51
|
Ohayon S, Refua M, Hendler A, Aharoni A, Brik A. Harnessing the oxidation susceptibility of deubiquitinases for inhibition with small molecules. Angew Chem Int Ed Engl 2014; 54:599-603. [PMID: 25327786 DOI: 10.1002/anie.201408411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 01/08/2023]
Abstract
Deubiquitinases (DUBs) counteract ubiquitination by removing or trimming ubiquitin chains to alter the signal. Their diverse role in biological processes and involvement in diseases have recently attracted great interest with regard to their mechanism and inhibition. It has been shown that some DUBs are regulated by reactive oxygen species (ROS) in which the catalytic Cys residue undergoes reversible oxidation, hence modulating DUBs activity under oxidative stress. Reported herein for the first time, the observation that small molecules, which are capable of generating ROS efficiently, inhibit DUBs by selective and nonreversible oxidation of the catalytic Cys residue. Interestingly, the small molecule beta-lapachone, which is currently in clinical trials for cancer, is among the potent inhibitors, thus suggesting possible new cellular targets for its therapeutic effects. Our study describes a novel mechanism of DUBs inhibition and opens new opportunities in exploiting them for cancer therapy.
Collapse
Affiliation(s)
- Shimrit Ohayon
- Department of Chemistry, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501 (Israel)
| | | | | | | | | |
Collapse
|
52
|
Wondrak GT, Lobato-Gil S, Aillet F, Lang V, Rodriguez MS. The Ubiquitin-Proteasome System (UPS) as a Cancer Drug Target: Emerging Mechanisms and Therapeutics. STRESS RESPONSE PATHWAYS IN CANCER 2014. [PMCID: PMC7121086 DOI: 10.1007/978-94-017-9421-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) plays an important role in the setting of the cellular response to multiple stress signals. Although the primary function of ubiquitin was initially associated with proteolysis, it is now considered as a key regulator of protein function controlling, among other functions, signalling cascades, transcription, apoptosis or oncogenesis. Failure at any level of the UPS is associated with the development of multiple pathologies including metabolic problems, immune diseases, inflammation and cancer. The successful use of the proteasome inhibitor Bortezomib (Velcade) in the treatment of multiple myeloma (MM) and mantle cell lymphoma (MCL) revealed the potential of the UPS as pharmacological target. Ten years later, new inhibitors tackling not only the proteasome but also different subsets of enzymes which conjugate or de-conjugate ubiquitin or ubiquitin-like molecules, have been developed. Most of them are excellent tools to characterize better the emerging molecular mechanisms regulating distinct critical cellular processes. Some of them have been launched already while many others are still in pre-clinical development. This chapter updates some of the most successful efforts to develop and characterize inhibitors of the UPS which tackle mechanisms involved in cancer. Particular attention has been dedicated to updating the status of the clinical trials of these inhibitors.
Collapse
Affiliation(s)
- Georg T. Wondrak
- Dept. of Pharmacology and Toxicology, Univ. of Arizona, College of Pharm. & The Univ. of Arizona Cancer Ctr., Tucson, Arizona USA
| | | | | | | | | |
Collapse
|
53
|
A ubiquitin shuttle DC-UbP/UBTD2 reconciles protein ubiquitination and deubiquitination via linking UbE1 and USP5 enzymes. PLoS One 2014; 9:e107509. [PMID: 25207809 PMCID: PMC4160250 DOI: 10.1371/journal.pone.0107509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/12/2014] [Indexed: 11/19/2022] Open
Abstract
The ubiquitination levels of protein substrates in eukaryotic cells are delicately orchestrated by various protein cofactors and enzymes. Dendritic cell-derived ubiquitin (Ub)-like protein (DC-UbP), also named as Ub domain-containing protein 2 (UBTD2), is a potential Ub shuttle protein comprised of a Ub-like (UbL) domain and a Ub-binding domain (UBD), but its biological function remains largely unknown. We identified two Ub-related enzymes, the deubiquitinating enzyme USP5 and the Ub-activating enzyme UbE1, as interacting partners of DC-UbP from HEK 293T cells. Biochemical studies revealed that the tandem UBA domains of USP5 and the C-terminal Ub-fold domain (UFD) of UbE1 directly interacted with the C-terminal UbL domain of DC-UbP but on the distinct surfaces. Overexpression of DC-UbP in HEK 293T cells enhanced the association of these two enzymes and thus prompted cellular ubiquitination, whereas knockdown of the protein reduced the cellular ubiquitination level. Together, DC-UbP may integrate the functions of USP5 and UbE1 through interacting with them, and thus reconcile the cellular ubiquitination and deubiquitination processes.
Collapse
|
54
|
Cell death and deubiquitinases: perspectives in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435197. [PMID: 25121098 PMCID: PMC4119901 DOI: 10.1155/2014/435197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.
Collapse
|
55
|
Abstract
New therapeutic opportunities may arise as a result of discovering the determinants of breast cancer progression.
Collapse
Affiliation(s)
- Li Ma
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
56
|
Sokratous K, Hadjisavvas A, Diamandis EP, Kyriacou K. The role of ubiquitin-binding domains in human pathophysiology. Crit Rev Clin Lab Sci 2014; 51:280-90. [PMID: 24901807 DOI: 10.3109/10408363.2014.915287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.
Collapse
|
57
|
USP8 modulates ubiquitination of LRIG1 for Met degradation. Sci Rep 2014; 4:4980. [PMID: 24828152 PMCID: PMC4021411 DOI: 10.1038/srep04980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/28/2014] [Indexed: 11/09/2022] Open
Abstract
The Met receptor tyrosine kinase is an attractive target for cancer therapy as it promotes invasive tumor growth. SAIT301 is a novel anti-Met antibody, which induces LRIG1-mediated Met degradation and inhibits tumor growth. However, detailed downstream mechanism by which LRIG1 mediates target protein down-regulation is unknown. In the present study, we discovered that SAIT301 induces ubiquitination of LRIG1, which in turn promotes recruitment of Met and LRIG1 complex to the lysosome through its interaction with Hrs, resulting in concomitant degradation of both LRIG1 and Met. We also identified USP8 as a LRIG1-specific deubiquitinating enzyme, reporting the interaction between USP8 and LRIG1 for the first time. SAIT301 triggers degradation of LRIG1 by inhibiting the interaction of LRIG1 and USP8, which regulates ubiquitin modification and stability of LRIG1. In summary, SAIT301 employs ubiquitination of LRIG1 for its highly effective Met degradation. This unique feature of SAIT301 enables it to function as a fully antagonistic antibody without Met activation. We found that USP8 is involved in deubiquitination of LRIG1, influencing the efficiency of Met degradation. The relation of Met, LRIG1 and USP8 strongly supports the potential clinical benefit of a combination treatment of a USP8 inhibitor and a Met inhibitor, such as SAIT301.
