51
|
Pelé A, Falque M, Trotoux G, Eber F, Nègre S, Gilet M, Huteau V, Lodé M, Jousseaume T, Dechaumet S, Morice J, Poncet C, Coriton O, Martin OC, Rousseau-Gueutin M, Chèvre AM. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas. PLoS Genet 2017; 13:e1006794. [PMID: 28493942 PMCID: PMC5444851 DOI: 10.1371/journal.pgen.1006794] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/25/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Matthieu Falque
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Frédérique Eber
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Sylvie Nègre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Virginie Huteau
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Maryse Lodé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Sylvain Dechaumet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Olivier Coriton
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Olivier C. Martin
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- * E-mail:
| |
Collapse
|
52
|
Genomic innovation for crop improvement. Nature 2017; 543:346-354. [DOI: 10.1038/nature22011] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
|
53
|
Lambing C, Franklin FCH, Wang CJR. Understanding and Manipulating Meiotic Recombination in Plants. PLANT PHYSIOLOGY 2017; 173:1530-1542. [PMID: 28108697 PMCID: PMC5338670 DOI: 10.1104/pp.16.01530] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step of meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous nonsister chromatids. This gene reshuffling during meiosis has a significant influence on evolution and also plays an essential role in plant breeding, because a successful breeding program depends on the ability to bring the desired combinations of alleles on chromosomes. However, the number and distribution of COs during meiosis is highly constrained. There is at least one CO per chromosome pair to ensure accurate segregation of homologs, but in most organisms, the CO number rarely exceeds three regardless of chromosome size. Moreover, their positions are not random on chromosomes but exhibit regional preference. Thus, genes in recombination-poor regions tend to be inherited together, hindering the generation of novel allelic combinations that could be exploited by breeding programs. Recently, much progress has been made in understanding meiotic recombination. In particular, many genes involved in the process in Arabidopsis (Arabidopsis thaliana) have been identified and analyzed. With the coming challenges of food security and climate change, and our enhanced knowledge of how COs are formed, the interest and needs in manipulating CO formation are greater than ever before. In this review, we focus on advances in understanding meiotic recombination and then summarize the attempts to manipulate CO formation. Last, we pay special attention to the meiotic recombination in polyploidy, which is a common genomic feature for many crop plants.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| | - F Chris H Franklin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| | - Chung-Ju Rachel Wang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.);
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| |
Collapse
|
54
|
Balcárková B, Frenkel Z, Škopová M, Abrouk M, Kumar A, Chao S, Kianian SF, Akhunov E, Korol AB, Doležel J, Valárik M. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A. FRONTIERS IN PLANT SCIENCE 2017; 7:2063. [PMID: 28119729 PMCID: PMC5222868 DOI: 10.3389/fpls.2016.02063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/26/2016] [Indexed: 05/18/2023]
Abstract
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.
Collapse
Affiliation(s)
- Barbora Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Zeev Frenkel
- Institute of Evolution, University of HaifaHaifa, Israel
| | - Monika Škopová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, FargoND, USA
| | - Shiaoman Chao
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service, FargoND, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, University of Minnesota, St. PaulMN, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, ManhattanKS, USA
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| |
Collapse
|
55
|
Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, Jungreithmeier F, Gratl V, Lemmens M, Mayer KFX, Bérgès H, Adam G, Buerstmayr H. Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1607-23. [PMID: 27174222 PMCID: PMC4943984 DOI: 10.1007/s00122-016-2727-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/03/2016] [Indexed: 05/09/2023]
Abstract
Fine mapping and sequencing revealed 28 genes in the non-recombining haplotype containing Fhb1 . Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern. Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.
Collapse
Affiliation(s)
- W Schweiger
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria.
| | - B Steiner
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - S Vautrin
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - T Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - G Siegwart
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - M Zamini
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - F Jungreithmeier
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - V Gratl
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - M Lemmens
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - K F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - H Bérgès
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - G Adam
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - H Buerstmayr
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| |
Collapse
|
56
|
Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 2016; 54:188-197. [PMID: 26849908 PMCID: PMC4867242 DOI: 10.1016/j.semcdb.2016.01.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| |
Collapse
|
57
|
Tiwari VK, Heesacker A, Riera-Lizarazu O, Gunn H, Wang S, Wang Y, Gu YQ, Paux E, Koo DH, Kumar A, Luo MC, Lazo G, Zemetra R, Akhunov E, Friebe B, Poland J, Gill BS, Kianian S, Leonard JM. A whole-genome, radiation hybrid mapping resource of hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:195-207. [PMID: 26945524 DOI: 10.1111/tpj.13153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Adam Heesacker
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | | | - Hilary Gunn
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Shichen Wang
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Yi Wang
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, NY, USA
| | - Young Q Gu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, NY, USA
| | - Etienne Paux
- Diversité et Ecophysiologie des Céréales, INRA, UMR 1095 Génétique, 5 chemin de Beaulieu, F-63039, Clermont-Ferrand, France
- Diversité et Ecophysiologie des Céréales, UMR 1095 Génétique, Université Blaise Pascal, F-63177, Aubière Cedex, France
| | - Dal-Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Gerard Lazo
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, NY, USA
| | - Robert Zemetra
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Shahryar Kianian
- Cereal Disease Laboratory, University of Minnesota, Saint Paul, MN, USA
| | - Jeffrey M Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
58
|
Termolino P, Cremona G, Consiglio MF, Conicella C. Insights into epigenetic landscape of recombination-free regions. Chromosoma 2016; 125:301-8. [PMID: 26801812 PMCID: PMC4830869 DOI: 10.1007/s00412-016-0574-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution.
Collapse
Affiliation(s)
- Pasquale Termolino
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Gaetana Cremona
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Maria Federica Consiglio
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Clara Conicella
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy.
| |
Collapse
|
59
|
Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, Hochwagen A, Fung J, Keeney S, Vader G, Marston AL. The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife 2015. [PMID: 26653857 DOI: 10.7554/elife.10850.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.
Collapse
Affiliation(s)
- Nadine Vincenten
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Isabel Lam
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Alastair Rw Kerr
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
60
|
Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, Hochwagen A, Fung J, Keeney S, Vader G, Marston AL. The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife 2015; 4. [PMID: 26653857 PMCID: PMC4749563 DOI: 10.7554/elife.10850] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/13/2015] [Indexed: 11/13/2022] Open
Abstract
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.
