51
|
Harbison CE, Aulbach AD, Bennet BM, Boyle MH, Carsillo ME, Crabbs TA, Keirstead ND, La Perle KMD, Pandiri AR, Shoieb AM, Siska WD. Scientific and Regulatory Policy Committee Points to Consider: Biological Sample Retention From Nonclinical Toxicity Studies. Toxicol Pathol 2021; 50:252-265. [PMID: 34702102 DOI: 10.1177/01926233211049156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Samples of biologic specimens and their derivatives (eg, wet tissues, paraffin-embedded tissue blocks, histology slides, frozen tissues, whole blood, serum/plasma, and urine) are routinely collected during the course of nonclinical toxicity studies. Good Laboratory Practice regulations and/or guidance specify minimum requirements for specimen retention duration, with the caveat that retention of biologic specimens need not extend beyond the duration of sample stability. However, limited availability of published data regarding stability for various purposes following storage of each specimen type has resulted in confusion, uncertainty, and inconsistency as to the appropriate duration for storage of these specimens. To address these issues, a working group of the Society of Toxicologic Pathology Scientific and Regulatory Policy Committee was formed to review published information, regulations, and guidance pertinent to this topic and to summarize the current practices and rationales for retention duration through a survey-based approach. Information regarding experiences reaccessing biologic specimens and performing sample stability investigations was also collected. Based on this combined information, the working group developed several points to consider that may be referenced when developing or revising sample retention practices. [Box: see text].
Collapse
Affiliation(s)
| | | | | | | | | | - Torrie A Crabbs
- Experimental Pathology Laboratories, Research Triangle Park, NC, USA
| | | | - Krista M D La Perle
- Comparative Pathology & Digital Imaging Shared Resource, Ohio State University, Columbus, OH, USA
| | - Arun R Pandiri
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
52
|
Trejo-Santillan I, Mendoza-Guevara CC, Ramos-Godinez MDP, Ramon-Gallegos E. Biosecurity test of conjugated nanoparticles of chitosanprotoporphyrin IX-vitamin B9 for their use in photodynamic therapy. IEEE Trans Nanobioscience 2021; 21:149-156. [PMID: 34606461 DOI: 10.1109/tnb.2021.3117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanotechnology proposes new applications for the development of nanotransporters and active targeting molecules with the use of biodegradable polymeric nanoparticles to improve the specificity towards target cells. However, these products must comply with safety tests to be endorsed as therapeutic alternatives by regulatory organizations. The goal of this work was to evaluate the biosafety (cytotoxicity and genotoxicity) of chitosan polymeric nanoparticles conjugate with protoporphyrin IX and vitamin B9 (CNPs-PpIX-B9) that were previously optimized from the established protocol by our laboratory and tested in CHO-K1 cells by bioassay following the recommendations of the chromosomal aberrations test by OECD 473 (2016) guideline. The conjugate did not show evidence of genotoxicity (clastogenicity). Surprisingly, the significant differences between the treatments performed and the negative control do not represent increases in chromosomal aberrations, whereby the safe concentrations to use the conjugate without inducing cytotoxic or genotoxic effects are less than 0.25 mg / mL. Since it induced a significant decrease of structural chromosomal aberrations, generating a positive effect on the genomic stability of CHO-K1 cells cultured in this test system.
Collapse
|
53
|
Anti-Fibrotic and Anti-Angiogenic Activities of Osbeckia octandra Leaf Extracts in Thioacetamide-Induced Experimental Liver Cirrhosis. Molecules 2021; 26:molecules26164836. [PMID: 34443423 PMCID: PMC8401385 DOI: 10.3390/molecules26164836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic liver inflammation has become a major global health concern. In the absence of clinical surrogate markers to diagnose inflammatory liver disease, the intervention with effective drugs in modern medicine tends to be late. In Sri Lanka, traditional medical practitioners prescribe herbal preparations from Osbeckia octandra for the prevention and treatment of liver disorders. To test the efficacy of such treatments, we have administered thioacetamide (TAA) to male Wistar rats to induce chronic liver damage (disease control; DC) and examined how various leaf extracts: crude leaf suspension (CLS), boiled leaf extract (BLE), sonicated leaf extract (SLE), methanol leaf extract (MLE) and hexane leaf extract (HLE) of O. octandra ameliorate TAA-induced liver disease. The CLS, BLE and SLE treatments in cirrhotic rats significantly attenuated disease-related changes, such as liver weight and hepato-enzymes. The mRNA levels of Tnf-α were significantly decreased by 3.6, 10 and 3.9 times in CLS, BLE and SLE compared to DC. The same treatments resulted in significantly lower (19.5, 4.2 and 2.4 times) α-Sma levels compared to DC. In addition, Tgf-β1 and Vegf-R2 mRNA expressions were significantly lower with the treatments. Moreover, BLE expressed a strong anti-angiogenic effect. We conclude that CLS, BLE and SLE from O. octandra have potent hepatic anti-fibrotic effects in TAA-induced liver cirrhosis.
Collapse
|
54
|
Dobbins R, Hussey EK, O'Connor-Semmes R, Andrews S, Tao W, Wilkison WO, Cheatham B, Sagar K, Hanmant B. Assessment of safety and tolerability of remogliflozin etabonate (GSK189075) when administered with total daily dose of 2000 mg of metformin. BMC Pharmacol Toxicol 2021; 22:34. [PMID: 34120651 PMCID: PMC8201735 DOI: 10.1186/s40360-021-00502-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 05/20/2021] [Indexed: 12/03/2022] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM) are characterized by an elevated glycemic index and are at a higher risk for complications such as cardiovascular disease, nephropathy, retinopathy and peripheral neuropathy. Normalization of glycemic index can be achieved by dosing combinations of metformin with other anti-diabetic drugs. The present study (Clintrials number NCT00519480) was conducted to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of remogliflozinetabonate, an SGLT2 inhibitor, withdoses (500 mg and 750 mg BID) greater than the commercial dose (100 mg BID)in combination with metformin with minimum daily dose of 2000 mg given in two divided doses. Methods This was a randomized, double-blinded, repeat dose study in 50 subjects with T2DM. The study was conducted in three phases; run-in, randomization, and treatment. All subjects were on a stable metformin dosing regimen. Cohort 1 subjects were randomly allocated to receive either remogliflozin etabonate 500 mg BID or placebo BID (2:1) in addition to metformin. Cohort 2 subjects were administered with either remogliflozin etabonate 750 mg BID or placebo BID (2:1) in addition to metformin for 13 days. All the subjects were assessed for safety (adverse events, lactic acid levels, vital signs, electrocardiogram [ECG]), pharmacokinetic evaluation, and pharmacodynamics (Oral Glucose Tolerance Testing) parameters. Results Co-administration of remogliflozin etabonate and metformin was well tolerated in all subjects during the observation period. There were no severe or serious adverse events (SAEs) and no increase in lactic acid concentration was reported during the study. The statistical results showed that concomitant administration of remogliflozin etabonate, either 500 mg or 750 mg BID, with metformin had no effect on the pharmacokinetics of metformin. The accumulation ratios, Day 13 vs. Day 1, for AUC values of remogliflozin etabonate and its metabolites were all very close to 1, indicating no accumulation in plasma concentrations of remogliflozin etabonate and its metabolites. Mean glucose values from baseline and glucose and insulin values following oral glucose tolerance test (OGTT) were decreased in all treatment groups. Conclusion Co-administration of doses of remogliflozin etabonate (500 mg BID or 750 mg BID) greater than the commercial dose (100 mg BID) with metformin (2000 mg BID) was shown to be safe and effective during the observation period. Trial registration ClinicalTrials.gov, NCT00519480. Registered:22 August 2007.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bentley Cheatham
- Avolynt, Inc., RTP, 3920 South Alston Avenue, Durham, NC, 27713, USA.
