51
|
Ji TT, Qi YH, Li XY, Tang B, Wang YK, Zheng PX, Li W, Qu X, Feng L, Bai SJ. Loss of lncRNA MIAT ameliorates proliferation and fibrosis of diabetic nephropathy through reducing E2F3 expression. J Cell Mol Med 2020; 24:13314-13323. [PMID: 33009725 PMCID: PMC7701586 DOI: 10.1111/jcmm.15949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney disease resulted from diabetes. Dys‐regulated proliferation and extracellular matrix (ECM) accumulation in mesangial cells contribute to DN progression. In this study, we tested expression level of MIAT in DN patients and mesangial cells treated by high glucose (HG). Up‐regulation of MIAT was observed in DN. Then, functional assays displayed that silence of MIAT by siRNA significantly repressed the proliferation and cycle progression in mesangial cells induced by HG. Meanwhile, we found that collagen IV, fibronectin and TGF‐β1 protein expression was obviously triggered by HG, which could be rescued by loss of MIAT. Then, further assessment indicated that MIAT served as sponge harbouring miR‐147a. Moreover, miR‐147a was decreased in DN, which exhibited an antagonistic effect of MIAT on modulating mesangial cell proliferation and fibrosis. Moreover, bioinformatics analysis displayed that E2F transcription factor 3 (E2F3) could act as direct target of miR‐147a. We demonstrated that E2F3 was greatly increased in DN and the direct binding association between miR‐147a and E2F3 was evidenced using luciferase reporter assay. In summary, our data explored the underlying mechanism of DN pathogenesis validated that MIAT induced mesangial cell proliferation and fibrosis via sponging miR‐147a and regulating E2F3.
Collapse
Affiliation(s)
- Ting-Ting Ji
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ying-Hui Qi
- Department of Nephrology, Shanghai Punan Hospital of Pudong Neww District, Shanghai, China
| | - Xiao-Ying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bo Tang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ya-Kun Wang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng-Xi Zheng
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiliang Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaolei Qu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Linhong Feng
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shou-Jun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
52
|
Fan H, Zhang W. Overexpression of Linc 4930556M19Rik Suppresses High Glucose-Triggered Podocyte Apoptosis, Fibrosis and Inflammation via the miR-27a-3p/Metalloproteinase 3 (TIMP3) Axis in Diabetic Nephropathy. Med Sci Monit 2020; 26:e925361. [PMID: 32896839 PMCID: PMC7500124 DOI: 10.12659/msm.925361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play vital roles in development of diabetic nephropathy (DN). The goal of our study was to investigate the functional roles of long intergenic noncoding RNA (lincRNA) 4930556M19Rik in DN. Material/Methods A DN cell model was constructed by exposing podocytes to high glucose (HG). A subcellular fraction assay was used to determine the level of 4930556M19Rik in the nucleus and cytoplasm of podocytes. Quantitative real-time polymerase chain reaction was used to evaluate expression of 4930556M19Rik and miR-27a-3p. Western blot assay was used to assessed levels of fibrosis-related proteins, podocin, and tissue inhibitor of metalloproteinase 3 (TIMP3). Flow cytometry analysis was performed to analyze cell apoptosis. Enzyme linked immunosorbent assay was used to examine secretion of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down assays were used to verify the relationship between miR-27a-3p and 4930556M19Rik or TIMP3. Results 4930556M19Rik was significantly decreased in HG-stimulated podocytes and mainly enriched in the cytoplasm of podocytes. Elevation of 4930556M19Rik hampered HG-induced cell apoptosis, fibrosis, and inflammatory in podocytes. 4930556M19Rik sponged miR-27a-3p to negatively modulate miR-27a-3p expression. MiR-27a-3p overexpression reversed the impact of 4930556M19Rik mediated cell progression in HG-induced podocytes. Moreover, TIMP3 was the target for miR-27a-3p and miR-27a-3p inhibition slowed podocyte injury by targeting TIMP3. Conclusions 4930556M19Rik overexpression slowed HG-induced podocyte injury by downregulating miR-27a-3p and upregulating TIMP3.
