51
|
Small DS, Taylor TE, Postels DG, Beare NAV, Cheng J, MacCormick IJC, Seydel KB. Evidence from a natural experiment that malaria parasitemia is pathogenic in retinopathy-negative cerebral malaria. eLife 2017; 6:e23699. [PMID: 28590246 PMCID: PMC5462542 DOI: 10.7554/elife.23699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Cerebral malaria (CM) can be classified as retinopathy-positive or retinopathy-negative, based on the presence or absence of characteristic retinal features. While malaria parasites are considered central to the pathogenesis of retinopathy-positive CM, their contribution to retinopathy-negative CM is largely unknown. One theory is that malaria parasites are innocent bystanders in retinopathy-negative CM and the etiology of the coma is entirely non-malarial. Because hospitals in malaria-endemic areas often lack diagnostic facilities to identify non-malarial causes of coma, it has not been possible to evaluate the contribution of malaria infection to retinopathy-negative CM. To overcome this barrier, we studied a natural experiment involving genetically inherited traits, and find evidence that malaria parasitemia does contribute to the pathogenesis of retinopathy-negative CM. A lower bound for the fraction of retinopathy-negative CM that would be prevented if malaria parasitemia were to be eliminated is estimated to be 0.93 (95% confidence interval: 0.68, 1).
Collapse
Affiliation(s)
- Dylan S Small
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, United States
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
- Blantyre Malaria Project, Blantyre, Malawi
| | - Douglas G Postels
- Department of Neurology and Ophthalmology, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| | - Nicholas AV Beare
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Jing Cheng
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, United States
| | - Ian JC MacCormick
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
- Blantyre Malaria Project, Blantyre, Malawi
| |
Collapse
|
52
|
Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate. Sci Rep 2017; 7:46086. [PMID: 28378857 PMCID: PMC5380959 DOI: 10.1038/srep46086] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/09/2017] [Indexed: 11/30/2022] Open
Abstract
The number of malaria vaccine candidates in preclinical and clinical development is limited. To identify novel blood-stage malaria vaccine candidates, we constructed a library of 1,827P. falciparum proteins prepared using the wheat germ cell-free system (WGCFS). Also, a high-throughput AlphaScreen procedure was developed to measure antibody reactivity to the recombinant products. Purified IgGs from residents in malaria endemic areas have shown functional activity against blood-stage parasites as judged by an in vitro parasite Growth Inhibition Assay (GIA). Therefore, we evaluated the GIA activity of 51 plasma samples prepared from Malian adults living in a malaria endemic area against the WGCFS library. Using the AlphaScreen-based immunoreactivity measurements, antibody reactivity against 3 proteins was positively associated with GIA activity. Since anti-LSA3-C responses showed the strongest correlation with GIA activity, this protein was investigated further. Anti-LSA3-C-specific antibody purified from Malian adult plasmas showed GIA activity, and expression of LSA3 in blood-stage parasites was confirmed by western blotting. Taken together, we identified LSA3 as a novel blood-stage vaccine candidate, and we propose that this system will be useful for future vaccine candidate discovery.