| | | | | |
Collapse
|
55
|
Lim XY, Chan JSW, Tan TYC, Teh BP, Mohd Abd Razak MR, Mohamad S, Syed Mohamed AF. Andrographis paniculata (Burm. F.) Wall. Ex Nees, Andrographolide, and Andrographolide Analogues as SARS-CoV-2 Antivirals? A Rapid Review. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211016610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug repurposing is commonly employed in the search for potential therapeutic agents. Andrographis paniculata, a medicinal plant commonly used for symptomatic relief of the common cold, and its phytoconstituent andrographolide, have been repeatedly identified as potential antivirals against SARS-CoV-2. In light of new evidence emerging since the onset of the COVID-19 pandemic, this rapid review was conducted to identify and evaluate the current SARS-CoV-2 antiviral evidence for A. paniculata, andrographolide, and andrographolide analogs. A systematic search and screen strategy of electronic databases and gray literature was undertaken to identify relevant primary articles. One target-based in vitro study reported the 3CLpro inhibitory activity of andrographolide as being no better than disulfiram. Another Vero cell-based study reported potential SARS-CoV-2 inhibitory activity for both andrographolide and A. paniculata extract. Eleven in silico studies predicted the binding of andrographolide and its analogs to several key antiviral targets of SARS-CoV-2 including the spike protein-ACE-2 receptor complex, spike protein, ACE-2 receptor, RdRp, 3CLpro, PLpro, and N-protein RNA-binding domain. In conclusion, in silico and in vitro studies collectively suggest multi-pathway targeting SARS-CoV-2 antiviral properties of andrographolide and its analogs, but in vivo data are needed to support these predictions.
Collapse
Affiliation(s)
- Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Janice Sue Wen Chan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Terence Yew Chin Tan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Bee Ping Teh
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| | - Saharuddin Mohamad
- Bioinformatics Programme, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Ami Fazlin Syed Mohamed
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia
| |
Collapse
|
56
|
van Steenwijk HP, Bast A, de Boer A. Immunomodulating Effects of Fungal Beta-Glucans: From Traditional Use to Medicine. Nutrients 2021; 13:1333. [PMID: 33920583 PMCID: PMC8072893 DOI: 10.3390/nu13041333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The importance of a well-functioning and balanced immune system has become more apparent in recent decades. Various elements have however not yet been uncovered as shown, for example, in the uncertainty on immune system responses to COVID-19. Fungal beta-glucans are bioactive molecules with immunomodulating properties. Insights into the effects and function of beta-glucans, which have been used in traditional Chinese medicine for centuries, advances with the help of modern immunological and biotechnological methods. However, it is still unclear into which area beta-glucans fit best: supplements or medicine? This review has highlighted the potential application of fungal beta-glucans in nutrition and medicine, reviewing their formulation, efficacy, safety profile, and immunomodulating effects. The current status of dietary fungal glucans with respect to the European scientific requirements for health claims related to the immune system and defense against pathogens has been reviewed. Comparing the evidence base of the putative health effects of fungal beta-glucan supplements with the published guidance documents by EFSA on substantiating immune stimulation and pathogen defense by food products shows that fungal beta-glucans could play a role in supporting and maintaining health and, thus, can be seen as a good health-promoting substance from food, which could mean that this effect may also be claimed if approved. In addition to these developments related to food uses of beta-glucan-containing supplements, beta-glucans could also hold a novel position in Western medicine as the concept of trained immunity is relatively new and has not been investigated to a large extent. These innovative concepts, together with the emerging success of modern immunological and biotechnological methods, suggest that fungal glucans may play a promising role in both perspectives, and that there are possibilities for traditional medicine to provide an immunological application in both medicine and nutrition.
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| | - Aalt Bast
- Campus Venlo, University College Venlo, Maastricht University, 5911 BV Venlo, The Netherlands;
- Department of Pharmacology & Toxicology, Medicine and Life Sciences, Faculty of Health, Maastricht University, 5911 BV Venlo, The Netherlands
| | - Alie de Boer
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
57
|
Sharma AK, Shukla SK, Kalonia A, Shaw P, Khanna K, Gupta R, Yashavarddhan MH, Bhatnagar A. Evaluation of decontamination efficacy of electrolytically generated hypochlorous acid for vesicating agent: A multimodel Study. Curr Pharm Biotechnol 2021; 23:287-299. [PMID: 33719970 DOI: 10.2174/1389201022666210311140922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sulfur Mustard is a strong vesicant and chemical warfare agent that imposes toxicity to the lungs, eyes, and skin after accidental or intended exposure. OBJECTIVES The current study was intended to explore in vitro and in vivo decontamination properties of electrolytically generated HOCl (hypochlorous acid) against CEES (2-chloroethyle ethyle sulphide), a known sulfur mustard simulant & vesicating agent. METHODS In vitro studies were carried out using UV spectroscopy and GC-MS methods. In vivo studies were perfomred in Strain A and immune compromised mice by subcutaneous as well as prophylactic topical administrion of HOCl pretreated CEES. The blister formation and mortality were considered as end-point. Histopathological study was conducted on skin samples by H & E method. DNA damage studies measuring γ-H2AX and ATM has been carried out in human blood using flow cytometry. Anti-bacterial action was tested by employing broth micro dilution methods. Comparative study was also carried out with known oxidizing agents. RESULTS The topical application of pre-treated CEES at 5, 30 min and 1 h time points showed significant (p<0.001) inhibition of blister formation. DNA damage study showed reduced mean flourences intensity of DSBs nearly 17-20 times, suggesting that HOCl plays a protective role against DNA damage. Histopathology showed no sign of necrosis in the epidermis upto 5 min although moderate changes were observed at 30 min. Pretreated samples were analyzed for detection of reaction products with m/z value of 75.04, 69.08, 83.93, 85.95, 123.99, 126.00, and 108.97. HOCl showed strong bactericidal effect at 40 ppm. The absorbance spectra of HOCl treated CEES showed lowered peaks in comparison to CEES alone and other oxidizing agents Conclusion: In a nutshell, our results signify the decontamination role of HOCl for biological surface application.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Sandeep Kumar Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Kushagra Khanna
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Richa Gupta
- Graphic Era Deemed to be University, Dehradun. India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Assem Bhatnagar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| |
Collapse
|
58
|
Yerabolu D, Weiss A, Kojonazarov B, Boehm M, Schlueter BC, Ruppert C, Günther A, Jonigk D, Grimminger F, Ghofrani HA, Seeger W, Weissmann N, Schermuly RT. Targeting Jak-Stat Signaling in Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 64:100-114. [PMID: 33052714 DOI: 10.1165/rcmb.2019-0431oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In pulmonary arterial hypertension (PAH), progressive structural remodeling accounts for the pulmonary vasculopathy including the obliteration of the lung vasculature that causes an increase in vascular resistance and mean blood pressure in the pulmonary arteries ultimately leading to right heart failure-mediated death. Deciphering the molecular details of aberrant signaling of pulmonary vascular cells in PAH is fundamental for the development of new therapeutic strategies. We aimed to identify kinases as new potential drug targets that are dysregulated in PAH by means of a peptide-based kinase activity assay. We performed a tyrosine kinase-dependent phosphorylation assay using 144 selected microarrayed substrate peptides. The differential signature of phosphopeptides was used to predict alterations in tyrosine kinase activities in human pulmonary arterial smooth muscle cells (HPASMCs) from patients with idiopathic PAH (IPAH) compared with healthy control cells. Thereby, we observed an overactivation and an increased expression of Jak2 (Janus kinase 2) in HPASMCs from patients with IPAH as compared with controls. In vitro, IL-6-induced proliferation and migration of HPASMCs from healthy individuals as well as from patients with IPAH were reduced in a dose-dependent manner by the U.S. Food and Drug Administration-approved Jak1 and Jak2 inhibitor ruxolitinib. In vivo, ruxolitinib therapy in two experimental models of pulmonary arterial hypertension dose-dependently attenuated the elevation in pulmonary arterial pressure, partially reduced right ventricular hypertrophy, and almost completely restored cardiac index without signs of adverse events on cardiac function. Therefore, we propose that ruxolitinib may present a novel therapeutic option for patients with PAH by reducing pulmonary vascular remodeling through effectively blocking Jak2-Stat3 (signal transducer of activators of transcription)-mediated signaling pathways.
