51
|
Zhu M, Meng P, Ling X, Zhou L. Advancements in therapeutic drugs targeting of senescence. Ther Adv Chronic Dis 2020; 11:2040622320964125. [PMID: 33133476 PMCID: PMC7576933 DOI: 10.1177/2040622320964125] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Aging leads to a high burden on society, both medically and economically. Cellular senescence plays an essential role in the initiation of aging and age-related diseases. Recent studies have highlighted the therapeutic value of senescent cell deletion in natural aging and many age-related disorders. However, the therapeutic strategies for manipulating cellular senescence are still at an early stage of development. Among these strategies, therapeutic drugs that target cellular senescence are arguably the most highly anticipated. Many recent studies have demonstrated that a variety of drugs exhibit healthy aging effects. In this review, we summarize different types of drugs promoting healthy aging – such as senolytics, senescence-associated secretory phenotype (SASP) inhibitors, and nutrient signaling regulators – and provide an update on their potential therapeutic merits. Taken together, our review synthesizes recent advancements in the therapeutic potentialities of drugs promoting healthy aging with regard to their clinical implications.
Collapse
Affiliation(s)
- Mingsheng Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Ave, Guangzhou 510515, China
| |
Collapse
|
52
|
Flavonoids in adipose tissue inflammation and atherosclerosis: one arrow, two targets. Clin Sci (Lond) 2020; 134:1403-1432. [PMID: 32556180 DOI: 10.1042/cs20200356] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Collapse
|
53
|
Soy intake and chronic disease risk: findings from prospective cohort studies in Japan. Eur J Clin Nutr 2020; 75:890-901. [PMID: 32917961 DOI: 10.1038/s41430-020-00744-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022]
Abstract
There has been much interest in the potential role of soy in reducing the risk of chronic diseases. Soy foods are uniquely rich in isoflavones, a fact that has triggered much research including intervention studies. However, there have been few long-term prospective observational studies that include disease itself as an outcome. High intake of soy foods is intrinsic to the Japanese diet, which can be advantageous for conducting such studies in Japan. The present report reviews the findings from Japanese prospective cohort studies on soy intake and the risk of cardiovascular diseases, cancer, type 2 diabetes, osteoporosis, menopausal symptoms, and dementia. The results suggest a beneficial role of soy in several chronic diseases, but they are not without controversy. Discrepancies have been observed in the findings of studies of Japanese or other Asians as compared to those of non Asians. This review discusses the issues to be explored in future studies.
Collapse
|
54
|
Massot-Cladera M, Azagra-Boronat I, Franch À, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ. Gut Health-Promoting Benefits of a Dietary Supplement of Vitamins with Inulin and Acacia Fibers in Rats. Nutrients 2020; 12:E2196. [PMID: 32718017 PMCID: PMC7468733 DOI: 10.3390/nu12082196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The study's objective was to ascertain whether a nutritional multivitamin and mineral supplement enriched with two different dietary fibers influences microbiota composition, mineral absorption, and some immune and metabolic biomarkers in adult rats. Nine-week-old Wistar rats were randomly assigned into four groups: the reference group; the group receiving a daily supplement based on a food matrix with proteins, vitamins, and minerals; and two other groups receiving this supplement enriched with inulin (V + I) or acacia (V + A) fiber for four weeks. Microbiota composition was determined in cecal content and mineral content in fecal, blood, and femur samples. Intestinal IgA concentration, hematological, and biochemical variables were evaluated. Both V + I and V + A supplementations increased Firmicutes and Actinobacteria phyla, which were associated with a higher presence of Lactobacillus and Bifidobacterium spp. V + A supplementation increased calcium, magnesium, phosphorus, and zinc concentrations in femur. V + I supplementation increased the fecal IgA content and reduced plasma total cholesterol and uric acid concentration. Both fiber-enriched supplements tested herein seem to be beneficial to gut-health, although differently.