Collapse
|
58
|
Jacq X, Kemp M, Martin NMB, Jackson SP. Deubiquitylating enzymes and DNA damage response pathways. Cell Biochem Biophys 2014; 67:25-43. [PMID: 23712866 PMCID: PMC3756857 DOI: 10.1007/s12013-013-9635-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalent post-translational modification of proteins by ubiquitin and ubiquitin-like factors has emerged as a general mechanism to regulate myriad intra-cellular processes. The addition and removal of ubiquitin or ubiquitin-like proteins from factors has recently been demonstrated as a key mechanism to modulate DNA damage response (DDR) pathways. It is thus, timely to evaluate the potential for ubiquitin pathway enzymes as DDR drug targets for therapeutic intervention. The synthetic lethal approach provides exciting opportunities for the development of targeted therapies to treat cancer: most tumours have lost critical DDR pathways, and thus rely more heavily on the remaining pathways, while normal tissues are still equipped with all DDR pathways. Here, we review key deubiquitylating enzymes (DUBs) involved in DDR pathways, and describe how targeting DUBs may lead to selective therapies to treat cancer patients.
Collapse
Affiliation(s)
- Xavier Jacq
- MISSION Therapeutics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | | | | | | |
Collapse
|
59
|
Nicholson B, Kumar S, Agarwal S, Eddins MJ, Marblestone JG, Wu J, Kodrasov MP, LaRocque JP, Sterner DE, Mattern MR. Discovery of Therapeutic Deubiquitylase Effector Molecules. ACTA ACUST UNITED AC 2014; 19:989-99. [DOI: 10.1177/1087057114527312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/14/2014] [Indexed: 12/28/2022]
Abstract
The approval of proteasome inhibitors bortezomib and carfilzomib and the E3 ligase antagonist thalidomide and its analogs, lenalidomide and pomalidomide, validates the ubiquitin–proteasome pathway as a source of novel drugs for treating cancer and, potentially, a variety of devastating illnesses, including inflammation, cardiovascular disease, and neurodegenerative disease. All elements of this critical regulatory pathway—the proteasome itself, E3 ligases (which conjugate ubiquitin to target proteins), and deubiquitylating enzymes (which deconjugate ubiquitin, reversing ligase action)—are potential therapeutic targets, and all have been worked on extensively during the past decade. No deubiquitylase inhibitors or activators have yet progressed to clinical trial, however, despite compelling target validation and several years of high-throughput screening and preclinical development of hits by numerous pharmaceutical companies, biotechnology organizations, and academic groups. The appropriateness of deubiquitylases as therapeutic targets in many disease areas is reviewed, followed by evidence that selective inhibitors of these cysteine proteases can be discovered. Because the lack of progress in drug-discovery efforts with deubiquitylases suggests a need for improved discovery methodologies, currently available platforms and strategies are analyzed, and improved or completely novel, unrelated approaches are considered in terms of their likelihood of producing clinically viable effectors of deubiquitylases.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Wu
- Progenra, Inc., Malvern, PA, USA
| | | | | | | | | |
Collapse
|
60
|
Molland K, Zhou Q, Mesecar AD. A 2.2 Å resolution structure of the USP7 catalytic domain in a new space group elaborates upon structural rearrangements resulting from ubiquitin binding. Acta Crystallogr F Struct Biol Commun 2014; 70:283-7. [PMID: 24598911 PMCID: PMC3944686 DOI: 10.1107/s2053230x14002519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/04/2014] [Indexed: 01/09/2023] Open
Abstract
A sparse-matrix screen for new crystallization conditions for the USP7 catalytic domain (USP7CD) led to the identification of a condition in which crystals grow reproducibly in 24-48 h. Variation of the halide metal, growth temperature and seed-stock concentration resulted in a shift in space group from P21 with two molecules in the asymmetric unit to C2 with one molecule in the asymmetric unit. Representative structures from each space group were determined to 2.2 Å resolution and these structures support previous findings that the catalytic triad and switching loop are likely to be in unproductive conformations in the absence of ubiquitin (Ub). Importantly, the new structures reveal previously unobserved electron density for blocking loop 1 (BL1) residues 410-419. The new structures indicate a distinct rearrangement of the USP7 BL1 compared with its position in the presence of bound Ub.
Collapse
Affiliation(s)
- Katrina Molland
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew D. Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
61
|
Kessler BM. Selective and reversible inhibitors of ubiquitin-specific protease 7: a patent evaluation (WO2013030218). Expert Opin Ther Pat 2014; 24:597-602. [PMID: 24456106 DOI: 10.1517/13543776.2014.882320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The invention described in this review (WO2013030218) relates to compounds based on the quinazolin-4-one scaffold, their process of preparation and applications to inhibit the ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme (DUB), which is considered a potentially important new drug target for treating cancer and immunological disorders. Data are presented indicating that these small-molecule compounds are useful as selective and reversible inhibitors of USP7 in vitro and also in a cellular context, although the panel of other enzymes tested was limited. The synthesis strategy allows for the generation of a considerable variety of compounds, although similar properties of selective USP7 inhibition were reported for other related compound classes, thereby increasing the complexity of the patenting process. However, structural patterns that contribute to the selectivity of USP7 and other DUB enzyme inhibition are starting to emerge. Practical implications involve the treatment of cancer, neurodegenerative diseases, immunological disorders, diabetes, bone and joint diseases, cardiovascular diseases and viral and bacterial infections. The quality of these findings and a comparison to other compound classes with similar properties, as well as the potential for further development toward clinical exploitation are discussed.
Collapse
Affiliation(s)
- Benedikt M Kessler
- University of Oxford, Target Discovery Institute, Nuffield Department of Medicine , Roosevelt Drive, Oxford OX3, 7BN , UK +01 865 631 921 ;
| |
Collapse
|
62
|
Park JJ, Yun JH, Baek KH. Polyclonal and monoclonal antibodies specific for ubiquitin-specific protease 20. Monoclon Antib Immunodiagn Immunother 2014; 32:193-9. [PMID: 23750477 DOI: 10.1089/mab.2012.0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination and deubiquitination are important processes for numerous intracellular mechanisms, and the imbalance of these two processes can cause severe diseases including cancer. Accordingly, deubiquitinating enzymes (DUBs) responsible for deubiquitination from their protein substrates become attractive targets for many studies. USP20, also known as VDU2, belongs to ubiquitin-specific protease (USP) subfamily of DUBs and has several important roles in cells as shown with other DUBs. USP20 stabilizes HIF-1α by abolishing von Hippel-Lindau protein (pVHL)-E3 ligase complex-mediated HIF-1α degradation. USP20 is also associated with β2 adrenergic receptor recycling. In addition, a previous study demonstrated that USP20 regulates Tax-induced NF-κB activation through its deubiquitinating activity. These studies provide a line of evidence that USP20 has critical roles in cellular functions. In this study, we generated and characterized a polyclonal and two monoclonal antibodies against USP20. It is feasible that USP20 antibodies can be useful to investigate USP20-related cellular mechanisms and to find novel substrates of USP20.
