51
|
Fanton S, Cardozo LFMF, Combet E, Shiels PG, Stenvinkel P, Vieira IO, Narciso HR, Schmitz J, Mafra D. The sweet side of dark chocolate for chronic kidney disease patients. Clin Nutr 2020; 40:15-26. [PMID: 32718711 DOI: 10.1016/j.clnu.2020.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Chocolate is a widely appreciated foodstuff with historical appreciation as a food from the gods. In addition to its highly palatable taste, it is a rich source of (poly)phenolics, which have several proposed salutogenic effects, including neuroprotective anti-inflammatory, anti-oxidant and cardioprotective capabilities. Despite the known benefits of this ancient foodstuff, there is a paucity of information on the effects of chocolate in the context of chronic kidney disease (CKD). This review focusses on the potential salutogenic contribution of chocolate intake, to mitigate inflammatory and oxidative burden in CKD, its potential, for cardiovascular protection and on the maintenance of diversity in gut microbiota, as well as clinical perspectives, on regular chocolate intake by CKD patients.
Collapse
Affiliation(s)
- Susane Fanton
- Renal Vida Association, Blumenau, SC, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil
| | - Emilie Combet
- School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | | | | | | | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil; Graduate Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| |
Collapse
|
52
|
Ding S, Xu S, Fang J, Jiang H. The Protective Effect of Polyphenols for Colorectal Cancer. Front Immunol 2020; 11:1407. [PMID: 32754151 PMCID: PMC7366338 DOI: 10.3389/fimmu.2020.01407] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers that threaten people in many countries. It is a multi-factorial chronic disease caused by a combination of genetic and environmental factors, but it is mainly related to lifestyle factors, including diet. Plentiful plant foods and beverages are abundant in polyphenols with antioxidant, anti-atherosclerotic, anti-inflammatory, and anticancer properties. These compounds participate in host nutrition and disease pathology regulation in different ways. Polyphenolic compounds have been used to prevent and inhibit the development and prognosis of cancer, and examples include green tea polyphenol (-)epigallocatechin-3-O-gallate (EGCG), curcumin, and resveratrol. Of course, there are more known and unknown polyphenol compounds that need to be further explored for their anticancer properties. This article focuses on the fact that polyphenols affect the progression of CRC by controlling intestinal inflammation, epigenetics, and the intestinal microbe in the aspects of prevention, treatment, and prognosis.
Collapse
Affiliation(s)
- Sujuan Ding
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Sheng Xu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
53
|
Quercitrin, the Main Compound in Wikstroemia indica, Mitigates Skin Lesions in a Mouse Model of 2,4-Dinitrochlorobenzene-Induced Contact Hypersensitivity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4307161. [PMID: 32695208 PMCID: PMC7368186 DOI: 10.1155/2020/4307161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023]
Abstract
Hapten-induced contact hypersensitivity (CHS) is widely utilized to induce immune activation in animal models of allergic contact dermatitis. Our previous findings suggested that the 95% EtOH extract of Wikstroemia indica (L.) C. A. Mey. has antiallergic and anti-inflammatory effects in DNCB-treated CHS SKH-1 hairless mice. The aim of this study was to evaluate the protective effects of compounds isolated from the EtOAc fraction of W. indica in RBL-2H3 cells and 2,4-dinitrochlorobenzene- (DNCB-) induced CHS mice. Of eight compounds in W. indica, that is, umbelliferone, daphnoretin, wikstrocoumarin, (+)-syringaresinol, tricin, (+)-lariciresinol, erythro-guaiacylglycerol-β-coniferyl ether, and quercitrin, quercitrin exhibited the most antiallergic activity against antigen-induced β-hexosaminidase release and IL-4 mRNA expression, which are markers of degranulation in RBL-2H3 cells. After a 7-sensitizing period, 14 days of DNCB treatment with or without topical pimecrolimus (1%) or quercitrin (0.5%) treatment, quercitrin was found to suppress DNCB-induced increases in serum IL-4 and IgE concentrations and transepidermal water loss. These results indicate that quercitrin has therapeutic potential for treatment of allergies and allergy-related contact dermatitis.
Collapse
|
54
|
Gecibesler IH, Aydin M. Plasma Protein Binding of Herbal-Flavonoids to Human Serum Albumin and Their Anti-proliferative Activities. AN ACAD BRAS CIENC 2020; 92:e20190819. [PMID: 32491127 DOI: 10.1590/0001-3765202020190819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Herbal-flavonoids (HF) as polyphenolic secondary metabolites are taken in the daily diet to join in many metabolic processes in the human organism. Anti-proliferative activities and human serum albumin (HSA) binding capacities of herbal-flavonoids namely 7,5'-dimethoxyisoetin (HF1), homoorientin-6''-4-O-methyl-myo-inositol (HF2), (2R, 3R)-(+)-dihydrokaempferol-7,4'-dimethylether (HF3), eriodictyol-7,4'-dimethylether (HF4) and flavonoids isoorientin (HF5) and genkwanin (HF6) were investigated. Anti-proliferative activities were determined by the xCELLigence system by treatment with human prostate (PC3) and cervical cancer (HeLa) cells. The binding capacities were studied by two-dimensional (2D-FL) and three-dimensional (3D-FL) fluorescence spectroscopy. HeLa and PC3 cell lines were treated with flavonoids at 10, 50 and 100 μg/mL concentrations over a 48 hour period. Stable anti-proliferative efficacy plots were obtained for tested flavonoids. From the flavonoids, HF3 and HF4 showed the strongest anti-proliferative effect against PC3 and HeLa cell line. HF1 and HF2 exhibited the strongest binding capacity to the HSA corresponding to Kb values of 3.81 x 104 M-1 and 6.00 x 104 M-1, respectively. The studies revealed that the flavonoids form the basis of in vivo preclinical studies as important nutraceuticals of the daily diet, as well as modelled in medical and pharmacological applications.
Collapse
Affiliation(s)
| | - Murat Aydin
- Faculty of Science and Art, Bingol University, Bingol, Turkey
| |
Collapse
|
55
|
Quinlan R, Hill JA. The Efficacy of Tart Cherry Juice in Aiding Recovery After Intermittent Exercise. Int J Sports Physiol Perform 2020; 15:368-374. [PMID: 31614329 DOI: 10.1123/ijspp.2019-0101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the effects of supplementation with tart cherry juice (TCJ) on markers of recovery after intermittent exercise under habitual dietary conditions. METHODS Using a randomized, single-blind, placebo (PLA)-controlled, independent-groups design, 20 team-sport players (8 male and 12 female; age 26 [4] y, height 175.4 [9.6] cm, body mass 70.2 [12.6] kg) were divided equally into 2 groups and consumed either TCJ or PLA twice per day for 8 consecutive days while following their normal dietary habits. Participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LIST) on day 6 of supplementation. Countermovement jump, 20-m sprint, maximal voluntary isometric contraction, and delayed onset muscle soreness were assessed at baseline and 1, 24, and 48 hours post-LIST. Blood markers of muscle damage (creatine kinase) and inflammation (C-reactive protein) were taken presupplementation, immediately pre-LIST, and 1, 24, and 48 hours post-LIST. Data were analyzed using a repeated-measures analysis of variance. RESULTS Countermovement jump, 20-m sprint, and maximal voluntary isometric contraction showed significantly faster recovery with TCJ (P < .05) at 24 and 48 hours post-LIST. A significant interaction effect (P < .05) was observed for muscle soreness; however, Bonferroni post hoc analysis could not identify when the significant differences between TCJ and PLA occurred. There were no significant differences throughout recovery between TCJ and PLA for C-reactive protein and creatine kinase (P < .05). CONCLUSION The results suggest that TCJ, in addition to habitual diet, can accelerate recovery after intermittent exercise and therefore extend the efficacy of TCJ in accelerating recovery in team sports.