Collapse
Affiliation(s)
- Dinesh Yerabolu
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany
| | - Baktybek Kojonazarov
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany.,Institute for Lung Health, Giessen, Germany
| | - Mario Boehm
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany
| | - Beate Christiane Schlueter
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany
| | - Clemens Ruppert
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany.,Universities of Giessen and Marburg Lung Center Giessen Biobank, Part of the German Center for Lung Research Biobank, Giessen, Germany
| | - Andreas Günther
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany.,Universities of Giessen and Marburg Lung Center Giessen Biobank, Part of the German Center for Lung Research Biobank, Giessen, Germany.,Agaplesion Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Danny Jonigk
- German Center for Lung Research, Giessen, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany; and
| | - Friedrich Grimminger
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany.,Institute for Lung Health, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Norbert Weissmann
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany.,German Center for Lung Research, Giessen, Germany.,Institute for Lung Health, Giessen, Germany
| |
Collapse
|
59
|
Prediction of Total Drug Clearance in Humans Using Animal Data: Proposal of a Multimodal Learning Method Based on Deep Learning. J Pharm Sci 2021; 110:1834-1841. [PMID: 33497658 DOI: 10.1016/j.xphs.2021.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Research into pharmacokinetics plays an important role in the development process of new drugs. Accurately predicting human pharmacokinetic parameters from preclinical data can increase the success rate of clinical trials. Since clearance (CL) which indicates the capacity of the entire body to process a drug is one of the most important parameters, many methods have been developed. However, there are still rooms to be improved for practical use in drug discovery research; "improving CL prediction accuracy" and "understanding the chemical structure of compounds in terms of pharmacokinetics". To improve those, this research proposes a multimodal learning method based on deep learning that takes not only the chemical structure of a drug but also rat CL as inputs. Good results were obtained compared with the conventional animal scale-up method; the geometric mean fold error was 2.68 and the proportion of compounds with prediction errors of 2-fold or less was 48.5%. Furthermore, it was found to be possible to infer the partial structure useful for CL prediction by a structure contributing factor inference method. The validity of these results of structural interpretation of metabolic stability was confirmed by chemists.
Collapse
|
60
|
Caffrey AR, Borrelli EP. The art and science of drug titration. Ther Adv Drug Saf 2021; 11:2042098620958910. [PMID: 33796256 PMCID: PMC7967860 DOI: 10.1177/2042098620958910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
A “one-size-fits-all” approach has been the standard for drug dosing, in
particular for agents with a wide therapeutic index. The scientific
principles of drug titration, most commonly used for medications with
a narrow therapeutic index, are to give the patient adequate and
effective treatment, at the lowest dose possible, with the aim of
minimizing unnecessary medication use and side effects. The art of
drug titration involves the interplay of scientific drug titration
principles with the clinical expertise of the healthcare provider, and
an individualized, patient-centered partnership between the provider
and the patient to review the delicate balance of perceived benefits
and risks from both perspectives. Drug titration may occur as up-,
down-, or cross-titration depending on whether the goal is to reach or
maintain a therapeutic outcome, decrease the risk of adverse effects,
or prevent withdrawal/discontinuation syndromes or recurrence of
disease. Drug titration introduces additional complexities surrounding
the conduct of clinical trials and real-world studies, confounding our
understanding of the true effect of medications. In clinical practice,
wide variations in titration schedules may exist due to a lack of
evidence and consensus on titration approaches that achieve an optimal
benefit-harm profile. Further, drug titration may be challenging for
patients to follow, resulting in suboptimal adherence and may require
increased healthcare-related visits and coordination of care amongst
providers. Despite the challenges associated with drug titration, it
is a personalized approach to drug dosing that blends science with
art, and with supportive real-world outcomes-based evidence, can be
effective for optimizing pharmacotherapeutic outcomes and improving
drug safety.
Collapse
Affiliation(s)
- Aisling R Caffrey
- University of Rhode Island College of Pharmacy, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Eric P Borrelli
- University of Rhode Island College of Pharmacy, Kingston, RI, USA
| |
Collapse
|
61
|
Xiao L, Bei Y, Li J, Chen M, Zhang Y, Xiang Q. Preclinical Pharmacokinetics, Tissue Distribution and Primary Safety Evaluation of a Novel Curcumin Analogue H10 Suspension, a Potential 17β Hydroxysteroid Dehydrogenase Type 3 Inhibitor. Chem Pharm Bull (Tokyo) 2021; 69:52-58. [PMID: 33087639 DOI: 10.1248/cpb.c20-00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
17β Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is the key enzyme in the biosynthesis of testosterone, which is an attractive therapeutic target for prostate cancer (PCa). H10, a novel curcumin analogue, was identified as a potential 17β-HSD3 inhibitor. The pharmacokinetic study of H10 in rats were performed by intraperitoneal (i.p.), intravenous (i.v.) and oral (p.o.) administration. In addition, the inhibitory effects of H10 against liver CYP3A4 were investigated in vitro using human liver microsomes (HLMs). The acute and chronic toxicological characteristics were characterized using single-dose and 30 d administration. All the mice were alive after i.p. H10 with dose of no more than 100 mg/kg which are nearly the maximum solubility in acute toxicity test. The pharmacokinetic characteristics of H10 fitted with linear dynamics model after single dose. Furthermore, H10 could bioaccumulate in testis, which was the target organ of 17β-HSD3 inhibitor. H10 distributed highest in spleen, and then in liver both after single and multiple i.p. administration. Moreover, H10 showed weak inhibition towards liver CYP3A4, and did not cause significant changes in aspartate transaminase (AST) and alanine transaminase (ALT) levels after treated with H10 for continuously 30 d. Taken together, these preclinical characteristics laid the foundation for further clinical studies of H10.
Collapse
Affiliation(s)
- Lichun Xiao
- College of Pharmacy, Jinan University.,Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University
| | - Yu Bei
- Biopharmaceutical R&D Center of Jinan University
| | - Jian'an Li
- Biopharmaceutical R&D Center of Jinan University
| | - Minjie Chen
- Biopharmaceutical R&D Center of Jinan University
| | | | - Qi Xiang
- College of Pharmacy, Jinan University.,Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University.,Biopharmaceutical R&D Center of Jinan University
| |
Collapse
|
62
|
AIM in Pharmacology and Drug Discovery. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
63
|
Wang Y, Zhang L, Gu S, Yin Z, Shi Z, Wang P, Xu C. The Current Application of LC-MS/MS in Pharmacokinetics of Traditional Chinese Medicines (Recent Three Years): A Systematic Review. Curr Drug Metab 2020; 21:969-978. [PMID: 33038908 DOI: 10.2174/1389200221666201009142418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND With significant clinical effects, traditional Chinese medicine (TCM) has been attracting increasing interest of the world's scientific community. However, TCM contains immense amounts of chemical components. It is a great challenge to objectively evaluate the correlation between the in vivo process and the therapeutic effect of TCM. The purpose of this systematic review was to summarize the recent investigation (from 2017 to 2019) on preclinical pharmacokinetics (PK) of TCM via liquid chromatography coupled with mass spectrometry (LC-MS/MS). METHODS We reviewed the published articles regarding the PK of TCM by LC-MS/MS. In addition, we summarized information on PK parameter of bioactive components, single herb and traditional Chinese medicine prescriptions. RESULTS The vast majority of literature on preclinical PK of TCM uses single oral administration, the biological matrix is mostly rat plasma, and the main PK parameters include AUC, Cmax, Tmax and T1/2, etc. Conclusion: Although LC-MS/MS can be used for high-throughput analysis, the characterization of in vivo processes of TCM still has a long way. With the advantages of high sensitivity, high specificity and simple operation, the increasingly mature LC-MS/MS technology will play an important role in the PK study of TCM.