Collapse
Affiliation(s)
- Jang-Joon Park
- Department of Biomedical Science, CHA University, CHA General Hospital, Seongnam, Republic of Korea
| | | | | |
Collapse
|
63
|
Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications. Handb Exp Pharmacol 2014; 219:187-203. [PMID: 24292831 DOI: 10.1007/978-3-642-41199-1_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arrestins constitute a small family of four homologous adaptor proteins (arrestins 1-4), which were originally identified as inhibitors of signal transduction elicited by the seven-transmembrane G protein-coupled receptors. Currently arrestins (especially arrestin2 and arrestin3; also called β-arrestin1 and β-arrestin2) are known to be activators of cell signaling and modulators of endocytic trafficking. Arrestins mediate these effects by binding to not only diverse cell-surface receptors but also by associating with a variety of critical signaling molecules in different intracellular compartments. Thus, the functions of arrestins are multifaceted and demand interactions with a host of proteins and require an array of selective conformations. Furthermore, receptor ligands that specifically induce signaling via arrestins are being discovered and their physiological roles are emerging. Recent evidence suggests that the activity of arrestin is regulated in space and time by virtue of its dynamic association with specific enzymes of the ubiquitination pathway. Ubiquitin-dependent, arrestin-mediated signaling could serve as a potential platform for developing novel therapeutic strategies to target transmembrane signaling and physiological responses.
Collapse
|
64
|
A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 2013; 123:706-16. [PMID: 24319254 DOI: 10.1182/blood-2013-05-500033] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibitors have demonstrated that targeting protein degradation is effective therapy in multiple myeloma (MM). Here we show that deubiquitylating enzymes (DUBs) USP14 and UCHL5 are more highly expressed in MM cells than in normal plasma cells. USP14 and UCHL5 short interfering RNA knockdown decreases MM cell viability. A novel 19S regulatory particle inhibitor b-AP15 selectively blocks deubiquitylating activity of USP14 and UCHL5 without inhibiting proteasome activity. b-AP15 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma cells, and overcomes bortezomib resistance. Anti-MM activity of b-AP15 is associated with growth arrest via downregulation of CDC25C, CDC2, and cyclin B1 as well as induction of caspase-dependent apoptosis and activation of unfolded protein response. In vivo studies using distinct human MM xenograft models show that b-AP15 is well tolerated, inhibits tumor growth, and prolongs survival. Combining b-AP15 with suberoylanilide hydroxamic acid, lenalidomide, or dexamethasone induces synergistic anti-MM activity. Our preclinical data showing efficacy of b-AP15 in MM disease models validates targeting DUBs in the ubiquitin proteasomal cascade to overcome proteasome inhibitor resistance and provides the framework for clinical evaluation of USP14/UCHL5 inhibitors to improve patient outcome in MM.
Collapse
|
65
|
USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis 2013; 4:e867. [PMID: 24136231 PMCID: PMC3920959 DOI: 10.1038/cddis.2013.400] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 01/06/2023]
Abstract
Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.
Collapse
|
66
|
Snoek BC, Wilt LHAMD, Jansen G, Peters GJ. Role of E3 ubiquitin ligases in lung cancer. World J Clin Oncol 2013; 4:58-69. [PMID: 23936758 PMCID: PMC3708064 DOI: 10.5306/wjco.v4.i3.58] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/10/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome. Therefore, E3 ubiquitin ligases play an essential role in a variety of biological processes including cell cycle regulation, proliferation and apoptosis. E3 ubiquitin ligases are often found overexpressed in human cancers, including lung cancer, and their deregulation has been shown to contribute to cancer development. However, the lack of specific inhibitors in clinical trials is a major issue in targeting E3 ubiquitin ligases with currently only one E3 ubiquitin ligase inhibitor being tested in the clinical setting. In this review, we focus on E3 ubiquitin ligases that have been found deregulated in lung cancer. Furthermore, we discuss the processes in which they are involved and evaluate them as potential anti-cancer targets. By better understanding the mechanisms by which E3 ubiquitin ligases regulate biological processes and their exact role in carcinogenesis, we can improve the development of specific E3 ubiquitin ligase inhibitors and pave the way for novel treatment strategies for cancer patients.
Collapse
|
67
|
Byun S, Lee SY, Lee J, Jeong CH, Farrand L, Lim S, Reddy K, Kim JY, Lee MH, Lee HJ, Bode AM, Won Lee K, Dong Z. USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin Cancer Res 2013; 19:3894-904. [PMID: 23748694 DOI: 10.1158/1078-0432.ccr-12-3696] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Common treatment modalities for non-small cell lung cancer (NSCLC) involve the EGF receptor-tyrosine kinase inhibitors (EGFR-TKIs) like gefitinib and erlotinib. However, the vast majority of treated patients acquire resistance to EGFR-TKIs, due, in large part, to secondary mutations in EGFR or amplification of the MET gene. Our purpose was to test ubiquitin-specific peptidase 8 (USP8) as a potential therapeutic target for gefitinib-resistant and -sensitive non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Testing the effect of knockdown of USP8 and use of a synthetic USP8 inhibitor to selectively kill gefitinib-resistant (or -sensitive) NSCLCs with little effect on normal cells in cell culture and a xenograft mouse model. RESULTS Knockdown of ubiquitin-specific peptidase 8 (USP8) selectively kills gefitinib-resistant NSCLCs while having little toxicity toward normal cells. Genetic silencing of USP8 led to the downregulation of several receptor tyrosine kinases (RTK) including EGFR, ERBB2, ERBB3, and MET. We also determined that a synthetic USP8 inhibitor markedly decreased the viability of gefitinib-resistant and -sensitive NSCLC cells by decreasing RTK expression while having no effect on normal cells. Moreover, treatment with a USP8 inhibitor led to significant reductions in tumor size in a mouse xenograft model using gefitinib-resistant and -sensitive NSCLC cells. CONCLUSIONS Our results show for the first time that the inhibition of USP8 activity or reduction in USP8 expression can selectively kill NSCLC cells. We propose USP8 as a potential therapeutic target for gefitinib-resistant and -sensitive NSCLC cells.