Collapse
|
56
|
Deng X, Peng Y, Zhao J, Lei X, Zheng X, Xie Z, Tang G. Anticancer Activity of Natural Flavonoids: Inhibition of HIF-1α Signaling Pathway. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191203122030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapid tumor growth is dependent on the capability of tumor blood vessels and
glycolysis to provide oxygen and nutrients. Tumor hypoxia is a common characteristic of
many solid tumors, and it essentially happens when the growth of the tumor exceeds the
concomitant angiogenesis. Hypoxia-inducible factor 1 (HIF-1) as the critical transcription
factor in hypoxia regulation is activated to adapt to this hypoxia situation. Flavonoids,
widely distributed in plants, comprise many polyphenolic secondary metabolites, possessing
broadspectrum pharmacological activities, including their potentiality as anticancer
agents. Due to their low toxicity, intense efforts have been made for investigating natural
flavonoids and their derivatives that can be used as HIF-1α inhibitors for cancer therapy
during the past few decades. In this review, we sum up the findings concerning the inhibition
of HIF-1α by natural flavonoids in the last few years and propose the idea of designing tumor vascular and
glycolytic multi-target inhibitors with HIF-1α as one of the targets.
Collapse
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
57
|
Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR. Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. Front Pharmacol 2019; 10:1295. [PMID: 31749703 PMCID: PMC6842955 DOI: 10.3389/fphar.2019.01295] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Xin-Fang Leong
- Centre for Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Natural Product research and Drug Discovery (CENAR), Wellness Research Cluster, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
58
|
Kim MS, Park JS, Chung YC, Jang S, Hyun CG, Kim SY. Anti-Inflammatory Effects of Formononetin 7- O-phosphate, a Novel Biorenovation Product, on LPS-Stimulated RAW 264.7 Macrophage Cells. Molecules 2019; 24:molecules24213910. [PMID: 31671623 PMCID: PMC6864718 DOI: 10.3390/molecules24213910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.
Collapse
Affiliation(s)
- Min-Seon Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea.
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), 679, Saimdang-ro 25451, Korea.
| | - You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Sungchan Jang
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea.
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea.
| |
Collapse
|
59
|
Lesjak M, K S Srai S. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals (Basel) 2019; 12:E119. [PMID: 31398897 PMCID: PMC6789581 DOI: 10.3390/ph12030119] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Balancing systemic iron levels within narrow limits is critical for human health, as both iron deficiency and overload lead to serious disorders. There are no known physiologically controlled pathways to eliminate iron from the body and therefore iron homeostasis is maintained by modifying dietary iron absorption. Several dietary factors, such as flavonoids, are known to greatly affect iron absorption. Recent evidence suggests that flavonoids can affect iron status by regulating expression and activity of proteins involved the systemic regulation of iron metabolism and iron absorption. We provide an overview of the links between different dietary flavonoids and iron homeostasis together with the mechanism of flavonoids effect on iron metabolism. In addition, we also discuss the clinical relevance of state-of-the-art knowledge regarding therapeutic potential that flavonoids may have for conditions that are low in iron such as anaemia or iron overload diseases.
Collapse
Affiliation(s)
- Marija Lesjak
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Surjit K S Srai
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
60
|
Polyphenols as Immunomodulatory Compounds in the Tumor Microenvironment: Friends or Foes? Int J Mol Sci 2019; 20:ijms20071714. [PMID: 30959898 PMCID: PMC6479528 DOI: 10.3390/ijms20071714] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are natural antioxidant compounds ubiquitously found in plants and, thus, ever present in human nutrition (tea, wine, chocolate, fruits and vegetables are typical examples of polyphenol-rich foods). Widespread evidence indicate that polyphenols exert strong antioxidant, anti-inflammatory, anti-microbial and anti-cancer activities, and thus, they are generally regarded to as all-purpose beneficial nutraceuticals or supplements whose use can only have a positive influence on the body. A closer look to the large body of results of years of investigations, however, present a more complex scenario where polyphenols exert different and, sometimes, paradoxical effects depending on dose, target system and cell type and the biological status of the target cell. Particularly, the immunomodulatory potential of polyphenols presents two opposite faces to researchers trying to evaluate their usability in future cancer therapies: on one hand, these compounds could be beneficial suppressors of peri-tumoral inflammation that fuels cancer growth. On the other hand, they might suppress immunotherapeutic approaches and give rise to immunosuppressive cell clones that, in turn, would aid tumor growth and dissemination. In this review, we summarize knowledge of the immunomodulatory effects of polyphenols with a particular focus on cancer microenvironment and immunotherapy, highlighting conceptual pitfalls and delicate cell-specific effects in order to aid the design of future therapies involving polyphenols as chemoadjuvants.
Collapse
|
61
|
Chen YY, Chang YM, Wang KY, Chen PN, Hseu YC, Chen KM, Yeh KT, Chen CJ, Hsu LS. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. ENVIRONMENTAL TOXICOLOGY 2019; 34:233-239. [PMID: 30431227 DOI: 10.1002/tox.22677] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Glioblastoma (GBM) is the most mortality brain cancer in the world. Due to high invasion and drug resistance cause the poor prognosis of GBM. Naringenin, an ingredient of citrus, exhibits many cellular functions such as antioxidant, anti-inflammation, and anticancer. Naringenin inhibits the migration of bladder and lung cancer via modulation of MMP-2 and/or MMP-9 activities, Naringenin inhibits migration and trigger apoptosis in gastric cancer cells through downregulation of AKT pathway. However, the effects of naringenin in GBM still remain to be elucidated. In this study, we reveal the molecular mechanisms of naringenin in the inhibition of migration and invasion in GBM. No overt alternation of cell proliferation was found in of GBM 8901 cells treated with different concentration of naringenin. Slight decreased cell viability was found in GBM 8401 cell treated with 200 and 300 μM naringenin. Significant reduction of migration and invasion as assayed by Boyden chamber analysis was found in of GBM cells treated with 100, 200, and 300 μM naringenin. Zymography analysis also revealed that the activities of MMP-2 and MMP-9 of GBM cells were significantly inhibited in response to 100, 200, or 300 μM naringenin treatment. Proteins of MMP-2 and MMP-9 were downregulated in naringenin treated GBM cells. In addition, naringenin also attenuated the activities of ERK and p38. Naringenin decreased mesenchymal markers (snail and slug) expression as revealed by Western blot analysis. Taken together, our findings indicated that naringenin eliminated the migration and invasion of GBM cells through multiple mechanisms including inhibition of MMPs, ERK, and p38 activities and modulation of EMT markers. Our results also suggested that naringenin may be a potential agent to prevent metastasis of GBM.