Collapse
Affiliation(s)
- Nadine Vincenten
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Isabel Lam
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Alastair Rw Kerr
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
| | - Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
61
|
Naranjo T. Contribution of Structural Chromosome Mutants to the Study of Meiosis in Plants. Cytogenet Genome Res 2015; 147:55-69. [PMID: 26658116 DOI: 10.1159/000442219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Dissection of the molecular mechanisms underlying the transition through the complex events of the meiotic process requires the use of gene mutants or RNAi-mediated gene silencing. A considerable number of meiotic mutants have been isolated in plant species such as Arabidopsis thaliana, maize or rice. However, structural chromosome mutants are also important for the identification of the role developed by different chromosome domains in the meiotic process. This review summarizes the contribution of studies carried out in plants using structural chromosome variations. Meiotic events concerning the search of the homologous partner, the control of number and distribution of chiasmata, the mechanism of pairing correction, and chromosome segregation are considered.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
62
|
Borrill P, Adamski N, Uauy C. Genomics as the key to unlocking the polyploid potential of wheat. THE NEW PHYTOLOGIST 2015; 208:1008-22. [PMID: 26108556 DOI: 10.1111/nph.13533] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/31/2015] [Indexed: 05/19/2023]
Abstract
Polyploidy has played a central role in plant genome evolution and in the formation of new species such as tetraploid pasta wheat and hexaploid bread wheat. Until recently, the high sequence conservation between homoeologous genes, together with the large genome size of polyploid wheat, had hindered genomic analyses in this important crop species. In the past 5 yr, however, the advent of next-generation sequencing has radically changed the wheat genomics landscape. Here, we review a series of advances in genomic resources and tools for functional genomics that are shifting the paradigm of what is possible in wheat molecular genetics and breeding. We discuss how understanding the relationship between homoeologues can inform approaches to modulate the response of quantitative traits in polyploid wheat; we also argue that functional redundancy has 'locked up' a wide range of phenotypic variation in wheat. We explore how genomics provides key tools to inform targeted manipulation of multiple homoeologues, thereby allowing researchers and plant breeders to unlock the full polyploid potential of wheat.
Collapse
Affiliation(s)
| | - Nikolai Adamski
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
63
|
Kumar A, Seetan R, Mergoum M, Tiwari VK, Iqbal MJ, Wang Y, Al-Azzam O, Šimková H, Luo MC, Dvorak J, Gu YQ, Denton A, Kilian A, Lazo GR, Kianian SF. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 2015; 16:800. [PMID: 26475137 PMCID: PMC4609151 DOI: 10.1186/s12864-015-2030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. METHODS In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. RESULTS A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. CONCLUSION This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Raed Seetan
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Mohamed Mergoum
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Vijay K Tiwari
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Muhammad J Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yi Wang
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Omar Al-Azzam
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science and Information Technology, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Hana Šimková
- Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
- Institute of Experimental Botany, Šlechtitelů 31, 783-71, Olomouc, Czech Republic
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Anne Denton
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Limited, 1 Wilf Crane Crescent, Yarralumla, ACT2600, Australia
| | - Gerard R Lazo
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Shahryar F Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
64
|
Phillips D, Jenkins G, Macaulay M, Nibau C, Wnetrzak J, Fallding D, Colas I, Oakey H, Waugh R, Ramsay L. The effect of temperature on the male and female recombination landscape of barley. THE NEW PHYTOLOGIST 2015; 208:421-9. [PMID: 26255865 DOI: 10.1111/nph.13548] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/01/2015] [Indexed: 05/02/2023]
Abstract
Barley (Hordeum vulgare) is a crop of global significance. However, a third of the genes of barley are largely inaccessible to conventional breeding programmes as crossovers are localised to the ends of the chromosomes. This work examines whether crossovers can be shifted to more proximal regions simply by elevating growth temperature. We utilised a genome-wide marker set for linkage analysis combined with cytological mapping of crossover events to examine the recombination landscape of plants grown at different temperatures. We found that barley shows heterochiasmy, that is, differences between female and male recombination frequencies. In addition, we found that elevated temperature significantly changes patterns of recombination in male meiosis only, with a repositioning of Class I crossovers determined by cytological mapping of HvMLH3 foci. We show that the length of synaptonemal complexes in male meiocytes increases in response to temperature. The results demonstrate that the distribution of crossover events are malleable and can be shifted to proximal regions by altering the growth temperature. The shift in recombination is the result of altering the distribution of Class I crossovers, but the higher recombination at elevated temperatures is potentially not the result of an increase in Class I events.
Collapse
Affiliation(s)
- Dylan Phillips
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth, University, Aberystwyth, SY23 3DA, UK
| | - Glyn Jenkins
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth, University, Aberystwyth, SY23 3DA, UK
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Candida Nibau
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth, University, Aberystwyth, SY23 3DA, UK
| | - Joanna Wnetrzak
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth, University, Aberystwyth, SY23 3DA, UK
| | - Derek Fallding
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth, University, Aberystwyth, SY23 3DA, UK
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Helena Oakey
- Information and Computational Sciences, The James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
65
|
Naranjo T. Forcing the shift of the crossover site to proximal regions in wheat chromosomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1855-63. [PMID: 26066968 DOI: 10.1007/s00122-015-2552-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/30/2015] [Indexed: 05/23/2023]
Abstract
Terminal deletions obligate the first crossover to be formed in more proximal positions. This increases the recombination rate in intercalary intervals but not in the proximity of the centromere. Crossovers are not uniformly distributed along chromosomes in wheat. They take place preferentially in distal positions. The effect of the chromosomal architecture on crossover positioning has been analyzed from the chiasmate bonds at metaphase I formed by the truncated arms of 51 terminal deletion lines of eight wheat chromosomes. Chromosome 4A and the B genome chromosomes, in their standard or truncated conformation, and their arms, were identified by C-banding. Chromosomes studied show a similar chiasma distribution. Reduction of the size of the truncated arms is accompanied by a gradual decrease of the chiasma frequency in chromosome arms 1BL, 3BS, 3BL, 4BL, 5BS, 5BL, 6BL, 7BS, 7BL and 4AL. In chromosome arm 1BS, most chiasmata are concentrated in the distal half of the satellite and, in 4AS, in the distal 24 %. The arms 2BS, 2BL and 6BS do not show a simple decreasing gradient of the recombination rate, the chiasma frequency increases in subdistal intervals compared to more distal regions. Although terminal deletions usually induce an increase of chiasma frequency in intercalary regions, the level of intact chromosome arms is maintained in only a few deletion lines. Truncated arms containing only the 20 % proximal of the intact arm do not form chiasmata. The relationships of chiasma positioning with chromatin structure and genome organization is discussed.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040, Madrid, Spain,
| |
Collapse
|
66
|
