51
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
52
|
Mota APZ, Fernandez D, Arraes FBM, Petitot AS, de Melo BP, de Sa MEL, Grynberg P, Saraiva MAP, Guimaraes PM, Brasileiro ACM, Albuquerque EVS, Danchin EGJ, Grossi-de-Sa MF. Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Mol Genet Genomics 2020; 295:1063-1078. [PMID: 32333171 DOI: 10.1007/s00438-020-01677-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/04/2020] [Indexed: 01/11/2023]
Abstract
Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Departamento de Biologia Celular e Molecular, UFRGS, Porto Alegre-RS, Brazil
| | - Diana Fernandez
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- IRD, Cirad, Univ Montpellier, IPME, 911, Montpellier, France
| | - Fabricio B M Arraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Departamento de Biologia Celular e Molecular, UFRGS, Porto Alegre-RS, Brazil
| | | | - Bruno Paes de Melo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, UFV, Viçosa-MG, Brazil
| | - Maria E Lisei de Sa
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Empresa de Pesquisa Agropecuária de Minas Gerais, EPAMIG, Uberaba-MG, Brazil
| | | | | | | | | | | | | | - Maria Fatima Grossi-de-Sa
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil.
- Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
53
|
Draft genomic sequence of Armillaria gallica 012m: insights into its symbiotic relationship with Gastrodia elata. Braz J Microbiol 2020; 51:1539-1552. [PMID: 32572836 DOI: 10.1007/s42770-020-00317-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 06/09/2020] [Indexed: 10/24/2022] Open
Abstract
Armillaria species (Basidiomycota, Physalacriaceae) are well known as plant pathogens related to serious root rot disease on various trees in forests and plantations. Interestingly, some Armillaria species are essential symbionts of the rare Chinese medicinal herb Gastrodia elata, a rootless and leafless orchid used for over 2000 years. In this work, an 87.3-M draft genome of Armillaria gallica 012m strain, which was symbiotic with G. elata, was assembled. The genome includes approximately 23.6% repetitive sequences and encodes 26,261 predicted genes. In comparison with other four genomes of Armillaria, the following gene families related to pathogenicity/saprophytic phase, including cytochrome P450 monooxygenases, carbohydrate-active enzyme AA3, and hydrophobins, were significantly contracted in A. gallica 012m. These characteristics may be beneficial for G. elata to get less injuries. The genome-guided analysis of differential expression between rhizomorph (RH) and vegetative mycelium (VM) showed that a total of 2549 genes were differentially expressed, including 632 downregulated genes and 1917 upregulated genes. In the RH, most differentially expressed genes (DEGs) related to pathogenicity were significantly upregulated. To further elucidate gene function, Gene Ontology enrichment analysis showed that the upregulated DEGs significantly grouped into monooxygenase activity, hydrolase activity, glucosidase activity, extracellular region, fungal cell wall, response to xenobiotic stimulus, response to toxic substance, etc. These phenomena indicate that RH had better infection ability than VM. The infection ability of RH may be beneficial for G. elata to obtain nutrition, because the rhizomorph constantly infected the nutritional stems of G. elata and formed the hyphae that can be digested by G. elata. These results clarified the characteristics of A. gallica 012m and the reason why the strain 012m can establish a symbiotic relationship with G. elata in some extent from the perspective of genomics.
Collapse
|
54
|
Stevens L, Rooke S, Falzon LC, Machuka EM, Momanyi K, Murungi MK, Njoroge SM, Odinga CO, Ogendo A, Ogola J, Fèvre EM, Blaxter M. The Genome of Caenorhabditis bovis. Curr Biol 2020; 30:1023-1031.e4. [PMID: 32109387 DOI: 10.1016/j.cub.2020.01.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
The free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans has also become a model for parasitic nematodes despite being only distantly related to most parasitic species. All of the ∼65 Caenorhabditis species currently in culture are free-living, with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species that has been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa, where it is associated with the disease bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism. However, as C. bovis is not in laboratory culture, it remains little studied. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolated C. bovis from the ear of adult female Zebu. We sequenced the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and used the data to generate a chromosome-scale draft genome sequence. We exploited this draft genome sequence to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identified expansions in several gene families that have been implicated in parasitism in other nematode species. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species.