Collapse
Affiliation(s)
- Yen-Yu Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yuh-Ming Chang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Division of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Kuan-Yi Wang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Ke-Min Chen
- Department of Parasitology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
62
|
PETRICA-MATEI GEORGIANAGABRIELA, ROMAN VIVIANA, MIHAILA MIRELA, HOTNOG CAMELIAMIA, BRASOVEANU LORELEIIRINA, BOSTAN MARINELA. Role of p38-mitogen-activated protein kinase in modulation of the response to therapy in FaDu Human pharyngeal carcinoma cell. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.1/118.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
63
|
Deng X, Liu R, Li J, Li Z, Liu J, Xiong R, Lei X, Zheng X, Xie Z, Tang G. Design, synthesis, and preliminary biological evaluation of 3′,4′,5′-trimethoxy flavonoid salicylate derivatives as potential anti-tumor agents. NEW J CHEM 2019. [DOI: 10.1039/c8nj04533j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
According to the combination principle, target compounds were designed; compound10vmight be a promising multiple target anti-tumor agent candidate.
Collapse
|
64
|
Zhang Q, Xie H, Chen D, Yu B, Huang Z, Zheng P, Mao X, Yu J, Luo Y, Luo J, He J. Dietary Daidzein Supplementation During Pregnancy Facilitates Fetal Growth in Rats. Mol Nutr Food Res 2018; 62:e1800921. [PMID: 30365232 DOI: 10.1002/mnfr.201800921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022]
Abstract
SCOPE Daidzein, a natural isoflavone with estrogen-like activity, has been implicated in the regulation of reproductive performance in mammals. However, little is known about the molecular mechanisms involved. Here, the effects and potential mechanisms of daidzein supplementation on fetal growth in rats have been explored. METHODS AND RESULTS Thirty-six pregnant Sprague-Dawley rats are assigned to receive either an AIN-93M diet or an AIN-93M diet supplemented with 50 mg kg-1 daidzein. Blood, placental, and fetus samples were collected on day 15 of gestation. It is shown that daidzein significantly improves the rat reproductive performance, which is associated with a higher fetus number, and the weight of the fetus and placenta (p < 0.05). Daidzein also increases the maternal serum estrogen and leptin concentrations, and the activity of superoxide dismutase (SOD) (p < 0.05). Notably, the isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics analysis identifies 43 differentially expressed (DE) proteins in the placenta upon daidzein supplementation (p < 0.05). Interestingly, critical proteins involved in amino acid transport and metabolism, embryonic development, ubiquitination processes, and immune responses are upregulated in the daidzein group (p < 0.05). CONCLUSION These results not only indicate a beneficial effect of daidzein supplementation on reproductive performance but also offer potential mechanisms behind daidzein-facilitated fetal growth in rats.
Collapse
Affiliation(s)
- Qiqi Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Hongmei Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.,Shandong Vocational Animal Science and Veterinary College, Weifang, Shandon, 261061, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| |
Collapse
|
65
|
Mancini RS, Wang Y, Weaver DF. Phenylindanes in Brewed Coffee Inhibit Amyloid-Beta and Tau Aggregation. Front Neurosci 2018; 12:735. [PMID: 30369868 PMCID: PMC6194148 DOI: 10.3389/fnins.2018.00735] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Coffee consumption has been correlated with a decreased risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD), but the mechanism by which coffee may provide neuroprotection in humans is not fully understood. We hypothesized that compounds found in brewed coffee may elicit neuroprotective effects by inhibiting the aggregation of amyloid-beta (Aβ) and tau (AD) or α-synuclein (PD). Three instant coffee extracts (light roast, dark roast, decaffeinated dark roast) and six coffee components [caffeine (1), chlorogenic acid (2), quinic acid (3), caffeic acid (4), quercetin (5), and phenylindane (6)] were investigated for their ability to inhibit the fibrillization of Aβ and tau proteins using thioflavin T (ThT) and thioflavin S (ThS) fluorescence assays, respectively. Inhibition of Aβ and α-synuclein oligomerization was assessed using ELISA assays. All instant coffee extracts inhibit fibrillization of Aβ and tau, and promote α-synuclein oligomerization at concentrations above 100 μg/mL. Dark roast coffee extracts are more potent inhibitors of Aβ oligomerization (IC50 ca. 10 μg/mL) than light roast coffee extract (IC50 = 40.3 μg/mL), and pure caffeine (1) has no effect on Aβ, tau or α-synuclein aggregation. Coffee components 2, 4, and 5 inhibit the fibrillization of Aβ at 100 μM concentration, yet only 5 inhibits Aβ oligomerization (IC50 = 10.3 μM). 1-5 have no effect on tau fibrillization. Coffee component 6, however, is a potent inhibitor of both Aβ and tau fibrillization, and also inhibits Aβ oligomerization (IC50 = 42.1 μM). Coffee components 4 and 5 promote the aggregation of α-synuclein at concentrations above 100 μM; no other coffee components affect α-synuclein oligomerization. While the neuroprotective effect of coffee consumption is likely due to a combination of factors, our data suggest that inhibition Aβ and tau aggregation by phenylindane 6 (formed during the roasting of coffee beans, higher quantities found in dark roast coffees) is a plausible mechanism by which coffee may provide neuroprotection. The identification of 6 as a dual-inhibitor of both Aβ and tau aggregation is noteworthy, and to our knowledge this is the first report of the aggregation inhibition activity of 6.
Collapse
Affiliation(s)
- Ross S. Mancini
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yanfei Wang
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F. Weaver
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
66
|
Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int J Mol Sci 2018; 19:ijms19092651. [PMID: 30200668 PMCID: PMC6163735 DOI: 10.3390/ijms19092651] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
A variety of malignant cancers affect the global human population. Although a wide variety of approaches to cancer treatment have been studied and used clinically (surgery, radiotherapy, chemotherapy, and immunotherapy), the toxic side effects of cancer therapies have a negative impact on patients and impede progress in conquering cancer. Plant metabolites are emerging as new leads for anti-cancer drug development. This review summarizes these plant metabolites with regard to their structures and the types of cancer against which they show activity, organized by the organ or tissues in which each cancer forms. This information will be helpful for understanding the current state of knowledge of the anti-cancer effects of various plant metabolites against major types of cancer for the further development of novel anti-cancer drugs.