Collapse
Affiliation(s)
- Sanguine Byun
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Arnst JL, Davies CW, Raja SM, Das C, Natarajan A. High-throughput compatible fluorescence resonance energy transfer-based assay to identify small molecule inhibitors of AMSH deubiquitinase activity. Anal Biochem 2013; 440:71-7. [PMID: 23747283 DOI: 10.1016/j.ab.2013.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022]
Abstract
Deubiquitinases (DUBs) play an important role in regulating the ubiquitin landscape of proteins. The DUB AMSH (associated molecule with the SH3 domain of STAM) has been shown to be involved in regulating the ubiquitin-dependent down-regulation of activated cell surface receptors via the endolysosomal degradative pathway. Therefore, small molecule AMSH inhibitors will be useful chemical probes to study the effect of AMSH DUB activity on cell surface receptor degradation. Currently, there are no known selective inhibitors of AMSH or high-throughput compatible assays for their identification. We report the development and optimization of a novel fluorescence resonance energy transfer (FRET)-based add-and-read AMSH DUB assay in a 384-well format. In this format, the optimal temperature for a high-throughput screen (HTS) was determined to be 30°C, the assay tolerates 5% dimethyl sulfoxide (DMSO), and it has a Z-score of 0.71, indicating HTS compatibility. The assay was used to show that AMSH selectively cleaves Lys63-linked diubiquitin over Lys48- and Lys11-linked diubiquitin. The IC50 value of the nonspecific small molecule DUB inhibitor N-ethylmaleimide was 16.2±3.2 μM and can be used as a qualitative positive control for the screen. We conclude that this assay is high-throughput compatible and can be used to identify novel small molecule inhibitors of AMSH.
Collapse
Affiliation(s)
- Jamie L Arnst
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
69
|
Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY. The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:726-738. [PMID: 23071855 PMCID: PMC3466981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Accumulated evidence supports that the ubiquitin proteasome pathway (UPP) plays a crucial role in protein metabolism implicated in the regulation of many biological processes such as cell cycle control, DNA damage response, apoptosis, and so on. Therefore, alterations for the ubiquitin proteasome signaling or functional impairments for the ubiquitin proteasome components are involved in the etiology of many diseases, particularly in cancer development. In this minireview, we first give a brief outline for the ubiquitin proteasome pathway, we then discuss with focus for the ubiquitin proteasome pathway in the regulation of cell cycle control and DNA damage response, the relevance for the altered regulation of these signaling pathways in tumorigenesis is also reviewed. We finally assess and summarize the advancement for targeting the ubiquitin proteasome pathway in cancer therapy. A better understanding of the biological functions underlying ubiquitin regulatory mechanisms would provide us a wider prospective on cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Cai Chen
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Junru Pan
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
| | - Junfa Xu
- The Department of Clinical Immunology, Guangdong Medical College1 Xincheng Ave. Dongguan, 523808, Guangdong, China
| | - Zhi-Guang Zhou
- Diabetes Center, the Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Central South UniversityChangsha, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan 430030, China
- The Department of Clinical Immunology, Guangdong Medical College1 Xincheng Ave. Dongguan, 523808, Guangdong, China
- The Center for Biotechnology & Genomic Medicine, Georgia Health Sciences University1120 15th Street, CA4098, Augusta, GA 30912, USA
| |
Collapse
|
70
|
Chauhan D, Tian Z, Nicholson B, Kumar KGS, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, Weinstock J, Kingsbury WD, Hideshima T, Shah PK, Minvielle S, Altun M, Kessler BM, Orlowski R, Richardson P, Munshi N, Anderson KC. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 2012; 22:345-58. [PMID: 22975377 PMCID: PMC3478134 DOI: 10.1016/j.ccr.2012.08.007] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/03/2012] [Accepted: 08/09/2012] [Indexed: 12/17/2022]
Abstract
Bortezomib therapy has proven successful for the treatment of relapsed/refractory, relapsed, and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance limit its long-term utility. Here, we show that P5091 is an inhibitor of deubiquitylating enzyme USP7, which induces apoptosis in MM cells resistant to conventional and bortezomib therapies. Biochemical and genetic studies show that blockade of HDM2 and p21 abrogates P5091-induced cytotoxicity. In animal tumor model studies, P5091 is well tolerated, inhibits tumor growth, and prolongs survival. Combining P5091 with lenalidomide, HDAC inhibitor SAHA, or dexamethasone triggers synergistic anti-MM activity. Our preclinical study therefore supports clinical evaluation of USP7 inhibitor, alone or in combination, as a potential MM therapy.
Collapse
Affiliation(s)
- Dharminder Chauhan
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (D.C.), (K.C.A.)
| | - Ze Tian
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Bin Zhou
- Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruben Carrasco
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Mariaterresa Fulcinniti
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Teru Hideshima
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Parantu K. Shah
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Mikael Altun
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Robert Orlowski
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Richardson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nikhil Munshi
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Veterans Administration Boston Healthcare System, Boston, MA 02115, USA
| | - Kenneth C. Anderson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (D.C.), (K.C.A.)
| |
Collapse
|
71
|
Orcutt SJ, Wu J, Eddins MJ, Leach CA, Strickler JE. Bioluminescence assay platform for selective and sensitive detection of Ub/Ubl proteases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2079-86. [PMID: 22705352 DOI: 10.1016/j.bbamcr.2012.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/16/2022]
Abstract
As the importance of ubiquitylation in certain disease states becomes increasingly apparent, the enzymes responsible for removal of ubiquitin (Ub) from target proteins, deubiquitylases (DUBs), are becoming attractive targets for drug discovery. For rapid identification of compounds that alter DUB function, in vitro assays must be able to provide statistically robust data over a wide dynamic range of both substrate and enzyme concentrations during high throughput screening (HTS). The most established reagents for HTS are Ubs with a quenched fluorophore conjugated to the C-terminus; however, a luciferase-based strategy for detecting DUB activity (DUB-Glo™, Promega) provides a wider dynamic range than traditional fluorogenic reagents. Unfortunately, this assay requires high enzyme concentrations and lacks specificity for DUBs over other isopeptidases (e.g. desumoylases), as it is based on an aminoluciferin (AML) derivative of a peptide derived from the C-terminus of Ub (Z-RLRGG-). Conjugation of aminoluciferin to a full-length Ub (Ub-AML) yields a substrate that has a wide dynamic range, yet displays detection limits for DUBs 100- to 1000-fold lower than observed with DUB-Glo™. Ub-AML was even a sensitive substrate for DUBs (e.g. JosD1 and USP14) that do not show appreciable activity with DUB-Glo™. Aminoluciferin derivatives of hSUMO2 and NEDD8 were also shown to be sensitive substrates for desumoylases and deneddylases, respectively. Ub/Ubl-AML substrates are amenable to HTS (Z'=0.67) yielding robust signal, and providing an alternative drug discovery platform for Ub/Ubl isopeptidases. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Collapse
|
72
|
Fang W, Price MS, Toffaletti DL, Tenor J, Betancourt-Quiroz M, Price JL, Pan WH, Liao WQ, Perfect JR. Pleiotropic effects of deubiquitinating enzyme Ubp5 on growth and pathogenesis of Cryptococcus neoformans. PLoS One 2012; 7:e38326. [PMID: 22719877 PMCID: PMC3375289 DOI: 10.1371/journal.pone.0038326] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host.
