51
|
Correia SC, Perry G, Castellani R, Moreira PI. Is exercise-in-a-bottle likely to proffer new insights into Alzheimer's disease? J Neurochem 2013; 127:4-6. [PMID: 24074055 DOI: 10.1111/jnc.12406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sónia C Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
52
|
Abstract
Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease (AD) because of its neurotoxicity and capacity to form characteristic insoluble deposits known as senile plaques. Aβ derives from amyloid-β protein precursor (AβPP), whose proteolytic processing generates several fragments including Aβ peptides of various lengths. The normal function of AβPP and its fragments remains poorly understood. While some fragments have been suggested to have a function in normal physiological cellular processes, Aβ has been widely considered as a "garbage" fragment that becomes toxic when it accumulates in the brain, resulting in impaired synaptic function and memory. Aβ is produced and released physiologically in the healthy brain during neuronal activity. In the last 10 years, we have been investigating whether Aβ plays a physiological role in the brain. We first demonstrated that picomolar concentrations of a human Aβ42 preparation enhanced synaptic plasticity and memory in mice. Next, we investigated the role of endogenous Aβ in healthy murine brains and found that treatment with a specific antirodent Aβ antibody and an siRNA against murine AβPP impaired synaptic plasticity and memory. The concurrent addition of human Aβ42 rescued these deficits, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal synaptic plasticity and memory to occur. Furthermore, the effect of both exogenous and endogenous Aβ was seen to be mediated by modulation of neurotransmitter release and α7-nicotinic receptors. These findings need to be taken into consideration when designing novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | |
Collapse
|
53
|
Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS, Balin BJ. Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain. BMC Neurosci 2010; 11:121. [PMID: 20863379 PMCID: PMC2949767 DOI: 10.1186/1471-2202-11-121] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/23/2010] [Indexed: 01/08/2023] Open
Abstract
Background Sporadic late-onset Alzheimer's disease (AD) appears to evolve from an interplay between genetic and environmental factors. One environmental factor that continues to be of great interest is that of Chlamydia pneumoniae infection and its association with late-onset disease. Detection of this organism in clinical and autopsy samples has proved challenging using a variety of molecular and histological techniques. Our current investigation utilized immunohistochemistry with a battery of commercially available anti-C. pneumoniae antibodies to determine whether C. pneumoniae was present in areas typically associated with AD neuropathology from 5 AD and 5 non-AD control brains. Results Immunoreactivity for C. pneumoniae antigens was observed both intracellularly in neurons, neuroglia, endothelial cells, and peri-endothelial cells, and extracellularly in the frontal and temporal cortices of the AD brain with multiple C. pneumoniae-specific antibodies. This immunoreactivity was seen in regions of amyloid deposition as revealed by immunolabeling with two different anti-beta amyloid antibodies. Thioflavin S staining, overlaid with C. pneumoniae immunolabeling, demonstrated no direct co-localization of the organism and amyloid plaques. Further, the specificity of C. pneumoniae labeling of AD brain sections was demonstrated using C. pneumoniae antibodies pre-absorbed against amyloid β 1-40 and 1-42 peptides. Conclusions Anti-C. pneumoniae antibodies, obtained commercially, identified both typical intracellular and atypical extracellular C. pneumoniae antigens in frontal and temporal cortices of the AD brain. C. pneumoniae, amyloid deposits, and neurofibrillary tangles were present in the same regions of the brain in apposition to one another. Although additional studies are required to conclusively characterize the nature of Chlamydial immunoreactivity in the AD brain, these results further implicate C. pneumoniae infection with the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Christine J Hammond
- Pathology/Microbiology/Immunology and Forensic Medicine Department, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Tizon B, Ribe EM, Mi W, Troy CM, Levy E. Cystatin C protects neuronal cells from amyloid-beta-induced toxicity. J Alzheimers Dis 2010; 19:885-94. [PMID: 20157244 PMCID: PMC2889175 DOI: 10.3233/jad-2010-1291] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple studies suggest that cystatin C (CysC) has a role in Alzheimer's disease (AD) and a decrease in CysC secretion is linked to the disease in patients with a polymorphism in the CysC gene. CysC binds amyloid-beta (Abeta) and inhibits formation of Abeta fibrils and oligomers both in vitro and in mouse models of amyloid deposition. Here we studied the effect of CysC on cultured primary hippocampal neurons and a neuronal cell line exposed to either oligomeric or fibrillar cytotoxic forms of Abeta. The extracellular addition of the secreted human CysC together with preformed either oligomeric or fibrillar Abeta increased cell survival. While CysC inhibits Abeta aggregation, it does not dissolve preformed Abeta fibrils or oligomers. Thus, CysC has multiple protective effects in AD, by preventing the formation of the toxic forms of Abeta and by direct protection of neuronal cells from Abeta toxicity. Therapeutic manipulation of CysC levels, resulting in slightly higher concentrations than physiological could protect neuronal cells from cell death in AD.