Collapse
|
67
|
Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic Biol Med 2018; 122:161-170. [PMID: 29548794 DOI: 10.1016/j.freeradbiomed.2018.03.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of such polyphenol-rich products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Hyun-Ho Lee
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
68
|
Liu Q, Liang X, Niu C, Wang X. Ellagic acid promotes A549 cell apoptosis via regulating the phosphoinositide 3-kinase/protein kinase B pathway. Exp Ther Med 2018; 16:347-352. [PMID: 29896260 PMCID: PMC5995078 DOI: 10.3892/etm.2018.6193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/01/2018] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to evaluate the anti-cancer effect of ellagic acid in human non-small cell lung cancer (NSCLC) A549 cells and to reveal the potential underlying mechanism. The effects of ellagic acid on the cell proliferation of A549 cells were determined by MTT assay. Cell cycle and apoptosis were measured with flow cytometry and Annexin V-propidium iodide staining. Western blotting was used to measure the expression levels of the phosphatidylinositol 3-kinase (PI3K)/protein kinas B (Akt) signaling pathway and apoptosis-associated proteins. It was demonstrated that ellagic acid exerted an inhibitory effect in the proliferation of human NSCLC A549 cells. Flow cytometry demonstrated that G1 phase retention and apoptosis rates were significantly increased after treatment with ellagic acid. Further investigation revealed that ellagic acid treatment diminished the phosphorylation of PI3K and Akt and regulated the expression of apoptosis-associated proteins in A549 cells. In conclusion, the present results indicated that ellagic acid suppresses cell proliferation, arrests cell cycle and induces apoptosis in human NSCLC A549 cells by inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qiong Liu
- Medical Experiment Center, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Xiaobing Liang
- Medical Experiment Center, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Chengwei Niu
- Medical Experiment Center, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Xuelan Wang
- Medical Experiment Center, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| |
Collapse
|
69
|
Lu Y, Shan S, Li H, Shi J, Zhang X, Li Z. Reversal Effects of Bound Polyphenol from Foxtail Millet Bran on Multidrug Resistance in Human HCT-8/Fu Colorectal Cancer Cell. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5190-5199. [PMID: 29730933 DOI: 10.1021/acs.jafc.8b01659] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Foxtail millet is the second-most widely planted species of millet and the most important cereal food in China. Our previous study showed that bound polyphenol of inner shell (BPIS) from foxtail millet bran displayed effective antitumor activities in vitro and in vivo. The present research further implied that BPIS has the ability to reverse the multidrug resistance of colorectal cancer in human HCT-8/Fu cells, the IC50 values of 5-fluorouracil (5-Fu), oxaliplatin (L-OHP), and vincristine (VCR) were decreased form 6593 ± 53.8, 799 ± 48.9, and 247 ± 10.3 μM to 5350 ± 22.3 (3261 ± 56.9), 416 ± 16.6 (252 ± 15.6), and 144 ± 8.30 (83.8 ± 5.60) μM when HCT-8/Fu cells were pretreated with 0.5 (1.0) mg/mL BPIS for 12 h. The 12 phenolic acid compounds of BPIS were identified by ultraperformance liquid chromatography-triple-time of flight/mass spectrometry (UPLC-Triple-TOF/MS) method. Especially, the fraction of molecular weight (MW) < 200 of BPIS reversed the multidrug resistance in HCT-8/Fu cells, and ferulic acid and p-coumaric acid were the main active components, the IC50 values were 1.23 ± 0.195 and 2.68 ± 0.163 mg/mL, respectively. The present data implied that BPIS significantly enhanced the sensitivity of chemotherapeutic drugs through inhibiting cell proliferation, promoting cell apoptosis, and increasing the accumulation of rhodamine-123 (Rh-123) in HCT-8/Fu cells. Real-time polymerase chain reaction (RT-PCR) and Western blot data indicated that BPIS also decreased the expression levels of multidrug resistance protein 1 (MRP1), P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). Collectively, these results show that BPIS has potential ability to be used as a new drug-resistance reversal agent in colorectal cancer.
Collapse
|
70
|
Mukhtar S, Alsharif MA, Alahmdi MI, Parveen H, Khan AU. Retracted: Novel spiro-thiazolidin-4-one and thioether derivatives of benzylidene flavanones: New leads in cancer and microbial chemotherapy. Arch Pharm (Weinheim) 2018; 351:e1700397. [PMID: 29527738 DOI: 10.1002/ardp.201700397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The above article from Archiv der Pharmazie, published online on 12 March 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, Prof. Holger Stark, and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. The retraction has been agreed due to errors in the spectroscopic data of the investigated new compounds. REFERENCE TO RETRACTION S. Mukhtar, M. A. Alsharif, M. I. Alahmdi, H. Parveen, A. U. Khan, Arch. Pharm. Chem. Life Sci. 2018;1-12. DOI: 10.1002/ardp.201700397.
Collapse
Affiliation(s)
- Sayeed Mukhtar
- Department of Chemistry, University of Tabuk, Tabuk City, Kingdom of Saudi Arabia
| | - Meshari A Alsharif
- Department of Chemistry, University of Tabuk, Tabuk City, Kingdom of Saudi Arabia
| | - Mohammed I Alahmdi
- Department of Chemistry, University of Tabuk, Tabuk City, Kingdom of Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, University of Tabuk, Tabuk City, Kingdom of Saudi Arabia
| | - Asad U Khan
- Department of Interdisciplinary Biotechnology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
71
|
Ullah H, Khan H. Anti-Parkinson Potential of Silymarin: Mechanistic Insight and Therapeutic Standing. Front Pharmacol 2018; 9:422. [PMID: 29755356 PMCID: PMC5934474 DOI: 10.3389/fphar.2018.00422] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) involves aggregation of α-synuclein and progressive loss of dopaminergic neurons. Pathogenesis of PD may also be related to one's genetic background. PD is most common among geriatric population and approximately 1-2% of population suffers over age 65 years. Currently no successful therapies are in practice for the management of PD and available therapies tend to decrease the symptoms of PD only. Furthermore, these are associated with diverse range of adverse effects profile. The neuroprotective effects of polyphenols are widely studied and documented. Among phytochemicals, silymarin is one of the most widely used flavonoids because of its extensive therapeutic properties and has been indicated in pathological conditions of prostate, CNS, lungs, skin, liver, and pancreas. Silymarin is a mixture of flavonolignans (silybin, isosilybin, and silychristin), small amount of flavonoids (taxifolin), fatty acids, and other polyphenolic compounds extracted from the dried fruit of Silybum marianum and is clinically used for hepatoprotective effects since ancient times. Neuroprotective effects of silymarin have been studied in various models of neurological disorders such as Alzheimer's disease, PD, and cerebral ischemia. The aim of the present study is to provide a comprehensive review of the recent literature exploring the effects of silymarin administration on the progression of PD. Reducing oxidative stress, inflammatory cytokines, altering cellular apoptosis machinery, and estrogen receptor machinery are mechanisms that are responsible for neuroprotection by silymarin, as discussed in this review. Additionally, because of poor aqueous solubility, the bioavailability of silymarin is low and only 23-47% of silymarin reaches systemic circulation after oral administration. Our primary focus is on the chemical basis of the pharmacology of silymarin in the treatment of PD and its mechanisms and possible therapeutic/clinical status while addressing the bioavailability limitation.
Collapse
|
72
|
Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediators Inflamm 2018; 2018:9734845. [PMID: 29785173 PMCID: PMC5896216 DOI: 10.1155/2018/9734845] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you “feed your microbiota and are fed by it.” GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases.