Collapse
Affiliation(s)
- Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Price
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dena L. Toffaletti
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer Tenor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marisol Betancourt-Quiroz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer L. Price
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-hua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-qing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (JRP); (W-QL)
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JRP); (W-QL)
| |
Collapse
|
73
|
|
74
|
Spasser L, Brik A. Chemistry and Biology of the Ubiquitin Signal. Angew Chem Int Ed Engl 2012; 51:6840-62. [DOI: 10.1002/anie.201200020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 01/07/2023]
|
75
|
Mattern MR, Wu J, Nicholson B. Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors vs surgical strikes with E1, E2, E3, or DUB inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2014-21. [PMID: 22610084 PMCID: PMC7127515 DOI: 10.1016/j.bbamcr.2012.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/30/2022]
Abstract
The proteasome inhibitor bortezomib remains the only ubiquitin pathway effector to become a drug (VELCADE®) and has become a successful treatment for hematological malignancies. While producing a global cellular effect, proteasome inhibitors have not triggered the catastrophe articulated initially in terms such as “buildup of cellular garbage”. Proteasome inhibitors, in fact, do have a therapeutic window, although in the case of the prototype bortezomib it is small owing to peripheral neuropathy, myelosuppression and, as recently reported, cardiotoxicity [1]. Currently, several second-generation molecules are undergoing clinical evaluation to increase this window. An alternative strategy is to target ubiquitin pathway enzymes acting at non-proteasomal sites—E1, E2, and E3, associated with ubiquitin conjugation, and deubiquitylating enzymes (“DUBs”)—that act locally on selected targets rather than on the whole cell. Inhibitors (or activators, in some cases) of these enzymes should be developable as selective antitumor agents with toxicity profiles superior to that of bortezomib. Various therapeutic hypotheses follow from known cellular mechanisms of these target enzymes; most hypotheses relate to cancer, reminiscent of the FDA-approved protein kinase inhibitors now marketed. Since ubiquitin tagging controls the cellular content, activity, or compartmentation of proteins associated with disease, inhibitors or activators of ubiquitin conjugation or deconjugation are predicted to have an impact on disease. For practical and empirical reasons, inhibitors of ubiquitin pathway enzymes have been the favored therapeutic avenue. In approximately the time that has elapsed since the approval of bortezomib in 2003, there has been some progress in developing potential anticancer drugs that target various ubiquitin pathway enzymes. An E1 inhibitor and inhibitors of E3 are now in clinical trial, with some objective responses reported. Appropriate assays and/or rational design may uncover improved inhibitors of these enzymes, as well as E2 and DUBs, for further development. Presently, it should become clear whether one or both of the two general strategies for ubiquitin-based drug discovery will lead to truly superior new medicines for cancer and other diseases. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Collapse
|
76
|
Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KGS, Konietzny R, Fischer R, Kogan E, Mackeen MM, McGouran J, Khoronenkova SV, Parsons JL, Dianov GL, Nicholson B, Kessler BM. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. ACTA ACUST UNITED AC 2012; 18:1401-12. [PMID: 22118674 DOI: 10.1016/j.chembiol.2011.08.018] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 12/30/2022]
Abstract
Converting lead compounds into drug candidates is a crucial step in drug development, requiring early assessment of potency, selectivity, and off-target effects. We have utilized activity-based chemical proteomics to determine the potency and selectivity of deubiquitylating enzyme (DUB) inhibitors in cell culture models. Importantly, we characterized the small molecule PR-619 as a broad-range DUB inhibitor, and P22077 as a USP7 inhibitor with potential for further development as a chemotherapeutic agent in cancer therapy. A striking accumulation of polyubiquitylated proteins was observed after both selective and general inhibition of cellular DUB activity without direct impairment of proteasomal proteolysis. The repertoire of ubiquitylated substrates was analyzed by tandem mass spectrometry, identifying distinct subsets for general or specific inhibition of DUBs. This enabled identification of previously unknown functional links between USP7 and enzymes involved in DNA repair.
Collapse
Affiliation(s)
- Mikael Altun
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7DQ
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ohayon S, Spasser L, Aharoni A, Brik A. Targeting deubiquitinases enabled by chemical synthesis of proteins. J Am Chem Soc 2012; 134:3281-9. [PMID: 22279964 DOI: 10.1021/ja2116712] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ubiquitination/ubiquitylation is involved in a wide range of cellular processes in eukaryotes, such as protein degradation and DNA repair. Ubiquitination is a reversible post-translational modification, with the removal of the ubiquitin (Ub) protein being catalyzed by a family of enzymes known as deubiquitinases (DUBs). Approximately 100 DUBs are encoded in the human genome and are involved in a variety of regulatory processes, such as cell-cycle progression, tissue development, and differentiation. DUBs were, moreover, found to be associated with several diseases and as such are emerging as potential therapeutic targets. Several directions have been pursued in the search for lead anti-DUB compounds. However, none of these strategies have delivered inhibitors reaching advanced clinical stages due to several challenges in the discovery process, such as the absence of a highly sensitive and practically available high-throughput screening assay. In this study, we report on the design and preparation of a FRET-based assay for DUBs based on the application of our recent chemical method for the synthesis of Ub bioconjugates. In the assay, the ubiquitinated peptide was specifically labeled with a pair of FRET labels and used to screen a library comprising 1000 compounds against UCH-L3. Such analysis identified a novel and potent inhibitor able to inhibit this DUB in time-dependent manner with k(inact) = 0.065 min(-1) and K(i) = 0.8 μM. Our assay, which was also found suitable for the UCH-L1 enzyme, should assist in the ongoing efforts targeting the various components of the ubiquitin system and studying the role of DUBs in health and disease.
Collapse
Affiliation(s)
- Shimrit Ohayon
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | |
Collapse
|
78
|
García-Santisteban I, Bañuelos S, Rodríguez JA. A global survey of CRM1-dependent nuclear export sequences in the human deubiquitinase family. Biochem J 2012; 441:209-17. [PMID: 21888622 DOI: 10.1042/bj20111300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP-USP21 and, to a lesser extent, GFP-OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain
| | | | | |
Collapse
|
79
|
Edelmann MJ, Nicholson B, Kessler BM. Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases. Expert Rev Mol Med 2011; 13:e35. [PMID: 22088887 PMCID: PMC3219211 DOI: 10.1017/s1462399411002031] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in the development and discovery of pharmacological interventions within the ubiquitin-proteasome system (UPS) have uncovered an enormous potential for possible novel treatments of neurodegenerative disease, cancer, immunological disorder and microbial infection. Interference with proteasome activity, although initially considered unlikely to be exploitable clinically, has already proved to be very effective against haematological malignancies, and more specific derivatives that target subsets of proteasomes are emerging. Recent small-molecule screens have revealed inhibitors against ubiquitin-conjugating and -deconjugating enzymes, many of which have been evaluated for their potential use as therapeutics, either as single agents or in synergy with other drugs. Here, we discuss recent advances in the characterisation of novel UPS modulators (in particular, inhibitors of ubiquitin-conjugating and -deconjugating enzymes) and how they pave the way towards new therapeutic approaches for the treatment of proteotoxic disease, cancer and microbial infection.