Collapse
Affiliation(s)
- Hong Fan
- Department of Endocrinology and Metabolism, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Weiwei Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
53
|
Mou X, Chenv JW, Zhou DY, Liu K, Chen LJ, Zhou D, Hu YB. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR‑101b by targeting TGFβRI. Mol Med Rep 2020; 22:3785-3794. [PMID: 32901868 PMCID: PMC7533486 DOI: 10.3892/mmr.2020.11486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have crucial roles in various diseases; however, the mechanisms of action underlying circRNAs in the occurrence and development of diabetic nephropathy (DN) remains largely unknown. The present study investigated the differentially expressed circRNAs in the DN mice kidney cortex using circRNA sequencing and elucidated the role of circRNAs in mesangial cells. It was revealed that 40 circRNAs were unconventionally expressed, including 18 upregulated circRNAs and 22 downregulated circRNAs. Furthermore, circ_0000491 levels were significantly augmented in both DN mice and high glucose (HG, 30 mM)-induced mouse mesangial cells (MES13 cells). Knockdown of circ_0000491 significantly suppressed the increase of vimentin, fibronectin and α-smooth muscle actin, as well as collagen type I, III and IV, whilst reversing the decrease of E-cadherin in HG-induced MES13 cells. It was further revealed that circRNA_0000491 sponged miR-101b and that miR-101b directly targets TGFβRI. In addition, the expression levels of miR-101b were negatively associated with the transcriptional level of circRNA_0000491 and miR-101b inhibitors reversed the suppression of extracellular matrix (ECM)-associated protein synthesis mediated by knocking-down circRNA_0000491. In conclusion, the present study investigated the circRNA_0000491/miR-101b/TGFβRI axis in ECM accumulation and fibrosis-associated protein expression levels of mesangial cells, which suggested that circRNA_0000491 may be beneficial for the development of an effective therapeutic target for DN.
Collapse
Affiliation(s)
- Xin Mou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Jia Wei Chenv
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Li Jun Chen
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Danyang Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong Bin Hu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
54
|
Cheng L, Cheng J, Peng W, Jiang X, Huang S. Long non-coding RNA Dlx6os1 serves as a potential treatment target for diabetic nephropathy via regulation of apoptosis and inflammation. Exp Ther Med 2020; 20:3791-3797. [PMID: 32855728 PMCID: PMC7444328 DOI: 10.3892/etm.2020.9112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the effect of long non-coding RNA (lncRNA) Dlx6os1 silencing on cell proliferation, apoptosis and fibrosis, and further explored its influence on the mRNA expression profile in mouse mesangial cells (MMCs) of a diabetic nephropathy (DN) cellular model. A DN cellular model was constructed in SV40 MES13 MMCs under high glucose conditions (30 mmol/l glucose culture). lncRNA Dlx6os1 short hairpin (sh)RNA plasmids and negative control (NC) shRNA plasmids were transfected into the MMCs of the DN cellular model as the sh-lncRNA group and sh-NC group respectively. The mRNA expression profile was determined in the sh-lncRNA and sh-NC groups. Compared with the sh-NC group, the cell proliferation, mRNA and protein expression levels of proliferative markers (cyclin D1 and proliferating cell nuclear antigen) as well as fibrosis markers (fibronectin and collagen I) were suppressed, whereas cell apoptosis was promoted in the sh-lncRNA group. The mRNA expression profile identified 423 upregulated mRNAs and 438 downregulated mRNAs in the sh-lncRNA group compared with the sh-NC group. Additionally, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the differentially expressed mRNAs were enriched in apoptosis and inflammation-related pathways. Further gene-set enrichment analysis of apoptosis and inflammation revealed that lncRNA Dlx6os1 inhibition promoted apoptosis and suppressed inflammation in MMCs of the DN cellular model. In conclusion, lncRNA Dlx6os1 may serve as a potential treatment target for DN via regulation of multiple apoptosis- and inflammation-related pathways.