Collapse
Affiliation(s)
- Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | - Stefan Rooke
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Laura C Falzon
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Eunice M Machuka
- Biosciences, Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Kelvin Momanyi
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Maurice K Murungi
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Samuel M Njoroge
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya; Centre for Microbiology Research, Kenya Medical Research Institute, KNH Grounds, PO Box 54840 00200, Nairobi, Kenya
| | - Christian O Odinga
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Allan Ogendo
- Veterinary Department, Busia County Government, PO Box Private Bag 50400, Busia, Kenya
| | - Joseph Ogola
- Veterinary Department, Bungoma County Government, PO Box 2489 50200, Bungoma, Kenya
| | - Eric M Fèvre
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Mark Blaxter
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
55
|
Valliyodan B, Cannon SB, Bayer PE, Shu S, Brown AV, Ren L, Jenkins J, Chung CYL, Chan TF, Daum CG, Plott C, Hastie A, Baruch K, Barry KW, Huang W, Patil G, Varshney RK, Hu H, Batley J, Yuan Y, Song Q, Stupar RM, Goodstein DM, Stacey G, Lam HM, Jackson SA, Schmutz J, Grimwood J, Edwards D, Nguyen HT. Construction and comparison of three reference-quality genome assemblies for soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1066-1082. [PMID: 31433882 DOI: 10.1111/tpj.14500] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 05/15/2023]
Abstract
We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single-nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, 65101, MO, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Ames, 50011, IA, USA
| | - Philipp E Bayer
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Anne V Brown
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Ames, 50011, IA, USA
| | - Longhui Ren
- Interdepartmental Genetics Program, Iowa State University, Ames, 50011, IA, USA
| | - Jerry Jenkins
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | - Claire Y-L Chung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ting-Fung Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Christopher G Daum
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Christopher Plott
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | | | | | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Wei Huang
- Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Gunvant Patil
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Haifei Hu
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Yuxuan Yuan
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Qijian Song
- Soybean Genomics and Improvement Lab, US Department of Agriculture - Agricultural Research Service, Beltsville, 20705, MD, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, 55108, MN, USA
| | - David M Goodstein
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Gary Stacey
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Jeremy Schmutz
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | - Jane Grimwood
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
56
|
Schiffer PH, Danchin EGJ, Burnell AM, Creevey CJ, Wong S, Dix I, O'Mahony G, Culleton BA, Rancurel C, Stier G, Martínez-Salazar EA, Marconi A, Trivedi U, Kroiher M, Thorne MAS, Schierenberg E, Wiehe T, Blaxter M. Signatures of the Evolution of Parthenogenesis and Cryptobiosis in the Genomes of Panagrolaimid Nematodes. iScience 2019; 21:587-602. [PMID: 31759330 PMCID: PMC6889759 DOI: 10.1016/j.isci.2019.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Most animal species reproduce sexually and fully parthenogenetic lineages are usually short lived in evolution. Still, parthenogenesis may be advantageous as it avoids the cost of sex and permits colonization by single individuals. Panagrolaimid nematodes have colonized environments ranging from arid deserts to Arctic and Antarctic biomes. Many are obligatory meiotic parthenogens, and most have cryptobiotic abilities, being able to survive repeated cycles of complete desiccation and freezing. To identify systems that may contribute to these striking abilities, we sequenced and compared the genomes and transcriptomes of parthenogenetic and outcrossing panagrolaimid species, including cryptobionts and non-cryptobionts. The parthenogens are triploids, most likely originating through hybridization. Adaptation to cryptobiosis shaped the genomes of panagrolaimid nematodes and is associated with the expansion of gene families and signatures of selection on genes involved in cryptobiosis. All panagrolaimids have acquired genes through horizontal gene transfer, some of which are likely to contribute to cryptobiosis.