Wang Y, Drader T, Tiwari VK, Dong L, Kumar A, Huo N, Ghavami F, Iqbal MJ, Lazo GR, Leonard J, Gill BS, Kianian SF, Luo MC, Gu YQ. Development of a D genome specific marker resource for diploid and hexaploid wheat. BMC Genomics 2015; 16:646. [PMID: 26315263 PMCID: PMC4552153 DOI: 10.1186/s12864-015-1852-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Mapping and map-based cloning of genes that control agriculturally and economically important traits remain great challenges for plants with complex highly repetitive genomes such as those within the grass tribe, Triticeae. Mapping limitations in the Triticeae are primarily due to low frequencies of polymorphic gene markers and poor genetic recombination in certain genetic regions. Although the abundance of repetitive sequence may pose common problems in genome analysis and sequence assembly of large and complex genomes, they provide repeat junction markers with random and unbiased distribution throughout chromosomes. Hence, development of a high-throughput mapping technology that combine both gene-based and repeat junction-based markers is needed to generate maps that have better coverage of the entire genome. RESULTS In this study, the available genomics resource of the diploid Aegilop tauschii, the D genome donor of bread wheat, were used to develop genome specific markers that can be applied for mapping in modern hexaploid wheat. A NimbleGen array containing both gene-based and repeat junction probe sequences derived from Ae. tauschii was developed and used to map the Chinese Spring nullisomic-tetrasomic lines and deletion bin lines of the D genome chromosomes. Based on these mapping data, we have now anchored 5,171 repeat junction probes and 10,892 gene probes, corresponding to 5,070 gene markers, to the delineated deletion bins of the D genome. The order of the gene-based markers within the deletion bins of the Chinese Spring can be inferred based on their positions on the Ae. tauschii genetic map. Analysis of the probe sequences against the Chinese Spring chromosome sequence assembly database facilitated mapping of the NimbleGen probes to the sequence contigs and allowed assignment or ordering of these sequence contigs within the deletion bins. The accumulated length of anchored sequence contigs is about 155 Mb, representing ~ 3.2 % of the D genome. A specific database was developed to allow user to search or BLAST against the probe sequence information and to directly download PCR primers for mapping specific genetic loci. CONCLUSIONS In bread wheat, aneuploid stocks have been extensively used to assign markers linked with genes/traits to chromosomes, chromosome arms, and their specific bins. Through this study, we added thousands of markers to the existing wheat chromosome bin map, representing a significant step forward in providing a resource to navigate the wheat genome. The database website ( http://probes.pw.usda.gov/ATRJM/ ) provides easy access and efficient utilization of the data. The resources developed herein can aid map-based cloning of traits of interest and the sequencing of the D genome of hexaploid wheat.
Collapse
Affiliation(s)
- Yi Wang
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA. .,Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Thomas Drader
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA.
| | - Vijay K Tiwari
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA. .,Wheat Genetic Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Lingli Dong
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA. .,Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA. ajay.kumar.2.@ndsu.edu
| | - Naxin Huo
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Farhad Ghavami
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.,Molecular Breeding and Genomics Technology Laboratory, BioDiagnostics Inc., River Falls, WI, 54022, USA
| | - M Javed Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Gerard R Lazo
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA.
| | - Jeff Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA.
| | - Bikram S Gill
- Wheat Genetic Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | | | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Yong Q Gu
- Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA.
| |
Collapse
|
67
|
Liang Y, Zhang DY, Ouyang S, Xie J, Wu Q, Wang Z, Cui Y, Lu P, Zhang D, Liu ZJ, Zhu J, Chen YX, Zhang Y, Luo MC, Dvorak J, Huo N, Sun Q, Gu YQ, Liu Z. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1617-29. [PMID: 25993896 DOI: 10.1007/s00122-015-2536-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/02/2015] [Indexed: 05/12/2023]
Abstract
Rapid evolution of powdery mildew resistance gene MlIW170 orthologous genomic regions in wheat subgenomes. Wheat is one of the most important staple grain crops in the world and also an excellent model for plant ploidy evolution research with different ploidy levels from diploid to hexaploid. Powdery mildew disease caused by Blumeria graminis f.sp. tritici can result in significant loss in both grain yield and quality in wheat. In this study, the wheat powdery mildew resistance gene MlIW170 locus located at the Triticum dicoccoides chromosome 2B short arm was further characterized by constructing and sequencing a BAC-based physical map contig covering a 0.3 cM genetic distance region (880 kb) and developing additional markers to delineate the resistance gene within a 0.16 cM genetic interval (372 kb). Comparative analyses of the T. dicoccoides 2BS region with the orthologous Aegilops tauschii 2DS region showed great gene colinearity, including the structure organization of both types of RGA1/2-like and RPS2-like resistance genes. Comparative analyses with the orthologous regions from Brachypodium and rice genomes revealed considerable dynamic evolutionary changes that have re-shaped this MlIW170 region in the wheat genome, resulting in a high number of non-syntenic genes including resistance-related genes. This result might reflect the rapid evolution in R-gene regions. Phylogenetic analysis on these resistance-related gene sequences indicated the duplication of these genes in the MlIW170 region, occurred before the separation of the wheat B and D genomes.
Collapse
Affiliation(s)
- Yong Liang
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Shi G, Zhang Z, Friesen TL, Bansal U, Cloutier S, Wicker T, Rasmussen JB, Faris JD. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol Genet Genomics 2015; 291:107-19. [PMID: 26187026 DOI: 10.1007/s00438-015-1091-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Urmil Bansal
- The University of Sydney PBI-Cobbity, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Sylvie Cloutier
- Eastern Cereal and Oil Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
69
|
Choi K, Henderson IR. Meiotic recombination hotspots - a comparative view. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:52-61. [PMID: 25925869 DOI: 10.1111/tpj.12870] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 05/18/2023]
Abstract
During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
70
|
Thomas M, Pingault L, Poulet A, Duarte J, Throude M, Faure S, Pichon JP, Paux E, Probst AV, Tatout C. Evolutionary history of Methyltransferase 1 genes in hexaploid wheat. BMC Genomics 2014; 15:922. [PMID: 25342325 PMCID: PMC4223845 DOI: 10.1186/1471-2164-15-922] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plant and animal methyltransferases are key enzymes involved in DNA methylation at cytosine residues, required for gene expression control and genome stability. Taking advantage of the new sequence surveys of the wheat genome recently released by the International Wheat Genome Sequencing Consortium, we identified and characterized MET1 genes in the hexaploid wheat Triticum aestivum (TaMET1). RESULTS Nine TaMET1 genes were identified and mapped on homoeologous chromosome groups 2A/2B/2D, 5A/5B/5D and 7A/7B/7D. Synteny analysis and evolution rates suggest that the genome organization of TaMET1 genes results from a whole genome duplication shared within the grass family, and a second gene duplication, which occurred specifically in the Triticeae tribe prior to the speciation of diploid wheat. Higher expression levels were observed for TaMET1 homoeologous group 2 genes compared to group 5 and 7, indicating that group 2 homoeologous genes are predominant at the transcriptional level, while group 5 evolved into pseudogenes. We show the connection between low expression levels, elevated evolution rates and unexpected enrichment in CG-dinucleotides (CG-rich isochores) at putative promoter regions of homoeologous group 5 and 7, but not of group 2 TaMET1 genes. Bisulfite sequencing reveals that these CG-rich isochores are highly methylated in a CG context, which is the expected target of TaMET1. CONCLUSIONS We retraced the evolutionary history of MET1 genes in wheat, explaining the predominance of group 2 homoeologous genes and suggest CG-DNA methylation as one of the mechanisms involved in wheat genome dynamics.