Collapse
Affiliation(s)
- Li Cheng
- Department of Gynecology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Jie Cheng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
55
|
Wu X, Chen D, Yu L. The value of circulating long non-coding RNA maternally expressed gene 3 as a predictor of higher acute respiratory distress syndrome risk and 28-day mortality in sepsis patients. J Clin Lab Anal 2020; 34:e23488. [PMID: 32844492 PMCID: PMC7676220 DOI: 10.1002/jcla.23488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Objective This study was to evaluate the potential of long non‐coding RNA maternally expressed gene 3 (lncRNA MEG3) in predicting acute respiratory distress syndrome (ARDS) risk and its correlation with prognosis in sepsis patients. Methods The plasma samples were obtained from 112 sepsis patients within 24 hours after admission and 100 healthy controls (HCs) at enrollment. The lncRNA MEG3 expression in plasma samples was determined by RT‐qPCR. In sepsis patients, ARDS occurrence was assessed based on Berlin definition of ARDS and 28‐day mortality risk was evaluated. Results LncRNA MEG3 expression was increased in sepsis patients compared with HCs. During 28‐day duration, 30 sepsis patients occurred ARDS and 82 sepsis patients did not occur ARDS. LncRNA MEG3 expression was elevated in ARDS sepsis patients compared with non‐ARDS sepsis patients, then the following receiver‐operating characteristic (ROC) curve analysis disclosed that lncRNA MEG3 predicted ARDS risk (area under the curve (AUC) = 0.775), which was further validated as an independent risk factor by multivariate logistic regression. Furthermore, lncRNA MEG3 was positively correlated with chronic obstructive pulmonary disease, respiratory infection, acute physiology and chronic health evaluation II score, sequential organ failure assessment score, white blood cell, and C‐reactive protein, while negatively correlated with albumin in sepsis patients. Additionally, lncRNA MEG3 was elevated in 28‐day deaths compared with 28‐day survivors, and it predicted 28‐day mortality risk in sepsis patients (AUC = 0.708) by ROC curve analysis. Conclusion LncRNA MEG3 might represent as a valuable biomarker for individualizing prevention strategies against ARDS and improving prognosis in sepsis.
Collapse
Affiliation(s)
- Xiaoling Wu
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Chen
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yu
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
56
|
Emerging Roles of Long Non-Coding RNAs in Renal Fibrosis. Life (Basel) 2020; 10:life10080131. [PMID: 32752143 PMCID: PMC7460436 DOI: 10.3390/life10080131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is an unavoidable consequence that occurs in nearly all of the nephropathies. It is characterized by a superabundant deposition and accumulation of extracellular matrix (ECM). All compartments in the kidney can be affected, including interstitium, glomeruli, vasculature, and other connective tissue, during the pathogenesis of renal fibrosis. The development of this process eventually causes destruction of renal parenchyma and end-stage renal failure, which is a devastating disease that requires renal replacement therapies. Recently, long non-coding RNAs (lncRNAs) have been emerging as key regulators governing gene expression and affecting various biological processes. These versatile roles include transcriptional regulation, organization of nuclear domains, and the regulation of RNA molecules or proteins. Current evidence proposes the involvement of lncRNAs in the pathologic process of kidney fibrosis. In this review, the biological relevance of lncRNAs in renal fibrosis will be clarified as important novel regulators and potential therapeutic targets. The biology, and subsequently the current understanding, of lncRNAs in renal fibrosis are demonstrated—highlighting the involvement of lncRNAs in kidney cell function, phenotype transition, and vascular damage and rarefaction. Finally, we discuss challenges and future prospects of lncRNAs in diagnostic markers and potential therapeutic targets, hoping to further inspire the management of renal fibrosis.