Collapse
|
53
|
Mishra VK, Mishra M, Kashaw V, Kashaw SK. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg Med Chem 2017; 25:1949-1962. [DOI: 10.1016/j.bmc.2017.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
|
54
|
Kanoi BN, Takashima E, Morita M, White MT, Palacpac NMQ, Ntege EH, Balikagala B, Yeka A, Egwang TG, Horii T, Tsuboi T. Antibody profiles to wheat germ cell-free system synthesized Plasmodium falciparum proteins correlate with protection from symptomatic malaria in Uganda. Vaccine 2017; 35:873-881. [PMID: 28089547 DOI: 10.1016/j.vaccine.2017.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
The key targets of protective antibodies against Plasmodium falciparum remain largely unknown. In this study, we determined immunoreactivity to 1827 recombinant proteins derived from 1565 genes representing ∼30% of the entire P. falciparum genome, for identification of novel malaria vaccine candidates. The recombinant proteins were expressed by wheat germ cell-free system, a platform that can synthesize quality plasmodial proteins that elicit biologically active antibodies in animals. Sera were obtained from indigenous residents of a malaria endemic region in Northern Uganda who were enrolled at the start of a rainy season and prospectively monitored for symptomatic malaria episodes for a year. Immunoreactivity to sera was determined by AlphaScreen; a homogeneous high-throughput system that detects protein interactions. Our analysis revealed antibody responses to 128 proteins that significantly associated with protection from symptomatic malaria. From 128 proteins, 53 were down-selected as the most plausible targets of host protective immune response by virtue of having a predicted signal peptide and/or transmembrane domain(s), or confirmed localization on the parasite surface. The 53 proteins comprised of not only previously characterized vaccine candidates but also uncharacterized proteins. Proteins involved in erythrocyte invasion; RON4, RON2 and CLAG3.1 and pre-erythrocytic proteins; SIAP-2, TRAP and CelTOS, were recommended for prioritization for further evaluation as vaccine candidates. The findings clearly demonstrate that generation of the protein library using the wheat germ cell-free system coupled with high throughput immunoscreening with AlphaScreen offers new options for rational discovery and selection of potential malaria vaccine candidates.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Michael T White
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Nirianne M Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Betty Balikagala
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Adoke Yeka
- Makerere University College of Health Sciences, School of Public Health, Kampala, Uganda
| | - Thomas G Egwang
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
55
|
Dkhil MA, Al-Quraishy SA, Abdel-Baki AAS, Delic D, Wunderlich F. Differential miRNA Expression in the Liver of Balb/c Mice Protected by Vaccination during Crisis of Plasmodium chabaudi Blood-Stage Malaria. Front Microbiol 2017; 7:2155. [PMID: 28123381 PMCID: PMC5225092 DOI: 10.3389/fmicb.2016.02155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are increasingly recognized as epigenetic regulators for outcome of diverse infectious diseases and vaccination efficacy, but little information referring to this exists for malaria. This study investigates possible effects of both protective vaccination and P. chabaudi malaria on the miRNome of the liver as an effector against blood-stage malaria using miRNA microarrays and quantitative PCR. Plasmodium chabaudi blood-stage malaria takes a lethal outcome in female Balb/c mice, but a self-healing course after immunization with a non-infectious blood-stage vaccine. The liver robustly expresses 71 miRNA species at varying levels, among which 65 miRNA species respond to malaria evidenced as steadily increasing or decreasing expressions reaching highest or lowest levels toward the end of the crisis phase on day 11 p.i. in lethal malaria. Protective vaccination does not affect constitutive miRNA expression, but leads to significant (p < 0.05) changes in the expression of 41 miRNA species, however evidenced only during crisis. In vaccination-induced self-healing infections, 18 miRNA-species are up- and 14 miRNA-species are down-regulated by more than 50% during crisis in relation to non-vaccinated mice. Vaccination-induced self-healing and survival of otherwise lethal infections of P. chabaudi activate epigenetic miRNA-regulated remodeling processes in the liver manifesting themselves during crisis. Especially, liver regeneration is accelerated as suggested by upregulation of let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-26a, miR-122-5p, miR30a, miR27a, and mir-29a, whereas the up-regulated expression of miR-142-3p by more than 100% is compatible with the view of enhanced hepatic erythropoiesis, possibly at expense of megakaryopoiesis, during crisis of P. chabaudi blood-stage malaria.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan UniversityCairo, Egypt
| | - Saleh A Al-Quraishy
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Abdel-Azeem S Abdel-Baki
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef, Egypt
| | - Denis Delic
- Boehringer-Ingelheim Pharma Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University Duesseldorf, Germany
| |
Collapse
|
56
|
Yagi M, Palacpac NMQ, Ito K, Oishi Y, Itagaki S, Balikagala B, Ntege EH, Yeka A, Kanoi BN, Katuro O, Shirai H, Fukushima W, Hirota Y, Egwang TG, Horii T. Antibody titres and boosting after natural malaria infection in BK-SE36 vaccine responders during a follow-up study in Uganda. Sci Rep 2016; 6:34363. [PMID: 27703240 PMCID: PMC5050508 DOI: 10.1038/srep34363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/09/2016] [Indexed: 11/12/2022] Open
Abstract
The malaria vaccine BK-SE36 is a recombinant protein (SE36) based on the Honduras 1 serine repeat antigen-5 of Plasmodium falciparum, adsorbed to aluminium hydroxide gel. The phase Ib trial in Uganda demonstrated the safety and immunogenicity of BK-SE36. Ancillary analysis in the follow-up study of 6–20 year-old volunteers suggest significant differences in time to first episodes of clinical malaria in vaccinees compared to placebo/control group. Here, we aimed to get further insights into the association of anti-SE36 antibody titres and natural P. falciparum infection. Children who received BK-SE36 and whose antibody titres against SE36 increased by ≥1.92-fold after vaccination were categorised as responders. Most responders did not have or only had a single episode of natural P. falciparum infection. Notably, responders who did not experience infection had relatively high anti-SE36 antibody titres post-second vaccination compared to those who were infected. The anti-SE36 antibody titres of the responders who experienced malaria were boosted after infection and they had lower risk of reinfection. These findings show that anti-SE36 antibody titres induced by BK-SE36 vaccination offered protection against malaria. The vaccine is now being evaluated in a phase Ib trial in children less than 5 years old.