Collapse
Affiliation(s)
- Mélanie Thomas
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Lise Pingault
- />UMR INRA 1095 Blaise Pascal University, Genetics Diversity & Ecophysiology of Cereals (GDEC), Clermont-Ferrand – Theix, 5 chemin de Beaulieu, 63039 Clermont-Ferrand Cedex 2, France
| | - Axel Poulet
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| | - Jorge Duarte
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Mickaël Throude
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Sébastien Faure
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Jean-Philippe Pichon
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Etienne Paux
- />UMR INRA 1095 Blaise Pascal University, Genetics Diversity & Ecophysiology of Cereals (GDEC), Clermont-Ferrand – Theix, 5 chemin de Beaulieu, 63039 Clermont-Ferrand Cedex 2, France
| | - Aline Valeska Probst
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| | - Christophe Tatout
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| |
Collapse
|
71
|
Belova T, Grønvold L, Kumar A, Kianian S, He X, Lillemo M, Springer NM, Lien S, Olsen OA, Sandve SR. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2029-2040. [PMID: 25134516 DOI: 10.1007/s00122-014-2358-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.
Collapse
Affiliation(s)
- Tatiana Belova
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Le Gouis J, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury JM, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C. Structural and functional partitioning of bread wheat chromosome 3B. Science 2014; 345:1249721. [PMID: 25035497 DOI: 10.1126/science.1249721] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.
Collapse
Affiliation(s)
- Frédéric Choulet
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France.
| | - Adriana Alberti
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Sébastien Theil
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Natasha Glover
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Josquin Daron
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Lise Pingault
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Pierre Sourdille
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Arnaud Couloux
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Etienne Paux
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Philippe Leroy
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Nicolas Guilhot
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Jacques Le Gouis
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Francois Balfourier
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Michael Alaux
- INRA, UR1164 Unité de Recherche Génomique Info Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles, France
| | - Véronique Jamilloux
- INRA, UR1164 Unité de Recherche Génomique Info Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Céline Durand
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Christine Gaspin
- Biométrie et Intelligence Artificielle, INRA, Chemin de Borde Rouge, BP 27, 31326 Castanet-Tolosan, France
| | - Jan Safar
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Slechtitelu 31, CZ-78371 Olomouc, Czech Republic
| | - Jaroslav Dolezel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Slechtitelu 31, CZ-78371 Olomouc, Czech Republic
| | - Jane Rogers
- The Genome Analysis Centre, Norwich, Norwich Research Park, Norwich NR4 7UH, UK
| | - Klaas Vandepoele
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics (Ghent University), Technologiepark 927, 9052 Gent, Belgium
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Klaus Mayer
- Munich Information Center for Protein Sequences, Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - Hélène Berges
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Hadi Quesneville
- INRA, UR1164 Unité de Recherche Génomique Info Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France. CNRS UMR 8030, 2 Rue Gaston Crémieux, 91000 Evry, France. Université d'Evry, CP5706 Evry, France
| | - Catherine Feuillet
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| |
Collapse
|
73
|
Diéguez MJ, Pergolesi MF, Velasquez SM, Ingala L, López M, Darino M, Paux E, Feuillet C, Sacco F. Fine mapping of LrSV2, a race-specific adult plant leaf rust resistance gene on wheat chromosome 3BS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1133-1141. [PMID: 24553966 DOI: 10.1007/s00122-014-2285-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
Fine mapping permits the precise positioning of genes within chromosomes, prerequisite for positional cloning that will allow its rational use and the study of the underlying molecular action mechanism. Three leaf rust resistance genes were identified in the durable leaf rust resistant Argentinean wheat variety Sinvalocho MA: the seedling resistance gene Lr3 on distal 6BL and two adult plant resistance genes, LrSV1 and LrSV2, on chromosomes 2DS and 3BS, respectively. To develop a high-resolution genetic map for LrSV2, 10 markers were genotyped on 343 F2 individuals from a cross between Sinvalocho MA and Gama6. The closest co-dominant markers on both sides of the gene (3 microsatellites and 2 STMs) were analyzed on 965 additional F2s from the same cross. Microsatellite marker cfb5010 cosegregated with LrSV2 whereas flanking markers were found at 1 cM distal and at 0.3 cM proximal to the gene. SSR markers designed from the sequences of cv Chinese Spring BAC clones spanning the LrSV2 genetic interval were tested on the recombinants, allowing the identification of microsatellite swm13 at 0.15 cM distal to LrSV2. This delimited an interval of 0.45 cM around the gene flanked by the SSR markers swm13 and gwm533 at the subtelomeric end of chromosome 3BS.
Collapse
Affiliation(s)
- M J Diéguez
- Instituto de Genética "Ewald A. Favret" CICVyA-INTA CC25 (1712) Castelar, Buenos Aires, Argentina,
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Plomion C, Chancerel E, Endelman J, Lamy JB, Mandrou E, Lesur I, Ehrenmann F, Isik F, Bink MCAM, van Heerwaarden J, Bouffier L. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genomics 2014; 15:171. [PMID: 24581176 PMCID: PMC4029062 DOI: 10.1186/1471-2164-15-171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/21/2014] [Indexed: 12/14/2022] Open
Abstract
Background The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. Results Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (He) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of He across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. Conclusions These results are a stepping stone for the development of strategies for studies in population genomics, association mapping and genomic prediction in this economical and ecologically important forest tree species.