Collapse
|
57
|
Xu J, Xiang P, Liu L, Sun J, Ye S. Metformin inhibits extracellular matrix accumulation, inflammation and proliferation of mesangial cells in diabetic nephropathy by regulating H19/miR-143-3p/TGF-β1 axis. J Pharm Pharmacol 2020; 72:1101-1109. [PMID: 32391614 DOI: 10.1111/jphp.13280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Metformin (MET) has protective effect on diabetic nephropathy (DN). This study aims to demystify the mechanism of MET function in DN. METHODS Mouse glomerular membrane epithelial cell line SV40-MES-13 was treated with normal or high glucose combined with or without MET. The relationships among H19, miR-143-3p and TGF-β1 were evaluated by luciferase reporter assay. MTT assay was performed to detect cell proliferation. The levels of inflammatory factors were investigated by enzyme-linked immunosorbent assay. Quantitative real-time PCR and western blot were performed to examine gene and protein expression. KEY FINDINGS H19 was up-regulated in the SV40-MES-13 cells after treated with high glucose, which was effectively repressed by MET treatment. MET promoted extracellular matrix accumulation, inflammation and proliferation in the SV40-MES-13 cells after treated with high glucose. These influences conferred by MET were abolished by H19 overexpression. H19 regulated TGF-β1 expression by sponging miR-143-3p. Furthermore, MET inhibited extracellular matrix accumulation, inflammation and proliferation by regulating H19/miR-143-3p/TGF-β1 axis. CONCLUSIONS Our studies demonstrated that the protective effect of MET on DN was attributed to the inhibition of proliferation, inflammation and ECM accumulation in mesangial cells via H19/miR-143-3p/TGF-β1 axis, which suggested that the H19/miR-143-3p/TGF-β1 axis could be a valuable target for DN therapies.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ping Xiang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Linqing Liu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianran Sun
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
58
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
59
|
Chang WW, Zhang L, Yao XM, Chen Y, Zhu LJ, Fang ZM, Zhao Y, Yao YS, Jin YL. Upregulation of long non-coding RNA MEG3 in type 2 diabetes mellitus complicated with vascular disease: a case-control study. Mol Cell Biochem 2020; 473:93-99. [PMID: 32594338 DOI: 10.1007/s11010-020-03810-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Previous studies have indicated that long non-coding RNAs (lncRNAs) were closely related to diabetes. In this study, we aimed to explore the possible role and mechanism of lncRNA MEG3 in the occurrence and development of type 2 diabetes mellitus (T2DM) and its vascular complications. A case-control study involving 115 subjects was conducted, including 53 T2DM patients (37 patients with vascular complication and 16 patients without vascular complications) and 62 healthy subjects. We performed real-time polymerase chain reaction (RT-PCR) analysis of the lncRNA MEG3 and miR-146a levels in peripheral blood mononuclear cells (PBMCs) in the 115 samples. We found that the expression of lncRNA MEG3 was upregulated in the T2DM patients with vascular complication (DC group) compared with T2DM patients without vascular complication (D group) (P < 0.05) and the control group (P < 0.01). miR-146a levels in DC group were significantly lower compared with control group. There was a significant positive correlation between the expression of lncRNA MEG3 and glucose (GLU) (r = 0.301, P = 0.0011) and hemoglobin A1C (HbA1c) (r = 0.477, P = 0.0006). Our study suggests MEG3 may play as an important role in progression of diabetes-related vascular complications, contributing to a novel understanding of pathogenesis and prognosis for diabetes and its complications.
Collapse
Affiliation(s)
- Wei-Wei Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Liu Zhang
- Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, Anhui, China
| | - Xin-Ming Yao
- Department of Endocrine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Li-Jun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Zheng-Mei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Ying Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Ying-Shui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China.
| | - Yue-Long Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China.