Collapse
|
73
|
Masuelli L, Benvenuto M, Di Stefano E, Mattera R, Fantini M, De Feudis G, De Smaele E, Tresoldi I, Giganti MG, Modesti A, Bei R. Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line. Oncotarget 2018; 8:34405-34422. [PMID: 28159921 PMCID: PMC5470978 DOI: 10.18632/oncotarget.14907] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022] Open
Abstract
Malignant mesothelioma (MM) is a primary tumor arising from the serous membranes. The resistance of MM patients to conventional therapies, and the poor patients’ survival, encouraged the identification of molecular targets for MM treatment. Curcumin (CUR) is a “multifunctional drug”. We explored the in vitro effects of CUR on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, autophagy of human (MM-B1, H-Meso-1, MM-F1), and mouse (#40a) MM cells. In addition, we evaluated the in vivo anti-tumor activities of CUR in C57BL/6 mice intraperitoneally transplanted with #40a cells forming ascites. CUR in vitro inhibited MM cells survival in a dose- and time-dependent manner and increased reactive oxygen species’intracellular production and induced DNA damage. CUR triggered autophagic flux, but the process was then blocked and was coincident with caspase 8 activation which activates apoptosis. CUR-mediated apoptosis was supported by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of caspase 9, cleavage of PARP-1, increase of the percentage of cells in the sub G1 phase which was reduced (MM-F1 and #40a) or abolished (MM-B1 and H-Meso-1) after MM cells incubation with the apoptosis inhibitor Z-VAD-FMK. CUR treatment stimulated the phosphorylation of ERK1/2 and p38 MAPK, inhibited that of p54 JNK and AKT, increased c-Jun expression and phosphorylation and prevented NF-κB nuclear translocation. Intraperitoneal administration of CUR increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM treatment using CUR.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Enrico De Smaele
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Center for Regenerative Medicine, (CIMER), University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Center for Regenerative Medicine, (CIMER), University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
74
|
Pandith SA, Dar RA, Lattoo SK, Shah MA, Reshi ZA. Rheum australe, an endangered high-value medicinal herb of North Western Himalayas: a review of its botany, ethnomedical uses, phytochemistry and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:573-609. [PMID: 32214920 PMCID: PMC7088705 DOI: 10.1007/s11101-018-9551-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 05/05/2023]
Abstract
Rheum australe (Himalayan Rhubarb) is a multipurpose, endemic and endangered medicinal herb of North Western Himalayas. It finds extensive use as a medicinal herb since antiquity in different traditional systems of medicine to cure a wide range of ailments related to the circulatory, digestive, endocrine, respiratory and skeletal systems as well as to treat various infectious diseases. The remedying properties of this plant species are ascribed to a set of diverse bioactive secondary metabolite constituents, particularly anthraquinones (emodin, chrysophanol, physcion, aloe-emodin and rhein) and stilbenoids (piceatannol, resveratrol), besides dietary flavonoids known for their putative health benefits. Recent studies demonstrate the pharmacological efficacy of some of these metabolites and/or their derivatives as lead molecules for the treatment of various human diseases. Present review comprehensively covers the literature available on R. australe from 1980 to early 2018. The review provides up-to-date information available on its botany for easy identification of the plant, and origin and historical perspective detailing its trade and commerce. Distribution, therapeutic potential in relation to traditional uses and pharmacology, phytochemistry and general biosynthesis of major chemical constituents are also discussed. Additionally, efficient and reproducible in vitro propagation studies holding vital significance in preserving the natural germplasm of the plant and for its industrial exploitation have also been highlighted. The review presents a detailed perspective for future studies to conserve and sustainably make use of this endangered plant species at a commercial scale.
Collapse
Affiliation(s)
- Shahzad A. Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Riyaz Ahmad Dar
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Surrinder K. Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
75
|
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142:213-228. [DOI: 10.1016/j.ejmech.2017.07.034] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022]
|
76
|
Mutlu Altundağ E, Yılmaz AM, Koçtürk S, Taga Y, Yalçın AS. Synergistic Induction of Apoptosis by Quercetin and Curcumin in Chronic Myeloid Leukemia (K562) Cells. Nutr Cancer 2017; 70:97-108. [PMID: 29161179 DOI: 10.1080/01635581.2018.1380208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukemia is a major hematopoietic malignancy characterized by expansion of myeloid cells. In this study, we have investigated whether quercetin, curcumin and their combination induce apoptosis and inhibit growth of K562 cells. We have observed that quercetin and curcumin combination induced apoptosis accompanied by increased ROS and decreased GSH levels as well as loss of mitochondrial membrane potential. Our mRNA and protein expression results suggested that cytochrome c was released from mitochondria causing PARP and caspase-9 cleavages, the hallmarks of mitochondrial apoptotic pathway. We believe that triggering of apoptosis is mostly via mitochondrial pathway and ROS generation may induce impairment of mitochondrial membrane potential. The use of quercetin and curcumin combination potentiates individual apoptotic effects of the polyphenols and reduces their effective dose thereby preventing potential toxic effects on normal cells. Additional preclinical studies and clinical trials are certainly required to further validate their usefulness as potent anticancer agents.
Collapse
Affiliation(s)
- Ergül Mutlu Altundağ
- a Department of Biochemistry , School of Medicine, Marmara University , Istanbul , Turkey.,b Genetic and Metabolic Diseases Research Center , Marmara University , Istanbul , Turkey
| | - Ayşe Mine Yılmaz
- a Department of Biochemistry , School of Medicine, Marmara University , Istanbul , Turkey.,b Genetic and Metabolic Diseases Research Center , Marmara University , Istanbul , Turkey
| | - Semra Koçtürk
- b Genetic and Metabolic Diseases Research Center , Marmara University , Istanbul , Turkey.,c Department of Biochemistry , School of Medicine, Dokuz Eylül University , Izmir , Turkey
| | | | - A Suha Yalçın
- a Department of Biochemistry , School of Medicine, Marmara University , Istanbul , Turkey.,b Genetic and Metabolic Diseases Research Center , Marmara University , Istanbul , Turkey
| |
Collapse
|
77
|
Petyaev IM, Bashmakov YK. Dark Chocolate: Opportunity for an Alliance between Medical Science and the Food Industry? Front Nutr 2017; 4:43. [PMID: 29034240 PMCID: PMC5626948 DOI: 10.3389/fnut.2017.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/06/2017] [Indexed: 01/07/2023] Open
Abstract
Dark chocolate (DC) was originally introduced in human nutrition as a medicinal product consumable in a liquid form. Century-long efforts of food industry transformed this hardly appealing product into a valuable modern culinary delight with clear predominance of confectionery brands of DC on the market. However, current epidemiological data as well as multiple experimental and clinical observations reveal that DC consumption may have a profound effect on cardiovascular, central nervous systems, hemostasis, and lipid metabolism. However, despite of growing body of modern scientific evidence revealing medicinal properties of cocoa-based products, DC remains more gourmet culinary item than medicinal food product. Even today there are no clear dietary recommendations on consumption of cocoa flavonoids (flavanols) for health purpose. Clinical trials with DC rarely include monitoring of plasma flavanol concentration in volunteers. Moreover, there is no standardized assay or any quantitative requirements for flavanol content in the commercial brands of DC. High flavanol content is often sacrificed during manufacturing for a better taste of DC due to bitterness of cocoa flavonoids. All these problems including subsequently arising ethical issues need to be addressed by joint efforts of food industry and medical science. Moreover, application of microencapsulation technology in DC manufacturing, as well as molecular selection of best flavanol producers may drastically change bioavailability of DC bioactive ingredients and DC production technology. Nevertheless, only strict causative approach, linking possible health effect of DC to its bioactive ingredients considered as nutraceuticals, may change the current landscape in nutritional research related to cocoa-based products and create a trustworthy path for their medicinal use.