Collapse
|
75
|
Zhang L, Liang Z, Hutchinson J, Kleckner N. Crossover patterning by the beam-film model: analysis and implications. PLoS Genet 2014; 10:e1004042. [PMID: 24497834 PMCID: PMC3907302 DOI: 10.1371/journal.pgen.1004042] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022] Open
Abstract
Crossing-over is a central feature of meiosis. Meiotic crossover (CO) sites are spatially patterned along chromosomes. CO-designation at one position disfavors subsequent CO-designation(s) nearby, as described by the classical phenomenon of CO interference. If multiple designations occur, COs tend to be evenly spaced. We have previously proposed a mechanical model by which CO patterning could occur. The central feature of a mechanical mechanism is that communication along the chromosomes, as required for CO interference, can occur by redistribution of mechanical stress. Here we further explore the nature of the beam-film model, its ability to quantitatively explain CO patterns in detail in several organisms, and its implications for three important patterning-related phenomena: CO homeostasis, the fact that the level of zero-CO bivalents can be low (the “obligatory CO”), and the occurrence of non-interfering COs. Relationships to other models are discussed. Spatial patterning is a common feature of biological systems at all length scales, from molecular to multi-organismic. Meiosis is the specialized cellular program in which a diploid cell gives rise to haploid gametes for sexual reproduction. Crossing-over between homologous maternal and paternal chromosomes (homologs) is a central feature of this program, playing a role not only for increasing genetic diversity but also for ensuring regular segregation of homologs at the first meiotic division. The distribution of crossovers (COs) along meiotic chromosomes is a paradigmatic example of spatial patterning. Crossovers occur at different positions in different meiotic nuclei but, nonetheless, tend to be evenly spaced along the chromosomes. We previously-described a mechanical “stress and stress relief” model for CO patterning with an accompanying mathematical description (the “beam-film model”). In this paper we explore the roles of mathematical parameters in this model; show that it can very accurately describe experimental data sets from several organisms, in considerably quantitative depth; and discuss implications of the model for several phenomena that are directly related to crossover patterning, including the features which can ensure that every chromosome always acquires at least one crossover.
Collapse
Affiliation(s)
- Liangran Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Zhangyi Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - John Hutchinson
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
76
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
77
|
Timonova EM, Dobrovol’skaya OB, Sergeeva EM, Bildanova LL, Sourdille P, Feuillet C, Salina EA. A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413120132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Next generation characterisation of cereal genomes for marker discovery. BIOLOGY 2013; 2:1357-77. [PMID: 24833229 PMCID: PMC4009793 DOI: 10.3390/biology2041357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 12/30/2022]
Abstract
Cereal crops form the bulk of the world’s food sources, and thus their importance cannot be understated. Crop breeding programs increasingly rely on high-resolution molecular genetic markers to accelerate the breeding process. The development of these markers is hampered by the complexity of some of the major cereal crop genomes, as well as the time and cost required. In this review, we address current and future methods available for the characterisation of cereal genomes, with an emphasis on faster and more cost effective approaches for genome sequencing and the development of markers for trait association and marker assisted selection (MAS) in crop breeding programs.
Collapse
|
79
|
Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, Hardcastle TJ, Ziolkowski PA, Copenhaver GP, Franklin FCH, McVean G, Henderson IR. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet 2013; 45:1327-36. [PMID: 24056716 PMCID: PMC3812125 DOI: 10.1038/ng.2766] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/26/2013] [Indexed: 12/13/2022]
Abstract
PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and terminators, and hot spots were associated with active chromatin modifications, including H2A.Z, histone H3 Lys4 trimethylation (H3K4me3), LND and low DNA methylation. Hot spot-enriched A-rich and CTT-repeat DNA motifs occurred upstream and downstream, respectively, of transcriptional start sites. Crossovers were asymmetric around promoters and were most frequent over CTT-repeat motifs and H2A.Z nucleosomes. Pollen typing, segregation and cytogenetic analysis showed decreased numbers of crossovers in the arp6 H2A.Z deposition mutant at multiple scales. During meiosis, H2A.Z forms overlapping chromosomal foci with the DMC1 and RAD51 recombinases. As arp6 reduced the number of DMC1 or RAD51 foci, H2A.Z may promote the formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hot spots within eukaryotes and PRDM9 is a derived state within vertebrates.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Krystyna A. Kelly
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Oliver Venn
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan, Poland
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, USA
| | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
80
|
Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, Šimková H, Šafář J, Bellec A, Vautrin S, Frenkel Z, Cattonaro F, Magni F, Scalabrin S, Martis MM, Mayer KFX, Korol A, Bergès H, Doležel J, Feuillet C. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol 2013; 14:R64. [PMID: 23800011 PMCID: PMC4054855 DOI: 10.1186/gb-2013-14-6-r64] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. RESULTS Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. CONCLUSIONS Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.
Collapse
Affiliation(s)
- Romain Philippe
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Etienne Paux
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Isabelle Bertin
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Pierre Sourdille
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Fréderic Choulet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Christel Laugier
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Sonia Vautrin
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Zeev Frenkel
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Federica Magni
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Simone Scalabrin
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | | | - Klaus FX Mayer
- MIPS/IBIS; Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Abraham Korol
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Catherine Feuillet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| |
Collapse
|
81
|
Phillips D, Wnetrzak J, Nibau C, Barakate A, Ramsay L, Wright F, Higgins JD, Perry RM, Jenkins G. Quantitative high resolution mapping of HvMLH3 foci in barley pachytene nuclei reveals a strong distal bias and weak interference. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2139-54. [PMID: 23554258 PMCID: PMC3654414 DOI: 10.1093/jxb/ert079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In barley (Hordeum vulgare L.), chiasmata (the physical sites of genetic crossovers) are skewed towards the distal ends of chromosomes, effectively consigning a large proportion of genes to recombination coldspots. This has the effect of limiting potential genetic variability, and of reducing the efficiency of map-based cloning and breeding approaches for this crop. Shifting the sites of recombination to more proximal chromosome regions by forward and reverse genetic means may be profitable in terms of realizing the genetic potential of the species, but is predicated upon a better understanding of the mechanisms governing the sites of these events, and upon the ability to recognize real changes in recombination patterns. The barley MutL Homologue (HvMLH3), a marker for class I interfering crossovers, has been isolated and a specific antibody has been raised. Immunolocalization of HvMLH3 along with the synaptonemal complex transverse filament protein ZYP1, used in conjunction with fluorescence in situ hybridization (FISH) tagging of specific barley chromosomes, has enabled access to the physical recombination landscape of the barley cultivars Morex and Bowman. Consistent distal localization of HvMLH3 foci throughout the genome, and similar patterns of HvMLH3 foci within bivalents 2H and 3H have been observed. A difference in total numbers of HvMLH3 foci between these two cultivars has been quantified, which is interpreted as representing genotypic variation in class I crossover frequency. Discrepancies between the frequencies of HvMLH3 foci and crossover frequencies derived from linkage analysis point to the existence of at least two crossover pathways in barley. It is also shown that interference of HvMLH3 foci is relatively weak compared with other plant species.
Collapse
Affiliation(s)
- Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Joanna Wnetrzak
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | | | | | - Frank Wright
- Biomathematics and Statistics Scotland, Invergowrie, Dundee DD2 5DA, UK
| | | | - Ruth M. Perry
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| |
Collapse
|
82
|
Chancerel E, Lamy JB, Lesur I, Noirot C, Klopp C, Ehrenmann F, Boury C, Provost GL, Label P, Lalanne C, Léger V, Salin F, Gion JM, Plomion C. High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biol 2013; 11:50. [PMID: 23597128 PMCID: PMC3660193 DOI: 10.1186/1741-7007-11-50] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/16/2013] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND The availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies. RESULTS In this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable. CONCLUSION This study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.