| |
Collapse
|
60
|
Ala U. Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story. Cells 2020; 9:E1574. [PMID: 32605220 PMCID: PMC7407898 DOI: 10.3390/cells9071574] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNA molecules, are responsible for RNA silencing and post-transcriptional regulation of gene expression. They can mediate a fine-tuned crosstalk among coding and non-coding RNA molecules sharing miRNA response elements (MREs). In a suitable environment, both coding and non-coding RNA molecules can be targeted by the same miRNAs and can indirectly regulate each other by competing for them. These RNAs, otherwise known as competing endogenous RNAs (ceRNAs), lead to an additional post-transcriptional regulatory layer, where non-coding RNAs can find new significance. The miRNA-mediated interplay among different types of RNA molecules has been observed in many different contexts. The analyses of ceRNA networks in cancer and other pathologies, as well as in other physiological conditions, provide new opportunities for interpreting omics data for the field of personalized medicine. The development of novel computational tools, providing putative predictions of ceRNA interactions, is a rapidly growing field of interest. In this review, I discuss and present the current knowledge of the ceRNA mechanism and its implications in a broad spectrum of different pathologies, such as cardiovascular or autoimmune diseases, cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, 10124 Turin, Italy
| |
Collapse
|
61
|
Pielok A, Marycz K. Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance. Int J Mol Sci 2020; 21:ijms21114182. [PMID: 32545342 PMCID: PMC7313458 DOI: 10.3390/ijms21114182] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
In the recent years, the prevalence of metabolic conditions such as type 2 Diabetes (T2D) and metabolic syndrome (MetS) raises. The impairment of liver metabolism resulting in hepatic insulin resistance is a common symptom and a critical step in the development of T2D and MetS. The liver plays a crucial role in maintaining glucose homeostasis. Hepatic insulin resistance can often be identified before other symptoms arrive; therefore, establishing methods for its early diagnosis would allow for the implementation of proper treatment in patients before the disease develops. Non-coding RNAs such as miRNAs (micro-RNA) and lncRNAs (long-non-coding RNA) are being recognized as promising novel biomarkers and therapeutic targets—especially due to their regulatory function. The dysregulation of miRNA and lncRNA activity has been reported in the livers of insulin-resistant patients. Many of those transcripts are involved in the regulation of the hepatic insulin signaling cascade. Furthermore, for several miRNAs (miR-802, miR-499-5p, and miR-122) and lncRNAs (H19 imprinted maternally expressed transcript (H19), maternally expressed gene 3 (MEG3), and metastasis associated lung adenocarcinoma transcript 1 (MALAT1)), circulating levels were altered in patients with prediabetes, T2D, and MetS. In the course of this review, the role of the aforementioned ncRNAs in hepatic insulin signaling cascade, as well as their potential application in diagnostics, is discussed. Overall, circulating ncRNAs are precise indicators of hepatic insulin resistance in the development of metabolic diseases and could be applied as early diagnostic and/or therapeutic tools in conditions associated with insulin resistance.
Collapse
Affiliation(s)
- Ariadna Pielok
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence: (A.P.); (K.M.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11 St., 55-124 Malin, Poland
- Collegium Medicum, Cardinal Stefan Wyszyński University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland
- Correspondence: (A.P.); (K.M.)
| |
Collapse
|
62
|
Rezaei T, Amini M, Hashemi ZS, Mansoori B, Rezaei S, Karami H, Mosafer J, Mokhtarzadeh A, Baradaran B. microRNA-181 serves as a dual-role regulator in the development of human cancers. Free Radic Biol Med 2020; 152:432-454. [PMID: 31899343 DOI: 10.1016/j.freeradbiomed.2019.12.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) as the regulatory short noncoding RNAs are involved in a wide array of cellular and molecular processes. They negatively regulate gene expression and their dysfunction is correlated with cancer development through modulation of multiple signaling pathways. Therefore, these molecules could be considered as novel biomarkers and therapeutic targets for more effective management of human cancers. Recent studies have demonstrated that the miR-181 family is dysregulated in various tumor tissues and plays a pivotal role in carcinogenesis. They have been shown to act as oncomirs or tumor suppressors considering their mRNA targets and to be involved in cell proliferation, apoptosis, autophagy, angiogenesis and drug resistance. Additionally, these miRNAs have been demonstrated to exert their regulatory effects through modulating multiple signaling pathways including PI3K/AKT, MAPK, TGF-b, Wnt, NF-κB, Notch pathways. Given that, in this review, we briefly summarise the recent studies that have focused on the roles of miRNA-181 family as the multifunctional miRNAs in tumorigenesis and cancer development. These miRNAs may serve as diagnostic and prognostic biomarkers or therapeutic targets in human cancer gene therapy.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sadat Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
| | - Sarah Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
63
|
Abstract
Sepsis is a dysregulated systemic reaction to a common infection, that can cause life-threatening organ dysfunction. Over the last decade, the mortality rate of patients with sepsis has decreased as long as patients are treated according to the recommendations of the Surviving Sepsis Campaign, but is still unacceptably high. Patients at risk of sepsis should therefore be identified prior to the onset of organ dysfunction and this requires a rapid diagnosis and a prompt initiation of treatment. Unfortunately, there is no gold standard for the diagnosis of sepsis and traditional standard culture methods are time-consuming. Recently, in order to overcome these limitations, biomarkers which could help in predicting the diagnosis and prognosis of sepsis, as well as being useful for monitoring the response to treatments, have been identified. In addition, recent advances have led to the development of newly identified classes of biomarkers such as microRNAs, long-non-coding RNAs, and the human microbiome. This review focuses on the latest information on biomarkers that can be used to predict the diagnosis and prognosis of sepsis.