Collapse
|
78
|
Little CH, Combet E, McMillan DC, Horgan PG, Roxburgh CSD. The role of dietary polyphenols in the moderation of the inflammatory response in early stage colorectal cancer. Crit Rev Food Sci Nutr 2017; 57:2310-2320. [PMID: 26066365 DOI: 10.1080/10408398.2014.997866] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current focus in colorectal cancer (CRC) management is on reducing overall mortality by increasing the number of early-stage cancers diagnosed and treated with curative intent. Despite the success of screening programs in down-staging CRC, interval cancer rates are substantial and other strategies are desirable. Sporadic CRC is largely associated with lifestyle factors including diet. Polyphenols are phytochemicals ingested as part of a normal diet, which are abundant in plant foods including fruits/berries and vegetables. These may exert their anti-carcinogenic effects via the modulation of inflammatory pathways. Key signal transduction pathways are fundamental to the association of inflammation and disease progression including those mediated by NF-κB and STAT, PI3K and COX. Our aim was to examine the evidence for the effect of dietary polyphenols intake on tumor and host inflammatory responses to determine if polyphenols may be effective as part of a dietary intervention. There is good epidemiological evidence of a reduction in CRC risk from case-control and cohort studies assessing polyphenol intake. It would be premature to suggest a major public health intervention to promote their consumption; however, dietary change is safe and feasible, emphasizing the need for further investigation of polyphenols and CRC risk.
Collapse
Affiliation(s)
- C H Little
- a Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary , Glasgow , UK
| | - E Combet
- b Department of Human Nutrition , School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Yorkhill Hospital , Glasgow , UK
| | - D C McMillan
- a Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary , Glasgow , UK
| | - P G Horgan
- a Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary , Glasgow , UK
| | - C S D Roxburgh
- a Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary , Glasgow , UK
| |
Collapse
|
79
|
Salaritabar A, Darvishi B, Hadjiakhoondi F, Manayi A, Sureda A, Nabavi SF, Fitzpatrick LR, Nabavi SM, Bishayee A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J Gastroenterol 2017; 23:5097-5114. [PMID: 28811706 PMCID: PMC5537178 DOI: 10.3748/wjg.v23.i28.5097] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
The inflammatory process plays a central role in the development and progression of numerous pathological situations, such as inflammatory bowel disease (IBD), autoimmune and neurodegenerative diseases, metabolic syndrome, and cardiovascular disorders. IBDs involve inflammation of the gastrointestinal area and mainly comprise Crohn’s disease (CD) and ulcerative colitis (UC). Both pathological situations usually involve recurring or bloody diarrhea, pain, fatigue and weight loss. There is at present no pharmacological cure for CD or UC. However, surgery may be curative for UC patients. The prescribed treatment aims to ameliorate the symptoms and prevent and/or delay new painful episodes. Flavonoid compounds are a large family of hydroxylated polyphenolic molecules abundant in plants, including vegetables and fruits which are the major dietary sources of these compounds for humans, together with wine and tea. Flavonoids are becoming very popular because they have many health-promoting and disease-preventive effects. Most interest has been directed towards the antioxidant activity of flavonoids, evidencing a remarkable free-radical scavenging capacity. However, accumulating evidence suggests that flavonoids have many other biological properties, including anti-inflammatory, antiviral, anticancer, and neuroprotective activities through different mechanisms of action. The present review analyzes the available data about the different types of flavonoids and their potential effectiveness as adjuvant therapy of IBDs.
Collapse
|
80
|
Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 2017; 18:ijms18071381. [PMID: 28657580 PMCID: PMC5535874 DOI: 10.3390/ijms18071381] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022] Open
Abstract
In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns. Their activities are modulated differently by a range of natural and synthetic ligands. Some of these ligands show agonistic or antagonistic effects depending on ER subtype and are described as selective ER modulators (SERMs). Accordingly, a few phytochemicals, called phytoestrogens, which are synthesized from plants and vegetables, show low estrogenic activity or anti-estrogenic activity with potentially anti-proliferative effects that offer nutraceutical or pharmacological advantages. These compounds may be used as hormonal substitutes or as complements in breast cancer treatments. In this review, we discuss and summarize the in vitro and in vivo effects of certain phytoestrogens and their potential roles in the interaction with estrogen receptors.
Collapse
|
81
|
Phillips C. Lifestyle Modulators of Neuroplasticity: How Physical Activity, Mental Engagement, and Diet Promote Cognitive Health during Aging. Neural Plast 2017; 2017:3589271. [PMID: 28695017 PMCID: PMC5485368 DOI: 10.1155/2017/3589271] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/01/2017] [Accepted: 05/28/2017] [Indexed: 12/24/2022] Open
Abstract
The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors-including physical activity, cognitive engagement, and diet-are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.
Collapse
|
82
|
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L, Manzari V, Modesti A, Bei R. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017; 9:nu9050523. [PMID: 28531112 PMCID: PMC5452253 DOI: 10.3390/nu9050523] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress.
Collapse
Affiliation(s)
- Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | | | - Sonia Bergante
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Guido Tettamanti
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00164 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
83
|
Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS. Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol 2017; 38:172-183. [PMID: 28423952 DOI: 10.1080/07388551.2017.1312275] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Celery (Apium graveolens L.), one of the most important vegetables in Apiaceae family, is cultivated worldwide and utilized in food and cosmetic industries because it is an excellent source of vitamins, phenolic compounds, volatile oils and other nutrients. Celery extracts possess various medicinal properties, such as antibacterial, anti-inflammatory and lowering blood glucose and serum lipid levels. With the rapid advancements in molecular biology and sequencing technology, studies on celery have been performed. Numerous molecular markers and regulatory genes have been discovered and applied to improve celery. Research advances, including genetic breeding, genomics research, function genes and chemical composition, regarding celery are reviewed in this paper. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on celery, an important Apiaceae vegetable crop.