Collapse
Affiliation(s)
- Philipp H Schiffer
- CLOE, Department for Biosciences, University College London, London, UK; Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany; Institut für Genetik, Universität zu Köln, 50674 Köln, Germany.
| | | | - Ann M Burnell
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | - Simon Wong
- Irish Centre for High-End Computing, Tower Building, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin D02 HP83, Ireland
| | - Ilona Dix
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Georgina O'Mahony
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Bridget A Culleton
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland; Megazyme, Bray Business Park, Bray, Co. Wicklow A98 YV29, Ireland
| | | | - Gary Stier
- Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany
| | - Elizabeth A Martínez-Salazar
- Unidad Académica de Ciencias Biológicas, Laboratorio de Colecciones Biológicas y Sistemática Molecular, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Aleksandra Marconi
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Michael Kroiher
- Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | | | - Thomas Wiehe
- Institut für Genetik, Universität zu Köln, 50674 Köln, Germany
| | - Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK; Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
57
|
Chow FWN, Koutsovoulos G, Ovando-Vázquez C, Neophytou K, Bermúdez-Barrientos JR, Laetsch DR, Robertson E, Kumar S, Claycomb JM, Blaxter M, Abreu-Goodger C, Buck AH. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Res 2019; 47:3594-3606. [PMID: 30820541 PMCID: PMC6468290 DOI: 10.1093/nar/gkz142] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular RNA has been proposed to mediate communication between cells and organisms however relatively little is understood regarding how specific sequences are selected for export. Here, we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomoides bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO orthologues are highly conserved and abundantly expressed in related parasites but highly diverged in free-living genus Caenorhabditis. We show that the most abundant small RNAs released from the nematode parasite are not microRNAs as previously thought, but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. The siRNAs that are released in EVs have distinct evolutionary properties compared to those resident in free-living or parasitic nematodes. Immunoprecipitation of exWAGO demonstrates that it specifically associates with siRNAs from transposons and newly evolved repetitive elements that are packaged in EVs and released into the host environment. Together this work demonstrates molecular and evolutionary selectivity in the small RNA sequences that are released in EVs into the host environment and identifies a novel Argonaute protein as the mediator of this.
Collapse
Affiliation(s)
- Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Georgios Koutsovoulos
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Cesaré Ovando-Vázquez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Kyriaki Neophytou
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jose R Bermúdez-Barrientos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Elaine Robertson
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sujai Kumar
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK.,Centre for Immunity, Infection and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK.,Centre for Immunity, Infection and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
58
|
Abstract
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms.
Collapse
|
59
|
McLean F, Berger D, Laetsch DR, Schwartz HT, Blaxter M. Improving the annotation of the Heterorhabditis bacteriophora genome. Gigascience 2018; 7:4958981. [PMID: 29617768 PMCID: PMC5906903 DOI: 10.1093/gigascience/giy034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background Genome assembly and annotation remain exacting tasks. As the tools available for these tasks improve, it is useful to return to data produced with earlier techniques to assess their credibility and correctness. The entomopathogenic nematode Heterorhabditis bacteriophora is widely used to control insect pests in horticulture. The genome sequence for this species was reported to encode an unusually high proportion of unique proteins and a paucity of secreted proteins compared to other related nematodes. Findings We revisited the H. bacteriophora genome assembly and gene predictions to determine whether these unusual characteristics were biological or methodological in origin. We mapped an independent resequencing dataset to the genome and used the blobtools pipeline to identify potential contaminants. While present (0.2% of the genome span, 0.4% of predicted proteins), assembly contamination was not significant. Conclusions Re-prediction of the gene set using BRAKER1 and published transcriptome data generated a predicted proteome that was very different from the published one. The new gene set had a much reduced complement of unique proteins, better completeness values that were in line with other related species’ genomes, and an increased number of proteins predicted to be secreted. It is thus likely that methodological issues drove the apparent uniqueness of the initial H. bacteriophora genome annotation and that similar contamination and misannotation issues affect other published genome assemblies.
Collapse
Affiliation(s)
- Florence McLean
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Duncan Berger
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|