Collapse
|
83
|
Lee WK, Kim N, Kim J, Moon JK, Jeong N, Choi IY, Kim SC, Chung WH, Kim HS, Lee SH, Jeong SC. Dynamic genetic features of chromosomes revealed by comparison of soybean genetic and sequence-based physical maps. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1103-19. [PMID: 23306355 DOI: 10.1007/s00122-012-2039-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 12/21/2012] [Indexed: 05/02/2023]
Abstract
Despite the intensive soybean [Glycine max (L.) Merrill] genome studies, the high chromosome number (20) of the soybean plant relative to many other major crops has hindered the development of a high-resolution genomewide genetic map derived from a single population. Here, we report such a map, which was constructed in an F15 population derived from a cross between G. max and G. soja lines using indel polymorphisms detected via a G. soja genome resequencing. By targeting novel indel markers to marker-poor regions, all marker intervals were reduced to under 6 cM on a genome scale. Comparison of the Williams 82 soybean reference genome sequence and our genetic map indicated that marker orders of 26 regions were discrepant with each other. In addition, our comparison showed seven misplaced and two absent markers in the current Williams 82 assembly and six markers placed on the scaffolds that were not incorporated into the pseudomolecules. Then, we showed that, by determining the missing sequences located at the presumed beginning points of the five major discordant segments, these observed discordant regions are mostly errors in the Williams 82 assembly. Distributions of the recombination rates along the chromosomes were similar to those of other organisms. Genotyping of indel markers and genome resequencing of the two parental lines suggested that some marker-poor chromosomal regions may represent introgression regions, which appear to be prevalent in soybean. Given the even and dense distribution of markers, our genetic map can serve as a bridge between genomics research and breeding programs.
Collapse
Affiliation(s)
- Woo Kyu Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Shatalina M, Wicker T, Buchmann JP, Oberhaensli S, Simková H, Doležel J, Keller B. Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:23-32. [PMID: 23046423 DOI: 10.1111/pbi.12003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 05/10/2023]
Abstract
Agronomically important traits are frequently controlled by rare, genotype-specific alleles. Such genes can only be mapped in a population derived from the donor genotype. This requires the development of a specific genetic map, which is difficult in wheat because of the low level of polymorphism among elite cultivars. The absence of sufficient polymorphism, the complexity of the hexaploid wheat genome as well as the lack of complete sequence information make the construction of genetic maps with a high density of reproducible and polymorphic markers challenging. We developed a genotype-specific genetic map of chromosome 3B from winter wheat cultivars Arina and Forno. Chromosome 3B was isolated from the two cultivars and then sequenced to 10-fold coverage. This resulted in a single-nucleotide polymorphisms (SNP) database of the complete chromosome. Based on proposed synteny with the Brachypodium model genome and gene annotation, sequences close to coding regions were used for the development of 70 SNP-based markers. They were mapped on a Arina × Forno Recombinant Inbred Lines population and found to be spread over the complete chromosome 3B. While overall synteny was well maintained, numerous exceptions and inversions of syntenic gene order were identified. Additionally, we found that the majority of recombination events occurred in distal parts of chromosome 3B, particularly in hot-spot regions. Compared with the earlier map based on SSR and RFLP markers, the number of markers increased fourfold. The approach presented here allows fast development of genotype-specific polymorphic markers that can be used for mapping and marker-assisted selection.
Collapse
|
85
|
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 2012. [PMID: 23161406 DOI: 10.1007/s10142‐012‐0300‐5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.
Collapse
Affiliation(s)
- C Feuillet
- INRA-UBP UMR 1095 Genetics and Diversity of Cereals, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Tiwari VK, Riera-Lizarazu O, Gunn HL, Lopez K, Iqbal MJ, Kianian SF, Leonard JM. Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS One 2012; 7:e48815. [PMID: 23144983 PMCID: PMC3492231 DOI: 10.1371/journal.pone.0048815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/01/2012] [Indexed: 11/21/2022] Open
Abstract
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with irradiated pollen at dosages that cause embryo abortion prompted us to investigate endosperm as a potential source of RH mapping germplasm. Here, we report a novel approach to construct RH based physical maps of all seven D-genome chromosomes of the hexaploid wheat ‘Chinese Spring’, simultaneously. An 81-member subset of endosperm samples derived from 20-Gy irradiated pollen was genotyped for deletions, and 737 markers were mapped on seven D-genome chromosomes. Analysis of well-defined regions of six chromosomes suggested a map resolution of ∼830 kb could be achieved; this estimate was validated with assays of markers from a sequenced contig. We estimate that the panel contains ∼6,000 deletion bins for D-genome chromosomes and will require ∼18,000 markers for high resolution mapping. Map-based deletion estimates revealed a majority of 1–20 Mb interstitial deletions suggesting mutagenic repair of double-strand breaks in pollen provides a useful resource for RH mapping and map based cloning studies.
Collapse
Affiliation(s)
- Vijay K. Tiwari
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Oscar Riera-Lizarazu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | - Hilary L. Gunn
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - KaSandra Lopez
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - M. Javed Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Shahryar F. Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jeffrey M. Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
87
|
Kumar A, Simons K, Iqbal MJ, de Jiménez MM, Bassi FM, Ghavami F, Al-Azzam O, Drader T, Wang Y, Luo MC, Gu YQ, Denton A, Lazo GR, Xu SS, Dvorak J, Kianian PMA, Kianian SF. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 2012. [PMID: 23127207 DOI: 10.1186/1471‐2164‐13‐597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH) mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. RESULTS Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD) wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB), to produce pentaploid RH1s (AABBD), which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (<3%) of mature RH1 seeds. This panel showed a homogenous marker loss (2.1%) after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be <140kb. Analysis of only 16 RH lines carrying deletions on chromosome 2D resulted in a physical map with cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH lines with an average deletion frequency of ~10% were identified for developing high density marker scaffolds of the D-genome. CONCLUSIONS The RH panel reported here is the first developed for any wild ancestor of a major cultivated plant species. The results provided insight into various aspects of RH mapping in plants, including the genetically effective cell number for wheat (for the first time) and the potential implementation of this technique in other plant species. This RH panel will be an invaluable resource for mapping gene based markers, developing a complete marker scaffold for the whole genome sequence assembly, fine mapping of markers and functional characterization of genes and gene networks present on the D-genome.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kumar A, Simons K, Iqbal MJ, de Jiménez MM, Bassi FM, Ghavami F, Al-Azzam O, Drader T, Wang Y, Luo MC, Gu YQ, Denton A, Lazo GR, Xu SS, Dvorak J, Kianian PMA, Kianian SF. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 2012; 13:597. [PMID: 23127207 PMCID: PMC3542274 DOI: 10.1186/1471-2164-13-597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH) mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. RESULTS Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD) wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB), to produce pentaploid RH1s (AABBD), which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (<3%) of mature RH1 seeds. This panel showed a homogenous marker loss (2.1%) after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be <140kb. Analysis of only 16 RH lines carrying deletions on chromosome 2D resulted in a physical map with cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH lines with an average deletion frequency of ~10% were identified for developing high density marker scaffolds of the D-genome. CONCLUSIONS The RH panel reported here is the first developed for any wild ancestor of a major cultivated plant species. The results provided insight into various aspects of RH mapping in plants, including the genetically effective cell number for wheat (for the first time) and the potential implementation of this technique in other plant species. This RH panel will be an invaluable resource for mapping gene based markers, developing a complete marker scaffold for the whole genome sequence assembly, fine mapping of markers and functional characterization of genes and gene networks present on the D-genome.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Henderson IR. Control of meiotic recombination frequency in plant genomes. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:556-561. [PMID: 23017241 DOI: 10.1016/j.pbi.2012.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/18/2012] [Accepted: 09/05/2012] [Indexed: 05/27/2023]
Abstract
Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.