Collapse
Affiliation(s)
- Meng-Yao Li
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Xi-Lin Hou
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Feng Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Guo-Fei Tan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Zhi-Sheng Xu
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Ai-Sheng Xiong
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
84
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
85
|
Lee M, McGeer EG, McGeer PL. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol Aging 2016; 46:113-23. [DOI: 10.1016/j.neurobiolaging.2016.06.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 12/25/2022]
|
86
|
Piao L, Mukherjee S, Chang Q, Xie X, Li H, Castellanos MR, Banerjee P, Iqbal H, Ivancic R, Wang X, Teknos TN, Pan Q. TriCurin, a novel formulation of curcumin, epicatechin gallate, and resveratrol, inhibits the tumorigenicity of human papillomavirus-positive head and neck squamous cell carcinoma. Oncotarget 2016; 8:60025-60035. [PMID: 28947951 PMCID: PMC5601119 DOI: 10.18632/oncotarget.10620] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide with about 600,000 new cases diagnosed in the last year. The incidence of human papillomavirus-positive head and neck squamous cell carcinoma (HPV-positive HNSCC) has rapidly increased over the past 30 years prompting the suggestion that an epidemic may be on the horizon. Therefore, there is a clinical need to develop alternate therapeutic strategies to manage the growing number of HPV-positive HNSCC patients. TriCurin is a composition of three food-derived polyphenols in unique stoichiometric proportions consisting of curcumin from the spice turmeric, resveratrol from red grapes, and epicatechin gallate from green tea. Cell viability, clonogenic survival, and tumorsphere formation were inhibited and significant apoptosis was induced by TriCurin in UMSCC47 and UPCI:SCC090 HPV-positive HNSCC cells. Moreover, TriCurin decreased HPV16E6 and HPV16E7 and increased p53 levels. In a pre-clinical animal model of HPV-positive HNSCC, intra-tumoral injection of TriCurin significantly inhibited tumor growth by 85.5% compared to vehicle group (P < 0.05, n = 7). Our results demonstrate that TriCurin is a potent anti-tumor agent for HPV-positive HNSCC. Further development of TriCurin as a novel anti-cancer therapeutic to manage the HPV-positive HNSCC population is warranted.
Collapse
Affiliation(s)
- Longzhu Piao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sumit Mukherjee
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York, New York, USA.,Department of Chemistry and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
| | - Qing Chang
- Department of Chemistry and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA.,Department of Pathology and Laboratory Medicine, Staten Island University Hospital, Northwell Health, Staten Island, New York, USA
| | - Xiujie Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Hong Li
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Mario R Castellanos
- Division of Research, Department of Medicine, Staten Island University Hospital, Northwell Health, Staten Island, New York, USA
| | - Probal Banerjee
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York, New York, USA.,Department of Chemistry and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
| | - Hassan Iqbal
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ryan Ivancic
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Xueqian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
87
|
Costa G, Rocca R, Moraca F, Talarico C, Romeo I, Ortuso F, Alcaro S, Artese A. A Comparative Docking Strategy to Identify Polyphenolic Derivatives as Promising Antineoplastic Binders of G-quadruplex DNAc-mycandbcl-2Sequences. Mol Inform 2016; 35:391-402. [DOI: 10.1002/minf.201501040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/19/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Giosuè Costa
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Roberta Rocca
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Federica Moraca
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Carmine Talarico
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Isabella Romeo
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Francesco Ortuso
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Stefano Alcaro
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Anna Artese
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| |
Collapse
|
88
|
Yu J, Bi X, Yu B, Chen D. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016; 8:nu8060361. [PMID: 27294954 PMCID: PMC4924202 DOI: 10.3390/nu8060361] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.
Collapse
Affiliation(s)
- Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaojuan Bi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
89
|
Dong Y, Huang H, Zhao M, Sun-Waterhouse D, Lin L, Xiao C. Mechanisms underlying the xanthine oxidase inhibitory effects of dietary flavonoids galangin and pinobanksin. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
90
|
Mlcek J, Jurikova T, Skrovankova S, Sochor J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016; 21:E623. [PMID: 27187333 PMCID: PMC6273625 DOI: 10.3390/molecules21050623] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/29/2022] Open
Abstract
Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase.
Collapse
Affiliation(s)
- Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, CZ-760 01 Zlín, Czech Republic.
| | - Tunde Jurikova
- Institute for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, SK-949 74 Nitra, Slovakia.
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, CZ-760 01 Zlín, Czech Republic.
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic.
| |
Collapse
|
91
|
Benvenuto M, Mattera R, Taffera G, Giganti MG, Lido P, Masuelli L, Modesti A, Bei R. The Potential Protective Effects of Polyphenols in Asbestos-Mediated Inflammation and Carcinogenesis of Mesothelium. Nutrients 2016; 8:nu8050275. [PMID: 27171110 PMCID: PMC4882688 DOI: 10.3390/nu8050275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
Malignant Mesothelioma (MM) is a tumor of the serous membranes linked to exposure to asbestos. A chronic inflammatory response orchestrated by mesothelial cells contributes to the development and progression of MM. The evidence that: (a) multiple signaling pathways are aberrantly activated in MM cells; (b) asbestos mediated-chronic inflammation has a key role in MM carcinogenesis; (c) the deregulation of the immune system might favor the development of MM; and (d) a drug might have a better efficacy when injected into a serous cavity thus bypassing biotransformation and reaching an effective dose has prompted investigations to evaluate the effects of polyphenols for the therapy and prevention of MM. Dietary polyphenols are able to inhibit cancer cell growth by targeting multiple signaling pathways, reducing inflammation, and modulating immune response. The ability of polyphenols to modulate the production of pro-inflammatory molecules by targeting signaling pathways or ROS might represent a key mechanism to prevent and/or to contrast the development of MM. In this review, we will report the current knowledge on the ability of polyphenols to modulate the immune system and production of mediators of inflammation, thus revealing an important tool in preventing and/or counteracting the growth of MM.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Gloria Taffera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Paolo Lido
- Internal Medicine Residency Program, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Rome 00164, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| |
Collapse
|
92
|
Rocco L, Mottola F, Santonastaso M, Saputo V, Cusano E, Costagliola D, Suero T, Pacifico S, Stingo V. Anti-genotoxic ability of α-tocopherol and Anthocyanin to counteract fish DNA damage induced by musk xylene. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2026-2035. [PMID: 26407710 DOI: 10.1007/s10646-015-1538-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Many compounds released into the environment are able to interact with genetic material. The main purpose of genetic toxicology is to investigate the adverse effects of genotoxic molecules such as reduced fitness, changes in gene frequencies and their impact on genetic diversity in populations following genotoxic exposure. However, the ecological effects of many genotoxic compounds remain poorly understood. The aim of this research was to evaluate the genotoxic activity of an artificial musk (musk xylene, MX) and the potential anti-genotoxicity against this chemical compound of two antioxidant substances (α-tocopherol and an anthocyanins enriched extract). The studies were performed both in vivo and in vitro, using the teleost Danio rerio and the DLEC (Dicentrarchus labrax embryonic cells) cell line. We carried out the exposure to these substances at different times. DNA and cell damage and their possible repair were detected by various experimental approaches: DNA strand breaks (Comet Assay), degree of apoptosis (Diffusion Assay) and molecular alterations at the genomic level (RAPD-PCR technique). Data were collected and analyzed for statistical significance using the Student's t test. The results of this study showed that MX exhibited a genotoxic activity even after short exposure times. The anti-genotoxicity experiments evidenced that both α-tocopherol and Anthocyanin were able to contrast the genotoxic effects induced by MX, both in vivo and in vitro.
Collapse
Affiliation(s)
- Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy.
