NCX colocalization occurs due to a statistically significant increase in separation distances between Nav1.5 and NCX objects. Taken together, the robust expression of both Nav1.4 and Nav1.5 isoforms and their colocalization with the NCX in the neonatal heart provides structural support for Na+ current-induced Ca2+ entry through reverse-mode NCX. In contrast, this mechanism is likely less efficient in the adult heart because the expression of Nav1.4 and NCX is lower and the separation distance between Nav1.5 and NCX is larger.
Collapse
Affiliation(s)
- Cynthia Gershome
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| | - Eric Lin
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| | - Haruyo Kashihara
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| | - Leif Hove-Madsen
- Centro de Investigación Cardiovascular CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby
- Child and Family Research Institute, Vancouver, British Columbia, Canada; and
| |
Collapse
|
92
|
Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation. Cardiovasc Res 2010; 89:722-33. [PMID: 21159669 DOI: 10.1093/cvr/cvq389] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia. As the most important risk factor for embolic stroke, AF is associated with a high morbidity and mortality. Despite decades of research, successful (pharmacological and interventional) 'ablation' of the arrhythmia remains challenging. AF is characterized by a diverse aetiology, including heart failure, hypertension, and valvular disease. Based on this understanding, new treatment strategies that are specifically tailored to the underlying pathophysiology of a certain 'type' of AF are being developed. One important aspect of AF pathophysiology is altered intracellular Ca(2+) handling. Due to the increase in the atrial activation rate and the subsequent initial [Ca(2+)](i) overload, AF induces 'remodelling' of intracellular Ca(2+) handling. Current research focuses on unravelling the contribution of altered intracellular Ca(2+) handling to different types of AF. More specifically, changes in intracellular Ca(2+) homeostasis preceding the onset of AF, in conditions which predispose to AF (e.g. heart failure), appear to be different from changes in Ca(2+) handling developing after the onset of AF. Here we review and critique altered intracellular Ca(2+) handling and its contribution to three specific aspects of AF pathophysiology, (i) excitation-transcription coupling and Ca(2+)-dependent signalling pathways, (ii) atrial contractile dysfunction, and (iii) arrhythmogenicity.
Collapse
Affiliation(s)
- Maura Greiser
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
93
|
Escobar M, Cardenas C, Colavita K, Petrenko NB, Franzini-Armstrong C. Structural evidence for perinuclear calcium microdomains in cardiac myocytes. J Mol Cell Cardiol 2010; 50:451-9. [PMID: 21147122 DOI: 10.1016/j.yjmcc.2010.11.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
At each heartbeat, cardiac myocytes are activated by a cytoplasmic Ca(2+) transient in great part due to Ca(2+) release from the sarcoplasmic reticulum via ryanodine receptors (RyRs) clustered within calcium release units (peripheral couplings/dyads). A Ca(2+) transient also occurs in the nucleoplasm, following the cytoplasmic transient with some delay. Under conditions where the InsP3 production is stimulated, these Ca(2+) transients are regulated actively, presumably by an additional release of Ca(2+) via InsP3 receptors (InsP3Rs). This raises the question whether InsP3Rs are appropriately located for this effect and whether sources of InsP3 and Ca(2+) are available for their activation. We have defined the structural basis for InsP3R activity at the nucleus, using immunolabeling for confocal microscopy and freeze-drying/shadowing, T tubule "staining" and thin sectioning for electron microscopy. By these means we establish the presence of InsP3R at the outer nuclear envelope and show a close spatial relationship between the nuclear envelope, T tubules (a likely source of InsP3) and dyads (the known source of Ca(2+)). The frequency, distribution and distance from the nucleus of T tubules and dyads appropriately establish local perinuclear Ca(2+) microdomains in cardiac myocytes.