Collapse
Affiliation(s)
- Belen Tizon
- Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Elena M. Ribe
- Departments of Pathology, Cell Biology and Neurology, Taub Center for the Study of Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Weiqian Mi
- Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Carol M. Troy
- Departments of Pathology, Cell Biology and Neurology, Taub Center for the Study of Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Efrat Levy
- Departments of Pharmacology and Psychiatry, New York University School of Medicine, Orangeburg, NY 10962, USA
- Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| |
Collapse
|
55
|
Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Med 2009; 12:13-26. [PMID: 19757208 DOI: 10.1007/s12017-009-8091-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/25/2009] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid beta-protein (A beta) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble A beta disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synaptic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble A beta that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of A beta have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble A beta, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of A beta and that targeting muscarinic receptors can indirectly modulate A beta's actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Biotechnology Building and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
56
|
Affiliation(s)
- David A Drachman
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
57
|
Abstract
Scintigraphic imaging of radioiodinated serum amyloid P-component is a proven method for the clinical detection of peripheral amyloid deposits (Hawkins et al., 1990). However, the inability to perform comparably high-resolution studies in experimental animal models of amyloid disease has impacted not only basic studies into the pathogenesis of amyloidosis but also in the preclinical in vivo evaluation of potential anti-amyloid therapeutic agents. We have developed microimaging technologies, implemented novel computational methods, and established protocols to generate high-resolution images of amyloid deposits in mice. (125)I-labeled serum amyloid P component (SAP) and an amyloid-fibril reactive murine monoclonal antibody (designated 11-1F4) have been used successfully to acquire high-resolution single photon emission computed tomographic (SPECT) images that, when fused with x-ray computed tomographic (CT) data, have provided precise anatomical localization of secondary (AA) and primary (AL) amyloid deposits in mouse models of these diseases. This chapter will provide detailed protocols for the radioiodination and purification of amyloidophilic proteins and the generation of mouse models of AA and AL amyloidosis. A brief description of the available hardware and the parameters used to acquire high-resolution microSPECT and CT images is presented, and the tools used to perform image reconstruction and visualization that permit the analysis and presentation of image data are discussed. Finally, we provide established methods for measuring organ- and tissue-specific activities with which to corroborate the microSPECT and CT images.
Collapse
Affiliation(s)
- Jonathan S. Wall
- Human Immunology & Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA ; Tel: (865) 544 9165; Fax: (865) 544 6865 ; Tel: (865) 544 9165; Fax: (865) 544 6865
| | - Michael J. Paulus
- Siemens Medical Solutions Molecular Imaging, LLC, 810 Innovation Drive, Knoxville, TN, USA ; Tel: (865) 218 1621 ; Tel: (865) 218 1642
| | - Shaun Gleason
- Siemens Medical Solutions Molecular Imaging, LLC, 810 Innovation Drive, Knoxville, TN, USA ; Tel: (865) 218 1621 ; Tel: (865) 218 1642
| | - Jens Gregor
- Department of Computer Science, University of Tennessee, 1122 Volunteer Blvd., Suite 203, Knoxville, TN 37996-3450 ; Tel: (865) 974 4399; Fax (865) 974 4404
| | - Alan Solomon
- Human Immunology & Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA ; Tel: (865) 544 9165; Fax: (865) 544 6865 ; Tel: (865) 544 9165; Fax: (865) 544 6865
| | - Stephen J. Kennel
- Oak Ridge National Laboratory, Life Sciences Division, Bldg 4500S, Rm F150, Oak Ridge, TN ; Tel: (865) 574 0825; Fax: (865) 576-7651
| |
Collapse
|
58
|
Ledesma MD, Dotti CG. Amyloid excess in Alzheimer's disease: What is cholesterol to be blamed for? FEBS Lett 2006; 580:5525-32. [PMID: 16814780 DOI: 10.1016/j.febslet.2006.06.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
A link between alterations in cholesterol homeostasis and Alzheimer's disease (AD) is nowadays widely accepted. However, the molecular mechanism/s underlying such link remain unclear. Numerous experimental evidences support the view that changes in neuronal membrane cholesterol levels and/or subcellular distribution determine the aberrant accumulation of the amyloid peptide in the disease. Still, this view comes from rather contradictory data supporting the existence of either high or low brain cholesterol content. This is of particular concern considering that therapeutical strategies aimed to reduce cholesterol levels are already being tested in humans. Here, we review the molecular mechanisms proposed and discuss the perspectives they open.
Collapse
Affiliation(s)
- Maria Dolores Ledesma
- Department of Molecular and Developmental Genetics, Flanders Interuniversity Institute of Biotechnology, VIB11, and Catholic University of Leuven, Campus Gasthuisberg, Heerstraat 49, 3000 Leuven, Belgium.
| | | |
Collapse
|
59
|
Bishop GM, Robinson SR. The amyloid paradox: amyloid-beta-metal complexes can be neurotoxic and neuroprotective. Brain Pathol 2005; 14:448-52. [PMID: 15605992 PMCID: PMC8095825 DOI: 10.1111/j.1750-3639.2004.tb00089.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Senile plaques in the brains of people with Alzheimer disease (AD) are primarily composed of the amyloid-beta (Abeta) peptide and contain substantially elevated levels of iron, copper and zinc. These metals bind to Abeta and have been reported to increase the toxicity of Abeta to cultured neurones. Other reports have demonstrated that Abeta can reduce the neurotoxicity of metal ions, suggesting that the interaction can, under some circumstances, be protective. To investigate these apparently conflicting results, human Abeta1-42 was co-injected with iron, copper or zinc (at the concentrations found in plaques) into rat cerebral cortex, and the resulting numbers of dying neurones were compared. It was found that Abeta complexed with either iron or zinc was more toxic than Abeta alone. In contrast, Abeta-copper complexes were not neurotoxic. Surprisingly, we observed that when iron or copper were combined with Abeta, the neurotoxicity of these metals was substantially reduced, suggesting that Abeta may help to limit the toxicity of redox-active metal ions, thereby assisting the antioxidant defence of the brain. Thus paradoxical effects occur when Abeta complexes with metal ions, where Abeta-metal complexes are capable of being neurotoxic and neuroprotective.
Collapse
Affiliation(s)
- Glenda M Bishop
- School of Psychology, Psychiatry and Psychological Medicine, Monash University, Australia.
| | | |
Collapse
|