Collapse
Affiliation(s)
- Mariola J. Edelmann
- Institute of Genomics, Biocomputing and Biotechnology,
Mississippi Agricultural and Forestry Experimental Station, Mississippi State University,
Mississippi State, MS 39762, USA
| | | | - Benedikt M. Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield
Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
80
|
Abstract
The deubiquitylating enzyme USP7 (HAUSP) sits at a critical node regulating the activities of numerous proteins broadly characterized as tumor suppressors, DNA repair proteins, immune responders, viral proteins, and epigenetic modulators. Aberrant USP7 activity may promote oncogenesis and viral disease making it a compelling target for therapeutic intervention. Disclosed drug discovery programs have identified inhibitors of USP7 such as P005091 with cellular proof of concept and anti-proliferative activity in cancer models. Taken together, USP7 inhibitors hold promise as a new strategy for the treatment of disease.
Collapse
|
81
|
Wrigley JD, Eckersley K, Hardern IM, Millard L, Walters M, Peters SW, Mott R, Nowak T, Ward RA, Simpson PB, Hudson K. Enzymatic characterisation of USP7 deubiquitinating activity and inhibition. Cell Biochem Biophys 2011; 60:99-111. [PMID: 21468692 DOI: 10.1007/s12013-011-9186-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
USP7 (HAUSP) is a deubiquitinating enzyme, which plays a crucial role in regulating the levels of the p53 tumour suppressor protein, through its ability to prevent the proteasomal degradation of the Ubiquitin ligase for p53, Hdm2. Supporting evidence suggests that an inhibitor of USP7 would act to abrogate the action of Hdm2, and thereby elevate levels of the p53 protein, with associated therapeutic benefits in cancer and potentially other diseases. In this article, we describe the characterisation of differential enzyme activity of both the full length and putative catalytic domain of human USP7 expressed in both bacterial and insect cell expression systems. We also demonstrate the way in which variations in the reducing environment surrounding the enzyme can dramatically affect both the stability of the enzyme and the range of small molecules able to inhibit the catalytic activity of the enzyme. Furthermore, we describe the validation and use of this assay for a high-throughput screening approach, again highlighting the critical nature of the enzyme's environment. Taken together, these findings not only increase our understanding of the enzymatic activity of deubiquitinating enzymes, but also highlight several key considerations of importance in the development of therapeutic agents against this novel class of therapeutic targets.
Collapse
Affiliation(s)
- Jonathan D Wrigley
- Oncology iMed, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Protein microarrays for the identification of praja1 e3 ubiquitin ligase substrates. Cell Biochem Biophys 2011; 60:127-35. [PMID: 21461837 DOI: 10.1007/s12013-011-9180-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although they are the primary determinants of substrate specificity, few E3-substrate pairs have been positively identified, and few E3's profiled in a proteomic fashion. Praja1 is an E3 implicated in bone development and highly expressed in brain. Although it has been well studied relative to the majority of E3's, little is known concerning the repertoire of proteins it ubiquitylates. We sought to identify high confidence substrates for Praja1 from an unbiased proteomic profile of thousands of human proteins using protein microarrays. We first profiled Praja1 activity against a panel of E2's to identify its optimal partner in vitro. We then ubiquitylated multiple, identical protein arrays and detected putative substrates with reagents that vary in ubiquitin recognition according to the extent of chain formation. Gene ontology clustering identified putative substrates consistent with information previously known about Praja1 function, and provides clues into novel aspects of this enzyme's function.
Collapse
|
83
|
Kapuria V, Levitzki A, Bornmann WG, Maxwell D, Priebe W, Sorenson RJ, Showalter HD, Talpaz M, Donato NJ. A novel small molecule deubiquitinase inhibitor blocks Jak2 signaling through Jak2 ubiquitination. Cell Signal 2011; 23:2076-85. [PMID: 21855629 DOI: 10.1016/j.cellsig.2011.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/30/2022]
Abstract
AG490 is a tyrosine kinase inhibitor with activity against Jak2 and apoptotic activity in specific leukemias. Due to its weak kinase inhibitory activity and poor pharmacology, we conducted a cell-based screen for derivatives with improved Jak2 inhibition and activity in animals. Two hits emerged from an initial small chemical library screen, and more detailed structure-activity relationship studies led to the development of WP1130 with 50-fold greater activity in suppressing Jak2-dependent cytokine signaling than AG490. However, WP1130 did not directly suppress Jak2 kinase activity, but mediated Jak2 ubiquitination resulting in its trafficking through HDAC6 to perinuclear aggresomes without cytokine stimulation or SOCS-1 induction. Jak2 primarily contained K63-linked ubiquitin polymers, and mutation of this lysine blocked Jak2 ubiquitination and mobilization in WP1130-treated cells. Further analysis demonstrated that WP1130, but not AG490, acts as a deubiquitinating enzyme (DUB) inhibitor, possibly through a Michael addition reaction. We conclude that chemical modification of AG490 resulted in development of a DUB inhibitor with activity against a DUB capable of modulating Jak2 ubiquitination, trafficking and signal transduction.
Collapse
Affiliation(s)
- Vaibhav Kapuria
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W, Boutros M. An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer 2011; 129:607-18. [PMID: 21480224 DOI: 10.1002/ijc.26124] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor necrosis factor α (TNF-α) signaling pathways play important roles during tumorigenesis and inflammation. Ubiquitin-dependent processes are central to the regulation of TNF-α and nuclear factor κB (NF-κB) signaling. We performed a targeted siRNA screen for ubiquitin-specific proteases (USPs) and identified USP2 as a modulator of TNF-α-induced NF-κB signaling. We showed that USP2 is required for the phosphorylation of IκB, nuclear translocation of NF-κB and expression of NF-κB-dependent target genes and IL-8 secretion. Our study also provides evidence for isoform-specific functions of USP2. The immunohistochemical analysis of breast carcinomas revealed that USP2 expression is frequently downregulated. Together, our results implicate USP2 as a novel positive regulator of TNF-α-induced NF-κB signaling and show that its expression is altered in tumor cells.