Collapse
Affiliation(s)
- Matias Escobar
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | | | | | |
Collapse
|
94
|
Abstract
RATIONALE In cardiac myocytes, "Ca(2+) sparks" represent the stereotyped elemental unit of Ca(2+) release arising from activation of large arrays of ryanodine receptors (RyRs), whereas "Ca(2+) blinks" represent the reciprocal Ca(2+) depletion signal produced in the terminal cisterns of the junctional sarcoplasmic reticulum. Emerging evidence, however, suggests possible substructures in local Ca(2+) release events. OBJECTIVE With improved detection ability and sensitivity provided by simultaneous spark-blink pair measurements, we investigated possible release events that are smaller than sparks and their interplay with regular sparks. METHODS AND RESULTS We directly visualized small solitary release events amid noise: spontaneous Ca(2+) quark-like or "quarky" Ca(2+) release (QCR) events in rabbit ventricular myocytes. Because the frequency of QCR events in paced myocytes is much higher than the frequency of Ca(2+) sparks, the total Ca(2+) leak attributable to the small QCR events is approximately equal to that of the spontaneous Ca(2+) sparks. Furthermore, the Ca(2+) release underlying a spark consists of an initial high-flux stereotypical release component and a low-flux highly variable QCR component. The QCR part of the spark, but not the initial release, is sensitive to cytosolic Ca(2+) buffering by EGTA, suggesting that the QCR component is attributable to a Ca(2+)-induced Ca(2+) release mechanism. Experimental evidence, together with modeling, suggests that QCR events may depend on the opening of rogue RyR2s (or small cluster of RyR2s). CONCLUSIONS QCR events play an important role in shaping elemental Ca(2+) release characteristics and the nonspark QCR events contribute to "invisible" Ca(2+) leak in health and disease.
Collapse
Affiliation(s)
- Didier X P Brochet
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
95
|
Ziblat R, Leiserowitz L, Addadi L. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers. J Am Chem Soc 2010; 132:9920-7. [PMID: 20586463 DOI: 10.1021/ja103975g] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Grazing incidence X-ray diffraction measurements were performed on single hydrated bilayers and monolayers of DPPC:Cholesterol:POPC at varying concentrations. There are substantial differences in the phase and structure behavior of the crystalline domains formed within the bilayers relative to the corresponding monolayers, due to interactions between the opposing leaflets. Depending on the lipid composition, these interactions led to phase separation, changes in molecular tilt angle, or formation of cholesterol crystals. In monolayers, DPPC and cholesterol form a single crystalline phase at all compositions studied. In bilayers, a second crystalline phase appears when cholesterol levels are increased: domains of cholesterol and DPPC form monolayer thick crystals where each of the lipid leaflets diffracts independently, whereas excess cholesterol forms cholesterol bilayer thick crystals at a DPPC:Chol ratio < 46:54 +/- 2 mol %. The nucleation of the cholesterol crystals occurs at concentrations relevant to the actual cell plasma membrane composition.
Collapse
Affiliation(s)
- Roy Ziblat
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
96
|
MacQuaide N, Ramay HR, Sobie EA, Smith GL. Differential sensitivity of Ca²+ wave and Ca²+ spark events to ruthenium red in isolated permeabilised rabbit cardiomyocytes. J Physiol 2010; 588:4731-42. [PMID: 20921197 DOI: 10.1113/jphysiol.2010.193375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spontaneous Ca²(+) waves in cardiac muscle cells are thought to arise from the sequential firing of local Ca²(+) sparks via a fire-diffuse-fire mechanism. This study compares the ability of the ryanodine receptor (RyR) blocker ruthenium red (RuR) to inhibit these two types of Ca²(+) release in permeabilised rabbit ventricular cardiomyocytes. Perfusing with 600 nm Ca²(+) (50 μm EGTA) caused regular spontaneous Ca²(+) waves that were imaged with the fluorescence from Fluo-5F using a laser-scanning confocal microscope. Addition of 4 μm RuR caused complete inhibition of Ca²(+) waves in 50% of cardiomyocytes by 2 min and in 100% by 4 min. Separate experiments used 350 μm EGTA (600 nm Ca²(+)) to limit Ca²(+) diffusion but allow the underlying Ca(2+) sparks to be imaged. The time course of RuR-induced inhibition did not match that of waves. After 2 min of RuR, none of the characteristics of the Ca²(+) sparks were altered, and after 4 min Ca²(+) spark frequency was reduced ∼40%; no sparks could be detected after 10 min. Measurements of Ca(2+) within the SR lumen using Fluo-5N showed an increase in intra-SR Ca²(+) during the initial 2-4 min of perfusion with RuR in both wave and spark conditions. Computational modelling suggests that the sensitivity of Ca²(+) waves to RuR block depends on the number of RyRs per cluster. Therefore inhibition of Ca²(+) waves without affecting Ca²(+) sparks may be explained by block of small, non-spark producing clusters of RyRs that are important to the process of Ca²(+) wave propagation.