Collapse
Affiliation(s)
- Masanori Yagi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Nirianne M Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazuya Ito
- Department of Public Health, Faculty of Medicine, Osaka City University, Osaka 545-8585, Japan.,Sumida Hospital, Medical Co. Living Together Association (LTA) Clinical Pharmacology Center, Tokyo 130-0021 Japan
| | - Yuko Oishi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Sawako Itagaki
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Betty Balikagala
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Edward H Ntege
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Adoke Yeka
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda.,Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Bernard N Kanoi
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Osbert Katuro
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Hiroki Shirai
- The Research Foundation for Microbial Diseases of Osaka University, 2-9-41 Yahata-cho, Kanonji, Kagawa 768-0061 Japan
| | - Wakaba Fukushima
- Department of Public Health, Faculty of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Yoshio Hirota
- Department of Public Health, Faculty of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Thomas G Egwang
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
57
|
Al-Quraishy SA, Dkhil MA, Abdel-Baki AAA, Delic D, Wunderlich F. Protective Vaccination against Blood-Stage Malaria of Plasmodium chabaudi: Differential Gene Expression in the Liver of Balb/c Mice toward the End of Crisis Phase. Front Microbiol 2016; 7:1087. [PMID: 27471498 PMCID: PMC4943960 DOI: 10.3389/fmicb.2016.01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023] Open
Abstract
Protective vaccination induces self-healing of otherwise fatal blood-stage malaria of Plasmodium chabaudi in female Balb/c mice. To trace processes critically involved in self-healing, the liver, an effector against blood-stage malaria, is analyzed for possible changes of its transcriptome in vaccination-protected in comparison to non-protected mice toward the end of the crisis phase. Gene expression microarray analyses reveal that vaccination does not affect constitutive expression of mRNA and lincRNA. However, malaria induces significant (p < 0.01) differences in hepatic gene and lincRNA expression in vaccination-protected vs. non-vaccinated mice toward the end of crisis phase. In vaccination-protected mice, infections induce up-regulations of 276 genes and 40 lincRNAs and down-regulations of 200 genes and 43 lincRNAs, respectively, by >3-fold as compared to the corresponding constitutive expressions. Massive up-regulations, partly by >100-fold, are found for genes as RhD, Add2, Ank1, Ermap, and Slc4a, which encode proteins of erythrocytic surface membranes, and as Gata1 and Gfi1b, which encode transcription factors involved in erythrocytic development. Also, Cldn13 previously predicted to be expressed on erythroblast surfaces is up-regulated by >200-fold, though claudins are known as main constituents of tight junctions acting as paracellular barriers between epithelial cells. Other genes are up-regulated by <100- and >10-fold, which can be subgrouped in genes encoding proteins known to be involved in mitosis, in cell cycle regulation, and in DNA repair. Our data suggest that protective vaccination enables the liver to respond to P. chabaudi infections with accelerated regeneration and extramedullary erythropoiesis during crisis, which contributes to survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Saleh A Al-Quraishy
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan UniversityCairo, Egypt
| | - Abdel-Azeem A Abdel-Baki
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef, Egypt
| | - Denis Delic
- Boehringer-Ingelheim Pharma Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University Duesseldorf, Germany
| |
Collapse
|