Collapse
Affiliation(s)
- Yang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Lu Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Zhe Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Ping Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
64
|
Son YW, Choi HN, Che JH, Kang BC, Yun JW. Advances in selecting appropriate non-rodent species for regulatory toxicology research: Policy, ethical, and experimental considerations. Regul Toxicol Pharmacol 2020; 116:104757. [PMID: 32758521 DOI: 10.1016/j.yrtph.2020.104757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
In vivo animal studies are required by regulatory agencies to investigate drug safety before clinical trials. In this review, we summarize the process of selecting a relevant non-rodent species for preclinical studies. The dog is the primary, default non-rodent used in toxicology studies with multiple scientific advantages, including adequate background data and availability. Rabbit has many regulatory advantages as the first non-rodent for the evaluation of reproductive and developmental as well as local toxicity. Recently, minipigs have increasingly replaced dogs and rabbits in toxicology studies due to ethical and scientific advantages including similarity to humans and breeding habits. When these species are not relevant, nonhuman primates (NHPs) can be used as the available animal models, especially in toxicology studies investigating biotherapeutics. Particularly, based on the phylogenetic relationships, the use of New-World marmosets can be considered before Old-World monkeys, especially cynomolgus with robust historical data. Importantly, the use of NHPs should be justified in terms of scientific benefits considering target affinity, expression pattern, and pharmacological cross-reactivity. Strict standards are required for the use of animals. Therefore, this review is helpful for the selection of appropriate non-rodent in regulatory toxicology studies by providing sufficient regulatory, ethical, and scientific data for each species.
Collapse
Affiliation(s)
- Yong-Wook Son
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Ha-Ni Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
65
|
Cogan PS. Reality and Legality: Disentangling What Is Actual from What Is Tolerated in Comparisons of Hemp Extracts with Pure CBD. J Diet Suppl 2020; 17:527-542. [DOI: 10.1080/19390211.2020.1790710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- P. S. Cogan
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, Colorado, USA
| |
Collapse
|
66
|
Severina H, Bezruk I, Ivanauskas L, Georgiyants V. Development of HPLC method for quantitative determination of epimidin - new perspective АPhI with anticonvulsive activity. SCIENCERISE: PHARMACEUTICAL SCIENCE 2020. [DOI: 10.15587/2519-4852.2020.203181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
67
|
Joseph JF, Gronbach L, García-Miller J, Cruz LM, Wuest B, Keilholz U, Zoschke C, Parr MK. Automated Real-Time Tumor Pharmacokinetic Profiling in 3D Models: A Novel Approach for Personalized Medicine. Pharmaceutics 2020; 12:E413. [PMID: 32366029 PMCID: PMC7284432 DOI: 10.3390/pharmaceutics12050413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer treatment often lacks individual dose adaptation, contributing to insufficient efficacy and severe side effects. Thus, personalized approaches are highly desired. Although various analytical techniques are established to determine drug levels in preclinical models, they are limited in the automated real-time acquisition of pharmacokinetic profiles. Therefore, an online UHPLC-MS/MS system for quantitation of drug concentrations within 3D tumor oral mucosa models was generated. The integration of sampling ports into the 3D tumor models and their culture inside the autosampler allowed for real-time pharmacokinetic profiling without additional sample preparation. Docetaxel quantitation was validated according to EMA guidelines. The tumor models recapitulated the morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel treatment. The administration of four different docetaxel concentrations resulted in comparable courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in 3D tumor models without any sample preparation. The inclusion of patient-derived tumor cells into our models may further optimize the pharmacotherapy of cancer patients by efficiently delivering personalized data of the target tissue.
Collapse
Affiliation(s)
- Jan F. Joseph
- Core Facility BioSupraMol, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Leonie Gronbach
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Jill García-Miller
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Leticia M. Cruz
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | | | - Ulrich Keilholz
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Comprehensive Cancer Center, 10117 Berlin, Germany;
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, 14195 Berlin, Germany; (L.G.); (J.G.-M.); (L.M.C.); (C.Z.)
| | - Maria K. Parr
- Freie Universität Berlin, Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry), 14195 Berlin, Germany
| |
Collapse
|
68
|
Fischer I, Milton C, Wallace H. Toxicity testing is evolving! Toxicol Res (Camb) 2020; 9:67-80. [PMID: 32440338 PMCID: PMC7233318 DOI: 10.1093/toxres/tfaa011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 11/15/2022] Open
Abstract
The efficient management of the continuously increasing number of chemical substances used in today's society is assuming greater importance than ever before. Toxicity testing plays a key role in the regulatory decisions of agencies and governments that aim to protect the public and the environment from the potentially harmful or adverse effects of these multitudinous chemicals. Therefore, there is a critical need for reliable toxicity-testing methods to identify, assess and interpret the hazardous properties of any substance. Traditionally, toxicity-testing approaches have been based on studies in experimental animals. However, in the last 20 years, there has been increasing concern regarding the sustainability of these methodologies. This has created a real need for the development of new approach methodologies (NAMs) that satisfy the regulatory requirements and are acceptable and affordable to society. Numerous initiatives have been launched worldwide in attempts to address this critical need. However, although the science to support this is now available, the legislation and the pace of NAMs acceptance is lagging behind. This review will consider some of the various initiatives in Europe to identify NAMs to replace or refine the current toxicity-testing methods for pharmaceuticals. This paper also presents a novel systematic approach to support the desired toxicity-testing methodologies that the 21st century deserves.
Collapse
Affiliation(s)
- Ida Fischer
- Institution of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Catherine Milton
- Institution of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather Wallace
- Institution of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
69
|
Jiao Y, Preston S, Hofmann A, Taki A, Baell J, Chang BCH, Jabbar A, Gasser RB. A perspective on the discovery of selected compounds with anthelmintic activity against the barber's pole worm-Where to from here? ADVANCES IN PARASITOLOGY 2020; 108:1-45. [PMID: 32291083 DOI: 10.1016/bs.apar.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial morbidity and mortality in animals worldwide. Anthelmintic treatment is central to controlling these worms, but widespread resistance to most of the commercially available anthelmintics for veterinary and agricultural use is compromising control, such that there is an urgency to discover new and effective drugs. The purpose of this article is to review information on parasitic nematodes, the treatment and control of parasitic nematode infections and aspects of discovering new anthelmintics in the context of anthelmintic resistance problems, and then to discuss some progress that our group has made in identifying selected compounds with activity against nematodes. The focus of our recent work has been on discovering new chemical entities and known drugs with anthelmintic activities against Haemonchus contortus as well as other socioeconomically important parasitic nematodes for subsequent development. Using whole worm-based phenotypic assays, we have been screening compound collections obtained via product-development-partnerships and/or collaborators, and active compounds have been assessed for their potential as anthelmintic candidates. Following the screening of 15,333 chemicals from five distinct compound collections against H. contortus, we have discovered one new chemical entity (designated SN00797439), two human kinase inhibitors (SNS-032 and AG-1295), 14 tetrahydroquinoxaline analogues, one insecticide (tolfenpyrad) and two tolfenpyrad (pyrazole-5-carboxamide) derivatives (a-15 and a-17) with anthelmintic activity in vitro. Some of these 20 'hit' compounds have selectivity against H. contortus in vitro when compared to particular human cell lines. In our opinion, some of these compounds could represent starting points for 'lead' development. Accordingly, the next research steps to be pursued include: (i) chemical optimisation of representative chemicals via structure-activity relationship (SAR) evaluations; (ii) assessment of the breadth of spectrum of anthelmintic activity on a range of other parasitic nematodes, such as strongyloids, ascaridoids, enoplids and filarioids; (iii) detailed investigations of the absorption, distribution, metabolism, excretion and toxicity (ADMET) of optimised chemicals with broad nematocidal or nematostatic activity; and (iv) establishment of the modes of action of lead candidates.