Collapse
Affiliation(s)
- Mi Hee Kim
- Division of Infectious Disease, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hyun Choi
- Division of Infectious Disease, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
64
|
Na L, Ding H, Xing E, Gao J, Liu B, Wang H, Yu J, Yu C. Lnc-MEG3 acts as a potential biomarker for predicting increased disease risk, systemic inflammation, disease severity, and poor prognosis of sepsis via interacting with miR-21. J Clin Lab Anal 2020; 34:e23123. [PMID: 31907972 PMCID: PMC7171338 DOI: 10.1002/jcla.23123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the correlations of long non-coding RNA maternally expressed gene 3 (lnc-MEG3), microRNA (miR)-21, and lnc-MEG3/miR-21 axis with disease risk, inflammation, disease severity, and 28-day mortality of sepsis. METHODS Totally, 219 sepsis patients and 219 health controls (HCs) were enrolled. Plasma samples were obtained from sepsis patients within 24 hours after admission and from HCs on enrollment to detect lnc-MEG3 and miR-21 expressions by real-time quantitative polymerase chain reaction. RESULTS The lnc-MEG3 expression and lnc-MEG3/miR-21 axis were increased, while miR-21 expression was decreased in sepsis patients compared with HCs. Lnc-MEG3 (area under the curve (AUC): 0.887, 95% confidence interval (CI): 0.856-0.917) and lnc-MEG3/miR-21 axis (AUC: 0.934, 95% CI: 0.909-0.958) had good values for predicting elevated sepsis risk, while miR-21 (AUC: 0.801, 95% CI: 0.758-0.844) presented a good predictive value for reduced sepsis risk. Furthermore, lnc-MEG3 expression and lnc-MEG3/miR-21 axis positively correlated with, whereas miR-21 expression negatively correlated with acute pathologic and chronic health evaluation II, sequential organ failure assessment score, serum creatinine, C-reactive protein, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-17 in sepsis patients. Additionally, lnc-MEG3 (AUC: 0.704, 95% CI: 0.626-0.783) and lnc-MEG3/miR-21 axis (AUC: 0.669, 95% CI: 0.589-0.750) exhibited acceptable values in predicting higher 28-day mortality risk, while miR-21 (AUC: 0.588, 95% CI: 0.505-0.672) presented a poor predictive value for lower 28-day mortality risk in sepsis patients. CONCLUSION Lnc-MEG3 might serve as a potential biomarker for the development, progression, and prognosis prediction of sepsis via interacting with miR-21.