Collapse
Affiliation(s)
- N MacQuaide
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
97
|
Franzini-Armstrong C. RyRs: Their Disposition, Frequency, and Relationships with Other Proteins of Calcium Release Units. CURRENT TOPICS IN MEMBRANES 2010; 66:3-26. [PMID: 22353474 DOI: 10.1016/s1063-5823(10)66001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
98
|
Zahradníková A, Valent I, Zahradník I. Frequency and release flux of calcium sparks in rat cardiac myocytes: a relation to RYR gating. ACTA ACUST UNITED AC 2010; 136:101-16. [PMID: 20548054 PMCID: PMC2894546 DOI: 10.1085/jgp.200910380] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytosolic calcium concentration in resting cardiac myocytes locally fluctuates as a result of spontaneous microscopic Ca2+ releases or abruptly rises as a result of an external trigger. These processes, observed as calcium sparks, are fundamental for proper function of cardiac muscle. In this study, we analyze how the characteristics of spontaneous and triggered calcium sparks are related to cardiac ryanodine receptor (RYR) gating. We show that the frequency of spontaneous sparks and the probability distribution of calcium release flux quanta of triggered sparks correspond quantitatively to predictions of an allosteric homotetrameric model of RYR gating. This model includes competitive binding of Ca2+ and Mg2+ ions to the RYR activation sites and allosteric interaction between divalent ion binding and channel opening. It turns out that at rest, RYRs are almost fully occupied by Mg2+. Therefore, spontaneous sparks are most frequently evoked by random openings of the highly populated but rarely opening Mg4RYR and CaMg3RYR forms, whereas triggered sparks are most frequently evoked by random openings of the less populated but much more readily opening Ca2Mg2RYR and Ca3MgRYR forms. In both the spontaneous and the triggered sparks, only a small fraction of RYRs in the calcium release unit manages to open during the spark because of the limited rate of Mg2+ unbinding. This mechanism clarifies the unexpectedly low calcium release flux during elementary release events and unifies the theory of calcium signaling in resting and contracting cardiac myocytes.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 833 34 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
99
|
Lu L, Xia L, Ye X, Cheng H. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure. Phys Biol 2010; 7:026005. [PMID: 20505230 DOI: 10.1088/1478-3975/7/2/026005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca(2+) pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca(2+) leak in the form of Ca(2+) quarks, increase the probability of occurrence of spontaneous Ca(2+) waves even with smaller SR Ca(2+) stores, accelerate Ca(2+) wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca(2+) wave model under HF conditions provides a new view of Ca(2+) dynamics that could not be mimicked by adjusting traditional parameters involved in Ca(2+) release units and other ion channels, and contributes to understanding the underlying mechanism of HF.
Collapse
Affiliation(s)
- Luyao Lu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | |
Collapse
|
100
|
Rovetti R, Cui X, Garfinkel A, Weiss JN, Qu Z. Spark-induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes. Circ Res 2010; 106:1582-91. [PMID: 20378857 DOI: 10.1161/circresaha.109.213975] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Intracellular calcium (Ca) alternans has been widely studied in cardiac myocytes and tissue, yet the underlying mechanism remains controversial. OBJECTIVE In this study, we used computational modeling and simulation to study how randomly occurring Ca sparks interact collectively to result in whole-cell Ca alternans. METHODS AND RESULTS We developed a spatially distributed intracellular Ca cycling model in which Ca release units (CRUs) are locally coupled by Ca diffusion throughout the myoplasm and sarcoplasmic reticulum (SR) network. Ca sparks occur randomly in the CRU network when periodically paced with a clamped voltage waveform, but Ca alternans develops as the pacing speeds up. Combining computational simulation with theoretical analysis, we show that Ca alternans emerges as a collective behavior of Ca sparks, determined by 3 critical properties of the CRU network from which Ca sparks arise: "randomness" (of Ca spark activation), "refractoriness" (of a CRU after a Ca spark), and "recruitment" (Ca sparks inducing Ca sparks in adjacent CRUs). We also show that the steep nonlinear relationship between fractional SR Ca release and SR Ca load arises naturally as a collective behavior of Ca sparks, and Ca alternans can occur even when SR Ca is held constant. CONCLUSIONS We present a general theory for the mechanisms of intracellular Ca alternans, which mechanistically links Ca sparks to whole-cell Ca alternans, and is applicable to Ca alternans in both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Robert Rovetti
- Department of Mathematics, Loyola Marymount University, Los Angeles, Calif., USA
| | | | | | | | | |
Collapse
|