Collapse
Affiliation(s)
- Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Science and Technology, Federation University, Ballarat, VIC, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aya Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
70
|
Rodrigues-Junior VS, Villela AD, Abbadi BL, Sperotto NDM, Pissinate K, Picada JN, Bondan da Silva J, Bizarro CV, Machado P, Basso LA. Nonclinical evaluation of IQG-607, an anti-tuberculosis candidate with potential use in combination drug therapy. Regul Toxicol Pharmacol 2019; 111:104553. [PMID: 31843592 DOI: 10.1016/j.yrtph.2019.104553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/31/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
New effective compounds to treat tuberculosis are urgently needed. IQG-607 is an orally active anti-tuberculosis drug candidate, with promising preliminary safety profile and anti-mycobacterial activity in both in vitro and in vivo models of tuberculosis infection. Here, we evaluated the mutagenic and genotoxic effects of IQG-607, and its interactions with CYP450 isoforms. Moreover, we describe for the first time a combination study of IQG-607 in Mycobacterium tuberculosis-infected mice. Importantly, IQG-607 had additive effects when combined with the first-line anti-tuberculosis drugs rifampin and pyrazinamide in mice. IQG-607 presented weak to moderate inhibitory potential against CYP450 isoforms 3A4, 1A2, 2C9, 2C19, 2D6, and 2E1. The Salmonella mutagenicity test revealed that IQG-607 induced base pair substitution mutations in the strains TA100 and TA1535. However, in the presence of human metabolic S9 fraction, no mutagenic effect was detected in any strain. Additionally, IQG-607 did not increase micronucleus frequencies in mice, at any dose tested, 25, 100, or 250 mg/kg. The favorable activity in combination with first-line drugs and mild to moderate toxic events described in this study suggest that IQG-607 represents a candidate for clinical development.
Collapse
Affiliation(s)
- Valnês S Rodrigues-Junior
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Programa de Pós-Graduação em Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Anne D Villela
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruno L Abbadi
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Nathalia D M Sperotto
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, Brazil
| | - Kenia Pissinate
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jaqueline N Picada
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil, Canoas, Brazil
| | | | - Cristiano V Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Luiz A Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Brazil; Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
71
|
Zanetti TA, Biazi BI, Coatti GC, Baranoski A, Marques LA, Corveloni AC, Mantovani MS. Mitotic spindle defects and DNA damage induced by dimethoxycurcumin lead to an intrinsic apoptosis pathway in HepG2/C3A cells. Toxicol In Vitro 2019; 61:104643. [DOI: 10.1016/j.tiv.2019.104643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023]
|
72
|
Jaćević V, Nepovimova E, Kuča K. Acute Toxic Injuries of Rat's Visceral Tissues Induced by Different Oximes. Sci Rep 2019; 9:16425. [PMID: 31712702 PMCID: PMC6848205 DOI: 10.1038/s41598-019-52768-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Certain AChE reactivators, asoxime, obidoxime, K027, K048, and K075, when taken in overdoses and sometimes even when introduced within therapeutic ranges, may injure the different organs. As a continuation of previously published data, in this study, Wistar rats have sacrificed 24 hrs and 7 days after single im application of 0.1LD50, 0.5LD50 and 1.0LD50 of each reactivator, and examinated tissue samples were obtained for pathohistological and semiquantitative analysis. A severity of tissue alteration, expressed as different tissue damage scores were evaluated. Morphological structure of examinated tissues treated with of 0.1LD50 of all reactivators was comparable with the control group of rats. Moderate injuries were seen in visceral tissues treated with 0.5LD50 of asoxime, obidoxime and K027. Acute damages were enlarged after treatment with 0.5LD50 and 1.0LD50 of all reactivators during the next 7 days. The most prominent changes were seen in rats treated with 1.0LD50 of K048 and K075 (P < 0.001 vs. control and asoxime-treated group). All reactivators given by a single, high, unitary dose regimen, have an adverse effect not only on the main visceral tissue, but on the whole rat as well, but the exact mechanism of cellular injury remains to be confirmed in further investigation.
Collapse
Affiliation(s)
- Vesna Jaćević
- National Poison Control Centre, Military Medical Academy, Belgrade, Serbia.,Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia.
| |
Collapse
|
73
|
Savic LJ, Schobert IT, Peters D, Walsh JJ, Laage-Gaupp FM, Hamm CA, Tritz N, Doemel LA, Lin M, Sinusas A, Schlachter T, Duncan JS, Hyder F, Coman D, Chapiro J. Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment. Clin Cancer Res 2019; 26:428-438. [PMID: 31582517 DOI: 10.1158/1078-0432.ccr-19-1702] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To establish magnetic resonance (MR)-based molecular imaging paradigms for the noninvasive monitoring of extracellular pH (pHe) as a functional surrogate biomarker for metabolic changes induced by locoregional therapy of liver cancer. EXPERIMENTAL DESIGN Thirty-two VX2 tumor-bearing New Zealand white rabbits underwent longitudinal imaging on clinical 3T-MRI and CT scanners before and up to 2 weeks after complete conventional transarterial chemoembolization (cTACE) using ethiodized oil (lipiodol) and doxorubicin. MR-spectroscopic imaging (MRSI) was employed for pHe mapping. Multiparametric MRI and CT were performed to quantify tumor enhancement, diffusion, and lipiodol coverage of the tumor posttherapy. In addition, incomplete cTACE with reduced chemoembolic doses was applied to mimic undertreatment and exploit pHe mapping to detect viable tumor residuals. Imaging findings were correlated with histopathologic markers indicative of metabolic state (HIF-1α, GLUT-1, and LAMP-2) and viability (proliferating cell nuclear antigen and terminal deoxynucleotidyl-transferase dUTP nick-end labeling). RESULTS Untreated VX2 tumors demonstrated a significantly lower pHe (6.80 ± 0.09) than liver parenchyma (7.19 ± 0.03, P < 0.001). Upregulation of HIF-1α, GLUT-1, and LAMP-2 confirmed a hyperglycolytic tumor phenotype and acidosis. A gradual tumor pHe increase toward normalization similar to parenchyma was revealed within 2 weeks after complete cTACE, which correlated with decreasing detectability of metabolic markers. In contrast, pHe mapping after incomplete cTACE indicated both acidic viable residuals and increased tumor pHe of treated regions. Multimodal imaging revealed durable tumor devascularization immediately after complete cTACE, gradually increasing necrosis, and sustained lipiodol coverage of the tumor. CONCLUSIONS MRSI-based pHe mapping can serve as a longitudinal monitoring tool for viable tumors. As most liver tumors are hyperglycolytic creating microenvironmental acidosis, therapy-induced normalization of tumor pHe may be used as a functional biomarker for positive therapeutic outcome.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Isabel Theresa Schobert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Dana Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - John J Walsh
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Fabian Max Laage-Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Charlie Alexander Hamm
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Nina Tritz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Luzie A Doemel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Visage Imaging, Inc., San Diego, California
| | - Albert Sinusas
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
74
|
Zaccarelli-Magalhães J, Amato Santoro M, de Abreu GR, Lopes Ricci E, Rinaldi Fukushima A, Kirsten TB, Faria Waziry PA, de Souza Spinosa H. Exposure of dams to fluoxetine during lactation disturbs maternal behavior but had no effect on the offspring behavior. Behav Brain Res 2019; 377:112246. [PMID: 31539576 DOI: 10.1016/j.bbr.2019.112246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
Fluoxetine is one of the most commonly prescribed drugs for treatment of depression during pregnancy as well as postpartum. Nevertheless, fluoxetine can cross the placental barrier and/or be secreted through breastmilk and questions remain unanswered regarding safety of the unborn and/or nursing infant. Passive administration of antidepressants to infants can cause neurological developmental delay and/or dysfunction. To date, there are limited studies on neurobehavioral effects due to passive administration of fluoxetine in nursing animals. Thus, the aim of the present study was to evaluate the effects of fluoxetine exposure on the behavior of lactating dams and their offspring. Dams received either 1, 10 or 20 mg/kg fluoxetine via oral gavage (controls received water alone) from lactating day (LD) 1 to 21. Maternal behavioral studies were conducted from LD5 to LD7 and offspring studies were conducted from LD2 to LD60. Results showed dysfunction in maternal behavior, both in direct and indirect behavior, but there were no differences and/or deficiencies observed in offspring behavior. These data suggest that the impairment of dams maternal behavior combined with the amount of fluoxetine that the offspring received through breast milk during lactation did not alter their social behavior in infancy and/or adulthood, suggesting no neurodevelopmental damage associated with maternal use of fluoxetine. This study contributes to the field of human psychiatric diseases by further elucidating the effects of antidepressant medications on the health of mothers as well as children who were passively exposed to drug treatment.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil.