Collapse
Affiliation(s)
- Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
55
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Zhao R, Yi M, Wan Q, Du L, Zhou Y. Soy and Isoflavone Consumption and Multiple Health Outcomes: Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies and Randomized Trials in Humans. Mol Nutr Food Res 2020; 64:e1900751. [PMID: 31584249 DOI: 10.1002/mnfr.201900751] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/02/2019] [Indexed: 12/14/2022]
Abstract
SCOPE To assess the existing evidence of associations between consumption of soy and isoflavone and multiple health outcomes. METHODS AND RESULTS This is an umbrella review of meta-analyses and systematic reviews of randomized trials and observational studies in humans. 114 Meta-analyses and systematic reviews are identified with 43 unique outcomes. Soy and isoflavone consumption seems more beneficial than harmful for a series of health outcomes. Beneficial associations are identified for cancers, cardiovascular disease, gynecological, metabolic, musculoskeletal, endocrine, neurological, and renal outcomes, particularly in perimenopausal women. Harmful association is only found for gastric cancer (RR: 1.17, 95% CI: 1.02-1.36) for high intake of miso soup (1-5 cups per day) in male. CONCLUSION Generally, soy and isoflavone consumption is more beneficial than harmful. The results herein support promoting soy intake as part of a healthy diet. Randomized controlled trials are necessary to confirm this finding.
Collapse
Affiliation(s)
- Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Wu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xia
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengshi Yi
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianyi Wan
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Du
- Chinese Evidence-based Medicine/Cochrane Center, Chengdu, 610041, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
56
|
Cui C, Birru RL, Snitz BE, Ihara M, Kakuta C, Lopresti BJ, Aizenstein HJ, Lopez OL, Mathis CA, Miyamoto Y, Kuller LH, Sekikawa A. Effects of soy isoflavones on cognitive function: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2020; 78:134-144. [PMID: 31504836 PMCID: PMC7808187 DOI: 10.1093/nutrit/nuz050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CONTEXT The results of preclinical and observational studies support the beneficial effect of soy isoflavones on cognition. OBJECTIVE This review aimed to evaluate the effects of soy isoflavones on cognition in adults. DATA SOURCES The PUBMED, EMBASE, Ovid Medline, Cochrane Library, and clinicaltrials.gov databases were searched. STUDY SELECTION Two researchers independently screened 1955 records, using the PICOS criteria: participants were adults; intervention was dietary sources with soy isoflavones or isolated soy isoflavones; comparator was any comparator; outcome was cognitive function; study type was randomized controlled trials (RCTs). A third researcher was consulted to resolve any discrepancies. Sixteen RCTs were included and their quality assessed. DATA EXTRACTION Information on study design, characteristics of participants, and outcomes was extracted. PRISMA guidelines were followed. DATA ANALYSIS A random-effects meta-analysis was used to pool estimates across studies. In the 16 RCTs (1386 participants, mean age = 60 y), soy isoflavones were found to improve overall cognitive function (standardized mean difference [SMD], 0.19; 95% confidence interval [CI], 0.07-0.32) and memory (SMD, 0.15; 95%CI, 0.03-0.26). CONCLUSION The results showed that soy isoflavones may improve cognitive function in adults. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42018082070.
Collapse
Affiliation(s)
- Chendi Cui
- C. Cui, L. Kuller, and A. Sekikawa are with the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rahel L Birru
- R. Birru is with the Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth E Snitz
- B. Snitz and O. Lopez are with the Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Masafumi Ihara
- M. Ihara, A. Higashiyama, C. Kakuta, and Y. Miyamoto are with the National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Chikage Kakuta
- M. Ihara, A. Higashiyama, C. Kakuta, and Y. Miyamoto are with the National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Brian J Lopresti
- B. Lopresti and C. Mathis are with the Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Howard J Aizenstein
- H. Aizenstein is with the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oscar L Lopez
- B. Snitz and O. Lopez are with the Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- B. Lopresti and C. Mathis are with the Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoshihiro Miyamoto
- M. Ihara, A. Higashiyama, C. Kakuta, and Y. Miyamoto are with the National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Lewis H Kuller
- C. Cui, L. Kuller, and A. Sekikawa are with the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Sekikawa
- C. Cui, L. Kuller, and A. Sekikawa are with the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
57
|