Collapse
Affiliation(s)
- Marie Metzig
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department for Cell and Molecular Biology, Faculty for Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
85
|
Le Faouder J, Laouirem S, Chapelle M, Albuquerque M, Belghiti J, Degos F, Paradis V, Camadro JM, Bedossa P. Imaging Mass Spectrometry Provides Fingerprints for Distinguishing Hepatocellular Carcinoma from Cirrhosis. J Proteome Res 2011; 10:3755-65. [DOI: 10.1021/pr200372p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julie Le Faouder
- Institut Fédératif de Recherche Claude Bernard, Université Paris-Diderot, Paris, France
- - INSERM U773, Université Paris-Diderot, Paris, France
| | | | - Manuel Chapelle
- Mass Spectrometry Facility, Jacques Monod Institute, UMR7592 Université Paris-Diderot - CNRS, Paris, France
| | | | - Jacques Belghiti
- Department of Liver Surgery, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| | - Françoise Degos
- Department of Hepatology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| | - Valérie Paradis
- - INSERM U773, Université Paris-Diderot, Paris, France
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| | - Jean-Michel Camadro
- Mass Spectrometry Facility, Jacques Monod Institute, UMR7592 Université Paris-Diderot - CNRS, Paris, France
- Molecular and Cellular Pathology Program, Jacques Monod Institute, UMR7592 Université Paris-Diderot - CNRS, Paris, France
| | - Pierre Bedossa
- - INSERM U773, Université Paris-Diderot, Paris, France
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris and Université Paris-Diderot, France
| |
Collapse
|
86
|
Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 2011; 12:439-52. [PMID: 21697901 DOI: 10.1038/nrm3143] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proper regulation of apoptosis is essential for the survival of multicellular organisms. Furthermore, excessive apoptosis can contribute to neurodegenerative diseases, anaemia and graft rejection, and diminished apoptosis can lead to autoimmune diseases and cancer. It has become clear that the post-translational modification of apoptotic proteins by ubiquitylation regulates key components in cell death signalling cascades. For example, ubiquitin E3 ligases, such as MDM2 (which ubiquitylates p53) and inhibitor of apoptosis (IAP) proteins, and deubiquitinases, such as A20 and ubiquitin-specific protease 9X (USP9X) (which regulate the ubiquitylation and degradation of receptor-interacting protein 1 (RIP1) and myeloid leukaemia cell differentiation 1 (MCL1), respectively), have important roles in apoptosis. Therapeutic agents that target apoptotic regulatory proteins, including those that are part of the ubiquitin-proteasome system, might afford clinical benefits.
Collapse
Affiliation(s)
- Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
87
|
Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling. J Virol 2011; 85:6212-9. [PMID: 21525354 DOI: 10.1128/jvi.00079-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NF-κB plays a key role in innate and acquired immunity. Its activity is regulated through intricate signaling networks. Persistent or excessive activation of NF-κB induces diseases, such as autoimmune disorders and malignant neoplasms. Infection by human T cell leukemia virus type 1 (HTLV-1) causes a fatal hematopoietic malignancy termed adult T cell leukemia (ATL). The HTLV-1 viral oncoprotein Tax functions pivotally in leukemogenesis through its potent activation of NF-κB. Recent findings suggest that protein ubiquitination is crucial for proper regulation of NF-κB signaling and for Tax activity. Here, we report that ubiquitin-specific peptidase USP20 deubiquitinates TRAF6 and Tax and suppresses interleukin 1β (IL-1β)- and Tax-induced NF-κB activation. Our results point to USP20 as a key negative regulator of Tax-induced NF-κB signaling.
Collapse
|
88
|
Luise C, Capra M, Donzelli M, Mazzarol G, Jodice MG, Nuciforo P, Viale G, Di Fiore PP, Confalonieri S. An atlas of altered expression of deubiquitinating enzymes in human cancer. PLoS One 2011; 6:e15891. [PMID: 21283576 PMCID: PMC3026797 DOI: 10.1371/journal.pone.0015891] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 11/29/2010] [Indexed: 12/04/2022] Open
Abstract
Background Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin (Ub) or ubiquitin-like gene products, remodel polyubiquitin(-like) chains on target proteins, and counteract protein ubiquitination exerted by E3 ubiquitin-ligases. A wealth of studies has established the relevance of DUBs to the control of physiological processes whose subversion is known to cause cellular transformation, including cell cycle progression, DNA repair, endocytosis and signal transduction. Altered expression of DUBs might, therefore, subvert both the proteolytic and signaling functions of the Ub system. Methodology/Principal Findings In this study, we report the first comprehensive screening of DUB dysregulation in human cancers by in situ hybridization on tissue microarrays (ISH-TMA). ISH-TMA has proven to be a reliable methodology to conduct this kind of study, particularly because it allows the precise identification of the cellular origin of the signals. Thus, signals associated with the tumor component can be distinguished from those associated with the tumor microenvironment. Specimens derived from various normal and malignant tumor tissues were analyzed, and the “normal” samples were derived, whenever possible, from the same patients from whom tumors were obtained. Of the ∼90 DUBs encoded by the human genome, 33 were found to be expressed in at least one of the analyzed tissues, of which 22 were altered in cancers. Selected DUBs were subjected to further validation, by analyzing their expression in large cohorts of tumor samples. This analysis unveiled significant correlations between DUB expression and relevant clinical and pathological parameters, which were in some cases indicative of aggressive disease. Conclusions/Significance The results presented here demonstrate that DUB dysregulation is a frequent event in cancer, and have implications for therapeutic approaches based on DUB inhibition.