| | - Maysa Amato Santoro
- Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907, São Paulo, Brazil.
| | - Gabriel Ramos de Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil.
| | - Esther Lopes Ricci
- Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907, São Paulo, Brazil.
| | - André Rinaldi Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil.
| | - Thiago Berti Kirsten
- Environmental and Experimental Pathology, Universidade Paulista, Rua Dr. Bacelar, 1212, 04026-002, São Paulo, Brazil.
| | - Paula A Faria Waziry
- Dr. Kiran C. Patel College of Osteopathic Medicine, Tampa Bay Regional Campus, Nova Southeastern University, 98-148 Damascus Rd, Clearwater, FL, 33759, United States.
| | - Helenice de Souza Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil.
| |
Collapse
|
75
|
Jaćević V, Nepovimova E, Kuča K. Interspecies and intergender differences in acute toxicity of K-oximes drug candidates. Chem Biol Interact 2019; 308:312-316. [PMID: 31153983 DOI: 10.1016/j.cbi.2019.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 01/17/2023]
Abstract
K-oximes were developed as modern drug candidates acting as AChE reactivators. In this study, it has been investigated which interspecies and intergender differences changes could be observed in Wistar rats and Swiss mice, both genders, after the treatment with increasing doses of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. After the 24 h, a number of died animals was counted and the median lethal dose (LD50) for each oxime was calculated. By using the intramuscular route of administration, asoxime and K027 had the least toxicity in female rats (640.21 mg/kg and 686.08 mg/kg), and in female mice (565.75 mg/kg and 565.74 mg/kg), respectively. Moreover, asoxime and K027 showed 3, 4 or 8 times less acute toxicity in comparison to K048, obidoxime and K075, respectively. Beyond, K075 had the greatest toxicity in male rats (81.53 mg/kg), and in male mice (57.34 mg/kg), respectively. Our results can help to predict likely adverse toxic effects, target organ systems and possible outcome in the event of massive human overexposure, and in establishing risk categories or in dose selection for the initial repeated dose toxicity tests to be conducted for each oxime.
Collapse
Affiliation(s)
- Vesna Jaćević
- National Poison Control Centre, Military Medical Academy, 17 Crnotravska St, 11000, Belgrade, Republic of Serbia; Medical Faculty of the Military Medical Academy, University of Defence, 1 Pavla Jurišića-Šturma St, 11000, Belgrade, Republic of Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 50003, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 50003, Hradec Králové, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 50003, Hradec Králové, Czech Republic; Malaysia-Japan International Institute of Technology (MJIIT), University Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
76
|
Kim TW, Che JH, Yun JW. Use of stem cells as alternative methods to animal experimentation in predictive toxicology. Regul Toxicol Pharmacol 2019; 105:15-29. [DOI: 10.1016/j.yrtph.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
|
77
|
Steidl E, Gleyzes M, Maddalena F, Debanne D, Buisson B. Neuroservice proconvulsive (NS-PC) set: A new platform of electrophysiology-based assays to determine the proconvulsive potential of lead compounds. J Pharmacol Toxicol Methods 2019; 99:106587. [PMID: 31207287 DOI: 10.1016/j.vascn.2019.106587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Failures in drug development often result from the emergence of unexpected adverse drug reactions. It is clear that adverse drug reactions, including seizure liability, should be assessed earlier. The goal of the present work was to develop a new platform of in vitro assays, NS-PC set (for Neuroservice proconvulsive set), to determine the proconvulsive potential of compounds earlier in preclinical development. METHODS Assays were based on electrophysiological recordings in acute hippocampal slices performed with multielectrode arrays. 4 reference proconvulsive/seizurogenic compounds (4-aminopyridine, bicuculline, kainate and carbachol) and 4 anti-epileptic drugs (AEDs; phenobarbital, carbamazepine, clonazepam and valproic acid) were evaluated on electrophysiological endpoints involved in seizure risk (neuronal excitability, balance of excitatory/inhibitory synaptic transmission, occurrence of neuronal synchronization mechanisms materialized by epileptiform discharges). RESULTS The reference compounds increased the number and area under the curve of population spikes, triggered epileptiform discharges and enhanced the firing rate of CA1 neurons. The effects of the 4 antiepileptic drugs were assessed on these 3 parameters. They were able to partially of completely reverse the effects of proconvulsive compounds. DISCUSSION The use of reference proconvulsive compounds and AEDs validated the electrophysiological parameters to detect proconvulsive risk. Systematic evaluation of compounds with the 3 complementary endpoints increase the probability to detect seizure liability in vitro. Depending on the compound mechanism of action, only one or two of the identified parameters might be modified.
Collapse
Affiliation(s)
- Esther Steidl
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France.
| | - Melanie Gleyzes
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France
| | - Fabien Maddalena
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France
| | - Dominique Debanne
- UNIS, UMR1072 INSERM - Aix-Marseille Université, 53 Bvd Pierre Dramard, 13015 Marseille, France
| | - Bruno Buisson
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France
| |
Collapse
|
78
|
Choi GW, Lee YB, Cho HY. Interpretation of Non-Clinical Data for Prediction of Human Pharmacokinetic Parameters: In Vitro-In Vivo Extrapolation and Allometric Scaling. Pharmaceutics 2019; 11:E168. [PMID: 30959827 PMCID: PMC6523982 DOI: 10.3390/pharmaceutics11040168] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Extrapolation of pharmacokinetic (PK) parameters from in vitro or in vivo animal to human is one of the main tasks in the drug development process. Translational approaches provide evidence for go or no-go decision-making during drug discovery and the development process, and the prediction of human PKs prior to the first-in-human clinical trials. In vitro-in vivo extrapolation and allometric scaling are the choice of method for projection to human situations. Although these methods are useful tools for the estimation of PK parameters, it is a challenge to apply these methods since underlying biochemical, mathematical, physiological, and background knowledge of PKs are required. In addition, it is difficult to select an appropriate methodology depending on the data available. Therefore, this review covers the principles of PK parameters pertaining to the clearance, volume of distribution, elimination half-life, absorption rate constant, and prediction method from the original idea to recently developed models in order to introduce optimal models for the prediction of PK parameters.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea.
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Korea.