Pieczynska MD, Yang Y, Petrykowski S, Horbanczuk OK, Atanasov AG, Horbanczuk JO. Gut Microbiota and Its Metabolites in Atherosclerosis Development. Molecules 2020; 25:molecules25030594. [PMID: 32013236 PMCID: PMC7037843 DOI: 10.3390/molecules25030594] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota metabolites have a great influence on host digestive function and body health itself. The effects of intestinal microbes on the host metabolism and nutrients absorption are mainly due to regulatory mechanisms related to serotonin, cytokines, and metabolites. Multiple studies have repeatedly reported that the gut microbiota plays a fundamental role in the absorption of bioactive compounds by converting dietary polyphenols into absorbable bioactive substances. Moreover, some intestinal metabolites derived from natural polyphenol products have more biological activities than their own fundamental biological functions. Bioactive like polyphenolic compounds, prebiotics and probiotics are the best known dietary strategies for regulating the composition of gut microbial populations or metabolic/immunological activities, which are called “three “p” for gut health”. Intestinal microbial metabolites have an indirect effect on atherosclerosis, by regulating lipid metabolism and inflammation. It has been found that the diversity of intestinal microbiota negatively correlates with the development of atherosclerosis. The fewer the variation and number of microbial species in the gut, the higher the risk of developing atherosclerosis. Therefore, the atherosclerosis can be prevented and treated from the perspective of improving the number and variability of gut microbiota. In here, we summarize the effects of gut metabolites of natural products on the pathological process of the atherosclerosis, since gut intestinal metabolites not only have an indirect effect on macrophage foaming in the vessel wall, but also have a direct effect on vascular endothelial cells.
Collapse
Affiliation(s)
- Magdalena D. Pieczynska
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A Street, 02-106 Warsaw, Poland
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| | - Yang Yang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - S. Petrykowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
| | - Olaf K. Horbanczuk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Jaroslaw O. Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| |
Collapse
|
58
|
Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019; 11:E2231. [PMID: 31527435 PMCID: PMC6770660 DOI: 10.3390/nu11092231] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Epidemiological data suggest that regular intake of isoflavones from soy reduces the incidence of estrogen-dependent and aging-associated disorders, such as menopause symptoms in women, osteoporosis, cardiovascular diseases and cancer. Equol, produced from daidzein, is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. Consequently, equol has been endorsed as having many beneficial effects on human health. The conversion of daidzein into equol takes place in the intestine via the action of reductase enzymes belonging to incompletely characterized members of the gut microbiota. While all animal species analyzed so far produce equol, only between one third and one half of human subjects (depending on the community) are able to do so, ostensibly those that harbor equol-producing microbes. Conceivably, these subjects might be the only ones who can fully benefit from soy or isoflavone consumption. This review summarizes current knowledge on the microorganisms involved in, the genetic background to, and the biochemical pathways of, equol biosynthesis. It also outlines the results of recent clinical trials and meta-analyses on the effects of equol on different areas of human health and discusses briefly its presumptive mode of action.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
59
|
Ruiz-León AM, Lapuente M, Estruch R, Casas R. Clinical Advances in Immunonutrition and Atherosclerosis: A Review. Front Immunol 2019; 10:837. [PMID: 31068933 PMCID: PMC6491827 DOI: 10.3389/fimmu.2019.00837] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic low-grade inflammatory disease that affects large and medium-sized arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). The high risk of mortality by atherosclerosis has led to the development of new strategies for disease prevention and management, including immunonutrition. Plant-based dietary patterns, functional foods, dietary supplements, and bioactive compounds such as the Mediterranean Diet, berries, polyunsaturated fatty acids, ω-3 and ω-6, vitamins E, A, C, and D, coenzyme Q10, as well as phytochemicals including isoflavones, stilbenes, and sterols have been associated with improvement in atheroma plaque at an inflammatory level. However, many of these correlations have been obtained in vitro and in experimental animals' models. On one hand, the present review focuses on the evidence obtained from epidemiological, dietary intervention and supplementation studies in humans supporting the role of immunonutrient supplementation and its effect on anti-inflammatory response in atherosclerotic disease. On the other hand, this review also analyzes the possible molecular mechanisms underlying the protective action of these supplements, which may lead a novel therapeutic approach to prevent or attenuate diet-related disease, such as atherosclerosis.
Collapse
Affiliation(s)
- Ana María Ruiz-León
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Mediterranean Diet Foundation, Barcelona, Spain
| | - María Lapuente
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ramon Estruch
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Casas
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|