Collapse
Affiliation(s)
- Lei Na
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Huajie Ding
- Ultrasonography Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Enhong Xing
- Clinical Laboratory, Southern District of Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jun Gao
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Bin Liu
- Radiology Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Huarong Wang
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jian Yu
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Changyu Yu
- Hand and Foot Surgery Department, Southern District of Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
65
|
LNCRNA CDKN2B-AS1 regulates mesangial cell proliferation and extracellular matrix accumulation via miR-424-5p/HMGA2 axis. Biomed Pharmacother 2020; 121:109622. [PMID: 31707340 DOI: 10.1016/j.biopha.2019.109622] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previous study has demonstrated that long noncoding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) was abnormally expressed in diabetic nephropathy (DN). However, the underlying mechanism that allows CDKN2B-AS1 in the progression of DN remains to be further elucidated. METHODS Peripheral blood cells of 24 diabetes patients with DN and 20 without DN were collected. Human glomerular mesangial cells (HGMC) were cultured in high glucose or low glucose medium. The expression levels of CDKN2B-AS1, microRNA (miR)-424-5p and high mobility group AT hook 2 (HMGA2) were detected by quantitative real-time polymerase chain reaction or western blot. The target association between miR-424-5p and CDKN2B-AS1 or HMGA2 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Cell proliferation, extracellular matrix (ECM) accumulation and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and western blot, respectively. RESULTS CDKN2B-AS1 expression was up-regulated and miR-424-5p level was down-regulated in peripheral blood of DN patients and high glucose-treated HGMC cells. CDKN2B-AS1 was validated as a sponge of miR-424-5p. Silence of CDKN2B-AS1 repressed proliferation and ECM accumulation by increasing miR-424-5p. HMGA2 was a target of miR-424-5p and miR-424-5p overexpression inhibited proliferation, ECM accumulation and PI3K/AKT pathway by targeting HMGA2. Moreover, knockdown of CDKN2B-AS1 inhibited HMGA2 expression and PI3K/AKT pathway by increasing miR-424-5p. CONCLUSION Knockdown of CDKN2B-AS1 suppressed proliferation, ECM accumulation and PI3K/AKT signaling by increasing miR-424-5p and decreasing HMGA2 in high glucose-treated HMGC cells.
Collapse
|
66
|
Lv J, Wu Y, Mai Y, Bu S. Noncoding RNAs in Diabetic Nephropathy: Pathogenesis, Biomarkers, and Therapy. J Diabetes Res 2020; 2020:3960857. [PMID: 32656264 PMCID: PMC7327582 DOI: 10.1155/2020/3960857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
The correlation between diabetes and systematic well-being on human life has long established. As a common complication of diabetes, the prevalence of diabetic nephropathy (DN) has been increasing globally. DN is known to be a major cause of end-stage kidney disease (ESKD). Till now, the molecular mechanisms for DN have not been fully explored and the effective therapies are still lacking. Noncoding RNAs are a class of RNAs produced by genome transcription that cannot be translated into proteins. It has been documented that ncRNAs participate in the pathogenesis of DN by regulating inflammation, apoptosis, autophagy, cell proliferation, and other pathological processes. In this review, the pathological roles and diagnostic and therapeutic potential of three types of ncRNAs (microRNA, long noncoding RNA, and circular RNA) in the progression of DN are summarized and illustrated.
Collapse
Affiliation(s)
- Jiarong Lv
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Yu Wu
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Shizhong Bu
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| |
Collapse
|
67
|
Xie C, Wu W, Tang A, Luo N, Tan Y. lncRNA GAS5/miR-452-5p Reduces Oxidative Stress and Pyroptosis of High-Glucose-Stimulated Renal Tubular Cells. Diabetes Metab Syndr Obes 2019; 12:2609-2617. [PMID: 31849505 PMCID: PMC6910862 DOI: 10.2147/dmso.s228654] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal failure worldwide. lncRNAs are demonstrated to improve the DN by changing the expression of miRNAs. This study was aimed to investigate the effect of lncRNA GAS5/miR-452-5p on the inflammation, oxidative stress and pyroptosis of high-glucose-induced renal tubular cells. METHODS HK-2 cells were induced by HG to simulate DN cells. RT-qPCR analysis confirmed the transfection effects and detected the expression of GAS5, NLRP3, caspase1, IL-1β, pro-caspase1, pro-IL-1β, GSDMD-N and miR-452-5p. Western blot analysis determined the protein expression of NLRP3, caspase1, IL-1β, pro-caspase1, pro-IL-1β and GSDMD-N. The expression of GSDMD-N was also verified by immunofluorescence. The levels of TNF-α, IL-6, MCP-1, ROS, MDA and SOD were measured by commercial assay kits, respectively. Dual-luciferase reporter assay indicated that GAS5 could combine with miR-452-5p. RESULTS GAS5 expression was decreased in HG-induced HK-2 cells. GAS5 overexpression could decrease the levels of TNF-α, IL-6, MCP-1, ROS and MDA and increase the levels of SOD. Moreover, GAS5 overexpression suppressed the expression of NLRP3, caspase1, IL-1β and GSDMD-N, and the results of immunofluorescence verified the above results. miR-452-5p interference could cause the same changes as GAS5 overexpression for HG-induced HK-2 cells, and GAS5 inhibition could reverse the effect of miR-452-5p interference. CONCLUSION GAS5 overexpression inhibited the inflammation, oxidative stress and pyroptosis of HG-induced renal tubular cells by downregulating the expression of miR-452-5p.