| |
Collapse
|
90
|
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 2012; 12:573-83. [PMID: 23161406 PMCID: PMC3508266 DOI: 10.1007/s10142-012-0300-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.
Collapse
Affiliation(s)
- C Feuillet
- INRA-UBP UMR 1095 Genetics and Diversity of Cereals, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012; 13:339. [PMID: 22827734 PMCID: PMC3443642 DOI: 10.1186/1471-2164-13-339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012. [PMID: 22827734 DOI: 10.1186/1471‐2164‐13‐339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Phillips D, Nibau C, Wnetrzak J, Jenkins G. High resolution analysis of meiotic chromosome structure and behaviour in barley (Hordeum vulgare L.). PLoS One 2012; 7:e39539. [PMID: 22761818 PMCID: PMC3382580 DOI: 10.1371/journal.pone.0039539] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/25/2012] [Indexed: 12/11/2022] Open
Abstract
Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by redistributing crossovers to more proximal regions, but our ability to achieve this is dependent upon a far better understanding of meiosis in this species. This study explores the meiotic process by describing with unprecedented resolution the early behaviour of chromosomal domains, the progression of synapsis and the structure of the synaptonemal complex (SC). Using a combination of molecular cytogenetics and advanced fluorescence imaging, we show for the first time in this species that non-homologous centromeres are coupled prior to synapsis. We demonstrate that at early meiotic prophase the loading of the SC-associated structural protein ASY1, the cluster of telomeres, and distal synaptic initiation sites occupy the same polarised region of the nucleus. Through the use of advanced 3D image analysis, we show that synapsis is driven predominantly from the telomeres, and that new synaptic initiation sites arise during zygotene. In addition, we identified two different SC configurations through the use of super-resolution 3D structured illumination microscopy (3D-SIM).
Collapse
Affiliation(s)
- Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Joanna Wnetrzak
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
94
|
Serres-Giardi L, Belkhir K, David J, Glémin S. Patterns and evolution of nucleotide landscapes in seed plants. THE PLANT CELL 2012; 24:1379-97. [PMID: 22492812 PMCID: PMC3398553 DOI: 10.1105/tpc.111.093674] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nucleotide landscapes, which are the way base composition is distributed along a genome, strongly vary among species. The underlying causes of these variations have been much debated. Though mutational bias and selection were initially invoked, GC-biased gene conversion (gBGC), a recombination-associated process favoring the G and C over A and T bases, is increasingly recognized as a major factor. As opposed to vertebrates, evolution of GC content is less well known in plants. Most studies have focused on the GC-poor and homogeneous Arabidopsis thaliana genome and the much more GC-rich and heterogeneous rice (Oryza sativa) genome and have often been generalized as a dicot/monocot dichotomy. This vision is clearly phylogenetically biased and does not allow understanding the mechanisms involved in GC content evolution in plants. To tackle these issues, we used EST data from more than 200 species and provided the most comprehensive description of gene GC content across the seed plant phylogeny so far available. As opposed to the classically assumed dicot/monocot dichotomy, we found continuous variations in GC content from the probably ancestral GC-poor and homogeneous genomes to the more derived GC-rich and highly heterogeneous ones, with several independent enrichment episodes. Our results suggest that gBGC could play a significant role in the evolution of GC content in plant genomes.
Collapse
Affiliation(s)
- Laurana Serres-Giardi
- Institut des Sciences de l’Evolution de Montpellier, Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique, Université Montpellier 2, F-34095 Montpellier, France
- Montpellier SupAgro, Unité Mixte de Recherche 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398 Montpellier, France
| | - Khalid Belkhir
- Institut des Sciences de l’Evolution de Montpellier, Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique, Université Montpellier 2, F-34095 Montpellier, France
| | - Jacques David
- Montpellier SupAgro, Unité Mixte de Recherche 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398 Montpellier, France
| | - Sylvain Glémin
- Institut des Sciences de l’Evolution de Montpellier, Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique, Université Montpellier 2, F-34095 Montpellier, France
- Address correspondence to
| |
Collapse
|
95
|
Rustenholz C, Choulet F, Laugier C, Šafář J, Šimková H, Doležel J, Magni F, Scalabrin S, Cattonaro F, Vautrin S, Bellec A, Bergès H, Feuillet C, Paux E. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. PLANT PHYSIOLOGY 2011; 157:1596-608. [PMID: 22034626 PMCID: PMC3327205 DOI: 10.1104/pp.111.183921] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.