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea.
| |
Collapse
|
79
|
Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure. Sci Rep 2019; 9:1457. [PMID: 30728420 PMCID: PMC6365527 DOI: 10.1038/s41598-018-37837-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
Therapeutic application of newly developed oximes is limited due to their adverse effects on different tissues. Within this article, it has been investigated which morphological changes could be observed in Wistar rats after the treatment with increasing doses of selected acetyl cholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. Subsequently, heart, diaphragm and musculus popliteus were obtained for pathohistological and semiquantitative analysis 24 hrs and 7 days after im administration of a single dose of 0.1 LD50, 0.5 LD50, and 1.0 LD50 of each oxime. Different muscle damage score was based on an estimation scale from 0 (no damage) to 5 (strong damage). In rats treated with 0.1 LD50 of each oxime, muscle fibres did not show any change. The intensive degeneration was found in all muscles after treatment with 0.5 LD50 of asoxime and obidoxime, respectively. Acute toxic muscle injury was developed within 7 days following treatment with 0.5 LD50 and 1.0 LD50 of each oxime, with the highest values in K048 and K075 group (P < 0.001 vs. control and asoxime), respectively. The early muscle alterations observed in our study seem to contribute to the pathogenesis of the oxime-induced toxic muscle injury, which probably manifests as necrosis and/or inflammation.
Collapse
|
80
|
The first comprehensive description of the expression profile of genes involved in differential body growth and the immune system of the Jeju Native Pig and miniature pig. Amino Acids 2018; 51:495-511. [PMID: 30519757 DOI: 10.1007/s00726-018-2685-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022]
Abstract
Sus scrofa provides a major source of animal protein for humans as well as being an excellent biomedical model. This study was carried out to understand, in detail, the genetic and functional variants of Jeju Native Pigs and miniature pigs through differential expression profiling of the genes controlling their immune response, growth performance, and meat quality. The Illumina HiSeq 2000 platform was used for generating 1.3 billion 90 bp paired-end reads, which were mapped to the S. scrofa genome using TopHat2. A total of 2481 and 2768 genes were differentially expressed with 8-log changes in muscle and liver samples, respectively. Five hundred forty-eight genes in muscle and 642 genes in liver samples had BLAST matches within the non-redundant database. GO process and pathway analyses showed enhanced biological processes related to the extracellular structural organization and skeletal muscle cell differentiation in muscle tissue, whereas the liver tissue shares functions related to the inflammatory response. Herein, we identify inflammatory regulatory genes in miniature pigs and growth response genes in Jeju Native Pigs, information which can provide a stronger base for the selection of breeding stock and facilitate further in vitro and in vivo studies for therapeutic purposes.
Collapse
|
81
|
Bkhairia I, Dhibi S, Nasri R, Elfeki A, Hfaiyedh N, Ben Amara I, Nasri M. Bioactive properties: enhancement of hepatoprotective, antioxidant and DNA damage protective effects of golden grey mullet protein hydrolysates against paracetamol toxicity. RSC Adv 2018; 8:23230-23240. [PMID: 35540151 PMCID: PMC9081614 DOI: 10.1039/c8ra02178c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022] Open
Abstract
This study was undertaken to examine the hepatoprotective, antioxidant, and DNA damage protective effects of protein hydrolysates from Liza aurata, against paracetamol overdose induced liver injury in Wistar rats. L. aurata protein hydrolysates (LAPHs) were mainly constituted by glutamic acid (Glu) and glutamine (Gln) and lysine (Lys). In addition, they contained high amounts of proline (Pro), leucine (Leu) and glycine (Gly). The molecular weight distribution of the hydrolysates was determined by size exclusion chromatography, which analyzed a representative hydrolysate type with a weight range of 3-20 kDa. The hepatoprotective effect of LAPHs against paracetamol liver toxicity was investigated by in vivo assay. Rats received LAPHs daily by gavage, for 45 days. Paracetamol was administrated to rats during the last five days of treatment by intraperitoneal injection. Paracetamol overdose induced marked liver damage in rats was noted by a significant increase in the activities of serum aspartate amino transferase (AST) and alanine amino transferase (ALT), and oxidative stress which was evident from decreased activity of the enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), and level of glutathione (GSH), and increased concentration of lipid peroxidation products (MDA). Furthermore, paracetamol increased the DNA damage with liver histopathological changes. LAPH pretreatment significantly attenuated paracetamol-induced hepatotoxic effects, including oxidative damage, histopathological lesions, and apoptotic changes in the liver tissue. Interestingly, LAPHs restored the activities of antioxidant enzymes and the level of GSH, ameliorated histological and molecular aspects of liver cells. The present data suggest that paracetamol high-dose plays a crucial role in the oxidative damage and genotoxicity of the liver and therefore, some antioxidants such us LAPHs might be safe as hepatoprotectors. Altogether, our studies provide consistent evidence of the beneficial effect of LAPHs on animals treated with a toxic dose of paracetamol and might encourage clinical trials.
Collapse
Affiliation(s)
- Intidhar Bkhairia
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) B. P. 1173 3038 Sfax Tunisia +216 74 275 595 +216 96 287 128
| | - Sabah Dhibi
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax Road Soukra km 3.5 PB no. 1171-14 3000 Sfax Tunisia
- Laboratory Animal Eco Physiology, Faculty of Sciences Sidi Ahmed Zarrouk 2112 Gafsa Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) B. P. 1173 3038 Sfax Tunisia +216 74 275 595 +216 96 287 128
| | - Abdelfettah Elfeki
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax Road Soukra km 3.5 PB no. 1171-14 3000 Sfax Tunisia
| | - Najla Hfaiyedh
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax Road Soukra km 3.5 PB no. 1171-14 3000 Sfax Tunisia
- Laboratory Animal Eco Physiology, Faculty of Sciences Sidi Ahmed Zarrouk 2112 Gafsa Tunisia
| | - Ibtissem Ben Amara
- Higher Institute of Biotechnology of Sfax, University of Sfax 3000 Sfax Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) B. P. 1173 3038 Sfax Tunisia +216 74 275 595 +216 96 287 128
| |
Collapse
|
82
|
Abbadi BL, Rodrigues-Junior VDS, Dadda ADS, Pissinate K, Villela AD, Campos MM, Lopes LGDF, Bizarro CV, Machado P, Sousa EHS, Basso LA. Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in Mycobacterium tuberculosis? Front Microbiol 2018; 9:880. [PMID: 29765372 PMCID: PMC5938375 DOI: 10.3389/fmicb.2018.00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of strains of Mycobacterium tuberculosis resistant to isoniazid (INH) has underscored the need for the development of new anti-tuberculosis agents. INH is activated by the mycobacterial katG-encoded catalase-peroxidase, forming an acylpyridine fragment that is covalently attached to the C4 of NADH. This isonicotinyl-NAD adduct inhibits the activity of 2-trans-enoyl-ACP(CoA) reductase (InhA), which plays a role in mycolic acid biosynthesis. A metal-based INH analog, Na3[FeII(CN)5(INH)]·4H2O, IQG-607, was designed to have an electronic redistribution on INH moiety that would lead to an intramolecular electron transfer to bypass KatG activation. HPLC and EPR studies showed that the INH moiety can be oxidized by superoxide or peroxide yielding similar metabolites and isonicotinoyl radical only when associated to IQG-607, thereby supporting redox-mediated drug activation as a possible mechanism of action. However, IQG-607 was shown to inhibit the in vitro activity of both wild-type and INH-resistant mutant InhA enzymes in the absence of KatG activation. IQG-607 given by the oral route to M. tuberculosis-infected mice reduced lung lesions. Experiments using early and late controls of infection revealed a bactericidal activity for IQG-607. HPLC and voltammetric methods were developed to quantify IQG-607. Pharmacokinetic studies showed short half-life, high clearance, moderate volume of distribution, and low oral bioavailability, which was not altered by feeding. Safety and toxic effects of IQG-607 after acute and 90-day repeated oral administrations in both rats and minipigs showed occurrence of mild to moderate toxic events. Eight multidrug-resistant strains (MDR-TB) were resistant to IQG-607, suggesting an association between katG mutation and increasing MIC values. Whole genome sequencing of three spontaneous IQG-607-resistant strains harbored katG gene mutations. MIC measurements and macrophage infection experiments with a laboratorial strain showed that katG mutation is sufficient to confer resistance to IQG-607 and that the macrophage intracellular environment cannot trigger the self-activation mechanism. Reduced activity of IQG-607 against an M. tuberculosis strain overexpressing S94A InhA mutant protein suggested both the need for KatG activation and InhA as its target. Further efforts are suggested to be pursued toward attempting to translate IQG-607 into a chemotherapeutic agent to treat tuberculosis.