Collapse
Affiliation(s)
- Cuisong Xie
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Weiling Wu
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Ainan Tang
- Department of Endocrinology, Chenzhou 3rd People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Ning Luo
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Yanfei Tan
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| |
Collapse
|
68
|
Competing endogenous network analysis identifies lncRNA Meg3 activates inflammatory damage in UVB induced murine skin lesion by sponging miR-93-5p/epiregulin axis. Aging (Albany NY) 2019; 11:10664-10683. [PMID: 31761787 PMCID: PMC6914409 DOI: 10.18632/aging.102483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
In this study, we obtained the RNA expression data of murine skin tissues of control, and UVB irradiated groups. After the re-annotation of lncRNAs, a gene expression similarity analysis was done by WGCNA. The target mRNA prediction of lncRNAs, miRNAs, and ceRNA regulatory networks were constructed by five lncRNAs, 14 miRNAs and 54 mRNAs, respectively. Based on the ceRNA network of UVB-induced skin lesions, it was evident that the dysregulation of Meg3 has critical effects on the UVB-induced inflammatory lesion of murine skin tissues. The overexpression of Meg3 after UVB irradiation was observed in primary murine skin fibroblasts, and the up-regulated Meg3 expression was related to the activation of the inflammatory cytokines. These functional experiments demonstrated that the RNA silencing of Meg3 in murine skin fibroblasts could suppress the expression of the cytokines (in vitro) and UVB-induced skin lesions (in vivo). Moreover, the Meg3 functioned as a competing endogenous RNA (ceRNA) that acted as a sponge for miR-93-5p and thereby modulated the expression of Epiregulin (Ereg). Our results proved that Meg3 was involved in UVB-induced skin inflammation and that the ceRNA networks, which includes miR-93-5p and Ereg, could prove to be a potential therapeutic target for UVB-induced skin damage.
Collapse
|
69
|
Li Y, Huang D, Zheng L, Cao H, Gao Y, Yang Y, Fan Z. Retracted Article: Long non-coding RNA TUG1 alleviates high glucose induced podocyte inflammation, fibrosis and apoptosis in diabetic nephropathy via targeting the miR-27a-3p/E2F3 axis. RSC Adv 2019; 9:37620-37629. [PMID: 35542278 PMCID: PMC9075754 DOI: 10.1039/c9ra06136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD) in developed countries.
Collapse
Affiliation(s)
- Yang Li
- Department of Nephropathy and Rheumatology
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital
- Haikou
- China
| | - Denggao Huang
- Department of Central Lab
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital
- Haikou
- China
| | - Linlin Zheng
- Department of Central Lab
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital
- Haikou
- China
| | - Hui Cao
- Department of Central Lab
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital
- Haikou
- China
| | - Yuanhui Gao
- Department of Central Lab
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital
- Haikou
- China
| | - Yongmei Yang
- Department of Nephropathy and Rheumatology
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital
- Haikou
- China
| | - Zhongcheng Fan
- Department of Orthopedic
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital
- Haikou
- China
| |
Collapse
|