Collapse
MESH Headings
- Base Sequence
- Brachypodium/genetics
- Centromere/genetics
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Plant/genetics
- DNA, Intergenic/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Gene Duplication
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Genome, Plant/genetics
- Genomic Islands/genetics
- Genomic Islands/physiology
- Molecular Sequence Data
- Multigene Family
- Oligonucleotide Array Sequence Analysis
- Oryza/genetics
- Physical Chromosome Mapping/methods
- Polyploidy
- Sequence Analysis, DNA
- Telomere/genetics
- Transcriptome
- Triticum/genetics
Collapse
|
96
|
Ott A, Trautschold B, Sandhu D. Using microsatellites to understand the physical distribution of recombination on soybean chromosomes. PLoS One 2011; 6:e22306. [PMID: 21799819 PMCID: PMC3140510 DOI: 10.1371/journal.pone.0022306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/21/2011] [Indexed: 12/05/2022] Open
Abstract
Soybean is a major crop that is an important source of oil and proteins. A number of genetic linkage maps have been developed in soybean. Specifically, hundreds of simple sequence repeat (SSR) markers have been developed and mapped. Recent sequencing of the soybean genome resulted in the generation of vast amounts of genetic information. The objectives of this investigation were to use SSR markers in developing a connection between genetic and physical maps and to determine the physical distribution of recombination on soybean chromosomes. A total of 2,188 SSRs were used for sequence-based physical localization on soybean chromosomes. Linkage information was used from different maps to create an integrated genetic map. Comparison of the integrated genetic linkage maps and sequence based physical maps revealed that the distal 25% of each chromosome was the most marker-dense, containing an average of 47.4% of the SSR markers and 50.2% of the genes. The proximal 25% of each chromosome contained only 7.4% of the markers and 6.7% of the genes. At the whole genome level, the marker density and gene density showed a high correlation (R(2)) of 0.64 and 0.83, respectively with the physical distance from the centromere. Recombination followed a similar pattern with comparisons indicating that recombination is high in telomeric regions, though the correlation between crossover frequency and distance from the centromeres is low (R(2) = 0.21). Most of the centromeric regions were low in recombination. The crossover frequency for the entire soybean genome was 7.2%, with extremes much higher and lower than average. The number of recombination hotspots varied from 1 to 12 per chromosome. A high correlation of 0.83 between the distribution of SSR markers and genes suggested close association of SSRs with genes. The knowledge of distribution of recombination on chromosomes may be applied in characterizing and targeting genes.
Collapse
Affiliation(s)
- Alina Ott
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, United States of America
| | - Brian Trautschold
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, United States of America
| | - Devinder Sandhu
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, United States of America
| |
Collapse
|
97
|
Mur LAJ, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J. Exploiting the Brachypodium Tool Box in cereal and grass research. THE NEW PHYTOLOGIST 2011; 191:334-347. [PMID: 21623796 DOI: 10.1111/j.1469-8137.2011.03748.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is now a decade since Brachypodium distachyon (Brachypodium) was suggested as a model species for temperate grasses and cereals. Since then transformation protocols, large expressed sequence tag (EST) databases, tools for forward and reverse genetic screens, highly refined cytogenetic probes, germplasm collections and, recently, a complete genome sequence have been generated. In this review, we will describe the current status of the Brachypodium Tool Box and how it is beginning to be applied to study a range of biological traits. Further, as genomic analysis of larger cereals and forage grasses genomes are becoming easier, we will re-evaluate Brachypodium as a model species. We suggest that there remains an urgent need to employ reverse genetic and functional genomic approaches to identify the functionality of key genetic elements, which could be employed subsequently in plant breeding programmes; and a requirement for a Pooideae reference genome to aid assembling large pooid genomes. Brachypodium is an ideal system for functional genomic studies, because of its easy growth requirements, small physical stature, and rapid life cycle, coupled with the resources offered by the Brachypodium Tool Box.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Joel Allainguillaume
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Pilar Catalán
- Department of Agriculture, University of Zaragoza, High Polytechnic School of Huesca, Ctra. Cuarte km 1, ES-22071 Huesca, Spain
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, PL-40-032 Katowice, Poland
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Karolina Lesniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, PL-40-032 Katowice, Poland
| | - Ianto Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - John Vogel
- USDA ARS Western Regional Research Center, Albany, CA 94710 USA
| |
Collapse
|
98
|
Escobar JS, Scornavacca C, Cenci A, Guilhaumon C, Santoni S, Douzery EJP, Ranwez V, Glémin S, David J. Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 2011; 11:181. [PMID: 21702931 PMCID: PMC3142523 DOI: 10.1186/1471-2148-11-181] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022] Open
Abstract
Background Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of gene-tree conflicts in this tribe. Results We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-like manner. Dasypyrum, Heteranthelium and genera of clade V, grouping Secale, Taeniatherum, Triticum and Aegilops, have evolved in a reticulated manner. Their relationships are thus better represented by the multigenic network than by the supermatrix or BCF trees. Noteworthy, we demonstrate that gene-tree incongruences increase with genetic distance and are greater in telomeric than centromeric genes. Together, our results suggest that recombination is the main factor decoupling gene trees from multigenic trees. Conclusions Our study is the first to propose a comprehensive, multigenic phylogeny of Triticeae. It clarifies several aspects of the relationships among genera and species of this tribe, and pinpoints biological groups with likely reticulate evolution. Importantly, this study extends previous results obtained in Drosophila by demonstrating that recombination can exacerbate gene-tree conflicts in phylogenetic reconstructions.
Collapse
Affiliation(s)
- Juan S Escobar
- Institut National de la Recherche Agronomique, Centre de Montpellier, UMR Diversité et Adaptation des Plantes Cultivées, Domaine de Melgueil, 34130 Mauguio, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Gauthier F, Martin OC, Falque M. CODA (crossover distribution analyzer): quantitative characterization of crossover position patterns along chromosomes. BMC Bioinformatics 2011; 12:27. [PMID: 21251248 PMCID: PMC3033803 DOI: 10.1186/1471-2105-12-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During meiosis, homologous chromosomes exchange segments via the formation of crossovers. This phenomenon is highly regulated; in particular, crossovers are distributed heterogeneously along the physical map and rarely arise in close proximity, a property referred to as "interference". Crossover positions form patterns that give clues about how crossovers are formed. In several organisms including yeast, tomato, Arabidopsis, and mouse, it is believed that crossovers form via at least two pathways, one interfering, the other not. RESULTS We have developed a software package--"CODA", for CrossOver Distribution Analyzer--which allows one to quantitatively characterize crossover patterns by fitting interference models to experimental data. Two families of interfering models are provided: the "gamma" model and the "beam-film" model. The user can specify single or two-pathways modeling, and the software package infers the model's parameters and their confidence intervals. CODA can handle data produced from measurements on bivalents or gametes, in the form of continuous crossover positions or marker genotyping. We illustrate the possibilities on data from Wheat, corn and mouse. CONCLUSIONS CODA extends the kind of crossover data that could be analyzed so far to include gametic data (rather than only bivalents/tetrads) when using two-pathways modeling. It will also enable users to perform analyses based on the beam-film model. CODA implements that model's complex physics and mathematics, and uses a summary statistic to overcomes the lack of a computable likelihood which has hampered its use till now.
Collapse
Affiliation(s)
- Franck Gauthier
- UMR de Génétique Végétale, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
100
|
Rustenholz C, Hedley PE, Morris J, Choulet F, Feuillet C, Waugh R, Paux E. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genomics 2010; 11:714. [PMID: 21167071 PMCID: PMC3019236 DOI: 10.1186/1471-2164-11-714] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/19/2010] [Indexed: 11/16/2022] Open
Abstract
Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B). However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.
Collapse
Affiliation(s)
- Camille Rustenholz
- INRA UMR 1095, Génétique Diversité et Ecophysiologie des Céréales, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|