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Marianna Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Valentina Saputo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Elena Cusano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Domenico Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Teresa Suero
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Vincenzo Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| |
Collapse
|
93
|
Ferro M, De Cobelli O, Buonerba C, Di Lorenzo G, Capece M, Bruzzese D, Autorino R, Bottero D, Cioffi A, Matei DV, Caraglia M, Borghesi M, De Berardinis E, Busetto GM, Giovannone R, Lucarelli G, Ditonno P, Perdonà S, Bove P, Castaldo L, Hurle R, Musi G, Brescia A, Olivieri M, Cimmino A, Altieri V, Damiano R, Cantiello F, Serretta V, De Placido S, Mirone V, Sonpavde G, Terracciano D. Modified Glasgow Prognostic Score is Associated With Risk of Recurrence in Bladder Cancer Patients After Radical Cystectomy: A Multicenter Experience. Medicine (Baltimore) 2015; 94:e1861. [PMID: 26496339 PMCID: PMC4620818 DOI: 10.1097/md.0000000000001861] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recently, many studies explored the role of inflammation parameters in the prognosis of urinary cancers, but the results were not consistent. The modified Glasgow Prognostic Score (mGPS), a systemic inflammation marker, is a prognostic marker in various types of cancers. The aim of the present study was to investigate the usefulness of the preoperative mGPS as predictor of recurrence-free (RFS), overall (OS), and cancer-specific (CSS) survivals in a large cohort of urothelial bladder cancer (UBC) patients.A total of 1037 patients with UBC were included in this study with a median follow-up of 22 months (range 3-60 months). An mGPS = 0 was observed in 646 patients (62.3%), mGPS = 1 in 297 patients (28.6 %), and mGPS = 2 in 94 patients (9.1%).In our study cohort, subjects with an mGPS equal to 2 had a significantly shorter median RFS compared with subjects with mGPS equal to 1 (16 vs 19 months, hazard ratio [HR] 1.54, 95% CI 1.31-1.81, P < 0.001) or with subjects with mGPS equal to 0 (16 vs 29 months, HR 2.38, 95% CI 1.86-3.05, P < 0.001). The association between mGPS and RFS was confirmed by weighted multivariate Cox model. Although in univariate analysis higher mGPS was associated with lower OS and CSS, this association disappeared in multivariate analysis where only the presence of lymph node-positive bladder cancer and T4 stage were predictors of worse prognosis for OS and CSS.In conclusion, the mGPS is an easily measured and inexpensive prognostic marker that was significantly associated with RFS in UBC patients.
Collapse
Affiliation(s)
- Matteo Ferro
- From the Division of Urology, European Institute of Oncology, Milan, Italy (MF, OD, DB, AC, DVM, GM, AB); Department of Urology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania (OD); Genitourinary Cancer Section, Medical Oncology Division, University Federico II, Napoli, Italy (CB, GD, SD); Division of Urology, University "Federico II", Naples, Italy (MC, VM); Department of Public Health, University "Federico II", Naples, Italy (DB); Urology Institute, University Hospitals, Cleveland, OH, USA (RA); Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy (MC); Department of Urology, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy (MB); Division of Urology, University "La Sapienza", Rome, Italy (ED, GMB, RG); Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy (GL, PD); Division of Urology, IRCCS Fondazione G. Pascale, Napoli, Italy (SP); Department of Urology, Tor Vergata University of Rome, Rome, Italy (PB, LC, RH); Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy (MO, AC); Department of Urology, University of Salerno, Salerno, Italy (VA); Department of Urology, Magna Graecia University, Catanzaro, Italy (RD, FC); Department of Surgical, Oncological and Stomatological Sciences, Institute of Urology, University of Palermo, Palermo, Italy (VS); Urologic Oncology, Division of Hematology and Oncology, Department of Medicine, University of Alabama, Birmingham, AL, USA (GS); Department of Translational Medical Sciences, University "Federico II", Naples, Italy (DT)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 2015; 16:9236-82. [PMID: 25918934 PMCID: PMC4463587 DOI: 10.3390/ijms16059236] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022] Open
Abstract
Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.
Collapse
|
95
|
Fan LH, Li X, Chen DY, Zhang N, Wang Y, Shan Y, Hu Y, Xu RA, Jin J, Ge RS. Determination of acacetin in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 986-987:18-22. [DOI: 10.1016/j.jchromb.2015.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|
96
|
Peng X, Chang H, Gu Y, Chen J, Yi L, Xie Q, Zhu J, Zhang Q, Mi M. 3,6-Dihydroxyflavone Suppresses Breast Carcinogenesis by Epigenetically Regulating miR-34a and miR-21. Cancer Prev Res (Phila) 2015; 8:509-17. [DOI: 10.1158/1940-6207.capr-14-0357] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/09/2015] [Indexed: 11/16/2022]
|
97
|
Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 2015; 31:916-22. [PMID: 26059364 DOI: 10.1016/j.nut.2015.02.005] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 01/12/2023]
Abstract
Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment.
Collapse
|
98
|
Tuong W, Walker L, Sivamani RK. Polyphenols as novel treatment options for dermatological diseases: A systematic review of clinical trials. J DERMATOL TREAT 2014; 26:381-8. [DOI: 10.3109/09546634.2014.991675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
99
|
Masuelli L, Stefano ED, Fantini M, Mattera R, Benvenuto M, Marzocchella L, Sacchetti P, Focaccetti C, Bernardini R, Tresoldi I, Izzi V, Mattei M, Frajese GV, Lista F, Modesti A, Bei R. Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in head and neck carcinomas. Oncotarget 2014; 5:10745-62. [PMID: 25296980 PMCID: PMC4279407 DOI: 10.18632/oncotarget.2534] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022] Open
Abstract
The survival rate of head and neck squamous cell carcinomas (HNSCC) patients has not considerably changed over the last two decades. Polyphenols inhibit the growth of cancer cells. We determined whether the combination of Resveratrol (RES) and Curcumin (CUR) enhanced their in vitro and in vivo antitumor activities on HNSCC cell lines compared to the single compounds. We provide evidence that RES potentiated the apoptotic effect and reduced the IC50 of CUR on HNSCC cell lines. The model of compounds interaction indicated the onset of an additive effect of the two compounds compared to the single treatment after decrease of their concentrations. RES+CUR compared to CUR increased the PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of LC3 II simultaneously with the formation of autophagic vacuoles. RES and CUR induced cytoplasmic NF-κB accumulation. RES+CUR administrations were safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) more efficiently than CUR. Overall, combinations of CUR and RES was more effective in inhibiting in vivo and in vitro cancer growth than the treatment with CUR. Additional studies will be needed to define the therapeutic potential of these compounds in combination.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Rosanna Mattera
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Laura Marzocchella
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Pamela Sacchetti
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | | | | | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Valerio Izzi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Florigio Lista
- Centro Studi e Ricerche Sanità e Veterinaria Esercito, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
100
|
Schneiderová K, Šmejkal K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 14:799-833. [PMID: 32214918 PMCID: PMC7089068 DOI: 10.1007/s11101-014-9376-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/02/2014] [Indexed: 06/04/2023]
Abstract
Paulownia tomentosa, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of P. tomentosa plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like protease. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidases. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure-activity relationships that have been worked out for them.
Collapse
Affiliation(s)
- Kristýna Schneiderová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| |
Collapse
|