Collapse
Affiliation(s)
- Bruno L Abbadi
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valnês da Silva Rodrigues-Junior
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adilio da Silva Dadda
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kenia Pissinate
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anne D Villela
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria M Campos
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz G de França Lopes
- Grupo de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo H S Sousa
- Grupo de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
83
|
Evaluating the abuse potential of psychedelic drugs as part of the safety pharmacology assessment for medical use in humans. Neuropharmacology 2018; 142:89-115. [PMID: 29427652 DOI: 10.1016/j.neuropharm.2018.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022]
Abstract
Psychedelics comprise drugs come from various pharmacological classes including 5-HT2A agonists, indirect 5-HT agonists, e.g., MDMA, NMDA antagonists and κ-opioid receptor agonists. There is resurgence in developing psychedelics to treat psychiatric disorders with high unmet clinical need. Many, but not all, psychedelics are schedule 1 controlled drugs (CDs), i.e., no approved medical use. For existing psychedelics in development, regulatory approval will require a move from schedule 1 to a CD schedule for drugs with medical use, i.e., schedules 2-5. Although abuse of the psychedelics is well documented, a systematic preclinical and clinical evaluation of the risks they pose in a medical-use setting does not exist. We describe the non-clinical tests required for a regulatory evaluation of abuse/dependence risks, i.e., drug-discrimination, intravenous self-administration and physical dependence liability. A synopsis of the existing data for the various types of psychedelics is provided and we describe our findings with psychedelic drugs in these models. FDA recently issued its guidance on abuse/dependence evaluation of drug-candidates (CDER/FDA, 2017). We critically review the guidance, discuss the impact this document will have on non-clinical abuse/dependence testing, and offer advice on how non-clinical abuse/dependence experiments can be designed to meet not only the expectations of FDA, but also other regulatory agencies. Finally, we offer views on how these non-clinical tests can be refined to provide more meaningful information to aid the assessment of the risks posed by CNS drug-candidates for abuse and physical dependence. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.
Collapse
|
84
|
Gutiérrez D, Fernández L, Rodríguez A, García P. Are Phage Lytic Proteins the Secret Weapon To Kill Staphylococcus aureus? mBio 2018; 9:e01923-17. [PMID: 29362234 PMCID: PMC5784253 DOI: 10.1128/mbio.01923-17] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most threatening microorganisms for global human health. The current strategies to reduce the impact of S. aureus include a restrictive control of worldwide antibiotic use, prophylactic measures to hinder contamination, and the search for novel antimicrobials to treat human and animal infections caused by this bacterium. The last strategy is currently the focus of considerable research. In this regard, phage lytic proteins (endolysins and virion-associated peptidoglycan hydrolases [VAPGHs]) have been proposed as suitable candidates. Indeed, these proteins display narrow-spectrum antimicrobial activity and a virtual lack of bacterial-resistance development. Additionally, the therapeutic use of phage lytic proteins in S. aureus animal infection models is yielding promising results, showing good efficacy without apparent side effects. Nonetheless, human clinical trials are still in progress, and data are not available yet. This minireview also analyzes the main obstacles for introducing phage lytic proteins as human therapeutics against S. aureus infections. Besides the common technological problems derived from large-scale production of therapeutic proteins, a major setback is the lack of a proper legal framework regulating their use. In that sense, the relevant health authorities should urgently have a timely discussion about these new antimicrobials. On the other hand, the research community should provide data to dispel any doubts regarding their efficacy and safety. Overall, the appropriate scientific data and regulatory framework will encourage pharmaceutical companies to invest in these promising antimicrobials.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
85
|
Preclinical pharmacokinetic profiling of IQG-607, a potential oral metallodrug to treat tuberculosis. Eur J Pharm Sci 2018; 111:393-398. [DOI: 10.1016/j.ejps.2017.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022]
|
86
|
Mazza G, Al-Akkad W, Rombouts K. Engineering in vitro models of hepatofibrogenesis. Adv Drug Deliv Rev 2017; 121:147-157. [PMID: 28578016 DOI: 10.1016/j.addr.2017.05.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide marked by chronic inflammation and fibrosis/scarring, resulting in end-stage liver disease and its complications. Hepatic stellate cells (HSCs) are a dominant contributor to liver fibrosis by producing excessive extracellular matrix (ECM), irrespective of the underlying disease aetiologies, and for many decades research has focused on the development of a number of anti-fibrotic strategies targeting this cell. Despite major improvements in two-dimensional systems (2D) by using a variety of cell culture models of different complexity, an efficient anti-fibrogenic therapy has yet to be developed. The development of well-defined three-dimensional (3D) in vitro models, which mimic ECM structures as found in vivo, have demonstrated the importance of cell-matrix bio-mechanics, the complex interactions between HSCs and hepatocytes and other non-parenchymal cells, and this to improve and promote liver cell-specific functions. Henceforth, refinement of these 3D in vitro models, which reproduce the liver microenvironment, will lead to new objectives and to a possible new era in the search for antifibrogenic compounds.
Collapse
|
87
|
Rodrigues-Junior VS, Cintra L, Machado P, Dadda A, Basso LA, Mafra ACCN, Campos AH, Campos MM, Santos DS. Toxicological profile of IQG-607 after single and repeated oral administration in minipigs: An essential step towards phase I clinical trial. Regul Toxicol Pharmacol 2017; 90:78-86. [PMID: 28838610 DOI: 10.1016/j.yrtph.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/28/2022]
Abstract
IQG-607 is an anti-tuberculosis drug candidate, with a promising safety and efficacy profile in models of tuberculosis infection both in vitro and in vivo. Here, we evaluated the safety and the possible toxic effects of IQG-607 after acute and 90-day repeated administrations in minipigs. Single oral administration of IQG-607 (220 mg/kg) to female and male minipigs did not result in any morbidity or mortality. No gross lesions were observed in the minipigs at necropsy. Repeated administration of IQG 607 (65, 30, or 15 mg/kg), given orally, for 90 days, in both male and female animals did not cause any mortality and no significant body mass alteration. Diarrhea and alopecia were the clinical signs observed in animals dosed with IQG-607 for 90 days. Long-term treatment with IQG-607 did not induce evident alterations of blood cell counts or any hematological parameters. Importantly, the repeated schedule of administration of IQG-607 resulted in increased cholesterol levels, increased glucose levels, decrease in the globulin levels, and increased creatinine levels over the time. Most necropsy and histopathological alterations of the organs from IQG-607-treated groups were also observed for the untreated group. In addition, pharmacokinetic parameters were evaluated. IQG-607 represents a potential candidate molecule for anti-tuberculosis drug development programs. Its promising in vivo activity and mild to moderate toxic events detected in this study suggest that IQG-607 represents a candidate for clinical development.
Collapse
Affiliation(s)
- Valnês S Rodrigues-Junior
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900 Porto Alegre, Brazil.
| | - Luciana Cintra
- Centro de Experimentação e Treinamento Em Cirurgia (CETEC), Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, Brazil
| | - Pablo Machado
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900 Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Adílio Dadda
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900 Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900 Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, Brazil
| | | | - Alexandre Holthausen Campos
- Centro de Experimentação e Treinamento Em Cirurgia (CETEC), Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, Brazil
| | - Maria Martha Campos
- Programa de Pós-Graduação Em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, Brazil; Instituto de Toxicologia e Farmacologia, PUCRS, Porto Alegre, Brazil
| | - Diógenes Santiago Santos
- Centro de Pesquisas Em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900 Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, PUCRS, Porto Alegre, Brazil
| |
Collapse
|