Collapse
Affiliation(s)
- Chiara Luise
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Maria Capra
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | - Paolo Nuciforo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Giuseppe Viale
- Istituto Europeo di Oncologia, Milan, Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- Istituto Europeo di Oncologia, Milan, Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Milan, Italy
- * E-mail: (PPDF); (SC)
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- * E-mail: (PPDF); (SC)
| |
Collapse
|
89
|
Gannavaram S, Sharma P, Duncan RC, Salotra P, Nakhasi HL. Mitochondrial associated ubiquitin fold modifier-1 mediated protein conjugation in Leishmania donovani. PLoS One 2011; 6:e16156. [PMID: 21264253 PMCID: PMC3021533 DOI: 10.1371/journal.pone.0016156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/10/2010] [Indexed: 11/25/2022] Open
Abstract
In this report, we demonstrate the existence of the ubiquitin fold modifier-1 (Ufm1) and its conjugation pathway in trypanosomatid parasite Leishmania donovani. LdUfm1 is activated by E1-like enzyme LdUba5. LdUfc1 (E2) specifically interacted with LdUfm1 and LdUba5 to conjugate LdUfm1 to proteinaceous targets. Mass spectrometry analysis revealed that LdUfm1 is conjugated to Leishmania protein targets that are associated with mitochondria. Immunofluorescence experiments showed that Leishmania Ufm1, Uba5 and Ufc1 are associated with the mitochondria. The demonstration that all the components of this system as well as the substrates are associated with mitochondrion suggests it may have physiological roles not yet described in any other organism. Overexpression of a non-conjugatable form of LdUfm1 and an active site mutant of LdUba5 resulted in reduced survival of Leishmania in the macrophage. Since mitochondrial activities are developmentally regulated in the life cycle of trypanosomatids, Ufm1 mediated modifications of mitochondrial proteins may be important in such regulation. Thus, Ufm1 conjugation pathway in Leishmania could be explored as a potential drug target in the control of Leishmaniasis.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Paresh Sharma
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Robert C. Duncan
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Poonam Salotra
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
- * E-mail: (HLN); (PS)
| | - Hira L. Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (HLN); (PS)
| |
Collapse
|
90
|
Tian X, Isamiddinova NS, Peroutka RJ, Goldenberg SJ, Mattern MR, Nicholson B, Leach C. Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drug Dev Technol 2010; 9:165-73. [PMID: 21133675 DOI: 10.1089/adt.2010.0317] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reversible conjugation of ubiquitin and ubiquitin-like (UbL) proteins to protein substrates plays a critical role in the regulation of many cellular pathways. The removal of ubiquitin from target proteins is performed by ubiquitin proteases also known as deubiquitylases (DUBs). Owing to their substrate specificity and the central role ubiquitylation plays in cell signaling pathways, DUB are attractive targets for therapeutic development. The development of DUB inhibitors requires assays that are amenable to high-throughput screening and provide rapid assessment of inhibitor selectivity. Determination of inhibitor selectivity at an early stage of drug discovery will reduce drug failure in the clinic as well as reduce overall drug development costs. We have developed two novel assays, UbL-Enterokinase light chain and UbL-Granzyme B, for quantifying ubiquitin and UbL protease activity. In our quest to discover and characterize novel chemical entities, we have combined these assays with a previously developed assay in a multiplex format. This multiplex format allows for the detection of three distinct protease activities simultaneously, in a single well. We have demonstrated that the multiplex format is able to distinguish between selective and nonselective protease inhibitors. Specifically, we have used this assay format to characterize P022077, a selective ubiquitin-specific protease 7 inhibitor discovered at Progenra.
Collapse
Affiliation(s)
- Xufan Tian
- Division of Research and Development, Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
K48- and K63-linked polyubiquitination of deubiquitinating enzyme USP44. Cell Biol Int 2010; 34:799-808. [PMID: 20402667 DOI: 10.1042/cbi20090144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ubiquitination and deubiquitination have a critical role in protein homoeostasis in the cell. Here, we have characterized a novel USP44 (ubiquitin-specific protease 44), which has a ZnF-UBP (zinc-finger ubiquitin-specific protease) domain and conserved cysteine, histidine and asparagine/aspartic acid residues characteristic of deubiquitinating enzymes. The biochemical assay revealed that USP44 can cleave ubiquitin from ubiquitinated substrates both in vitro and in vivo. Further, USP44 undergoes both lysine 48- and lysine 63-linked polyubiquitination. In situ hybridization using mouse tissues showed a basal detection level in all organs tested, with strong detection in lung, pancreas, skin, liver, stomach and intestine. RT-PCR (reverse-transcription PCR) analysis showed high levels of detection of USP44 mRNA in testis, spleen, lung, stomach and ovary. Furthermore, we raised a polyclonal antibody against USP44 and checked its endogenous protein expression in different cell lines. A localization study of USP44 showed its predominant expression in the nucleus.
Collapse
|
92
|
Ramakrishna S, Suresh B, Kang IC, Baek KH. Polyclonal and Monoclonal Antibodies Specific for USP17, a Proapoptotic Deubiquitinating Enzyme. Hybridoma (Larchmt) 2010; 29:311-9. [DOI: 10.1089/hyb.2010.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul, Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul, Korea
| | - In-Cheol Kang
- Department of Biological Science, Hoseo University, Asan, Chungnam, Korea
- InnoPharmaScreen Inc., Asan, Chungnam, Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul, Korea
| |
Collapse
|
93
|
Zhao B, Schlesiger C, Masucci MG, Lindsten K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J Cell Mol Med 2009. [DOI: 10.1111/j.1582-4934.2008.00682.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Schlesiger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lindsten
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
94
|
Abstract
Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.
Collapse
|
95
|
Breaking the chains: structure and function of the deubiquitinases. NATURE REVIEWS. MOLECULAR CELL BIOLOGY 2009. [PMID: 19626045 DOI: 10.1038/nrm2731)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.
Collapse
|
96
|
Chen X, Chou CY, Chang GG. Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme. Antivir Chem Chemother 2009; 19:151-6. [PMID: 19374142 DOI: 10.1177/095632020901900402] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the search for effective therapeutics against severe acute respiratory syndrome (SARS), 6-mercaptopurine (6MP) and 6-thioguanine (6TG) were found to be specific inhibitors for the SARS-coronavirus (CoV) papain-like protease (PLpro), a cysteine protease with deubiquitinating and deISGylating activity. 6MP and 6TG have long been used in cancer chemotherapy for treatment of acute lymphoblastic or myeloblastic leukaemia. Development and optimization of 6MP and 6TG will not only be important for antiviral studies, but also for further elucidating the biological functions of cellular deubiquitinating enzymes (DUBs) and deISGylating enzymes. So far, several crystal structures of cellular DUBs have been solved. Structure comparison has been carried out to search for DUBs with a similar structure to that of PLpro, and we have tried to dock 6MP and 6TG into these DUBs to investigate the potential use of 6MP and 6TG as cellular DUB inhibitors. The best docking score and binding energy for 6MP and 6TG is against ubiquitin-specific protease (USP)14, suggesting that 6MP and 6TG are potential inhibitors of USP14. Finding new usages for old drugs will speed up the process of drug discovery and substantially reduce the cost of drug development.
Collapse
Affiliation(s)
- Xin Chen
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institute, Miaoli, Taiwan
| | | | | |
Collapse
|
97
|
Love KR, Pandya RK, Spooner E, Ploegh HL. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery. ACS Chem Biol 2009; 4:275-87. [PMID: 19256548 DOI: 10.1021/cb9000348] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific destruction of proteins. Deubiquitinating enzymes (DUBs) deconjugate substrates modified with Ub/Ubl's and recycle Ub inside the cell. Genome mining based on sequence homology to proteins with known function has assigned many enzymes to this pathway without confirmation of either conjugating or DUB activity. Function-dependent methodologies are still the most useful for rapid identification or assessment of biological activity of expressed proteins from cells. Activity-based protein profiling uses chemical probes that are active-site-directed for the classification of protein activities in complex mixtures. Here we show that the design and use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and DUBs with previously unverified activity. We show that epitope-tagged Ub-electrophilic probes can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity studies of purified enzymes identified from complex mixtures in cell lysate. Furthermore, the reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of Ub to self or to a substrate protein.
Collapse
Affiliation(s)
- Kerry Routenberg Love
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02143
| | - Renuka K. Pandya
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02143
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02143
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02143
| |
Collapse
|
98
|
Strategies for the identification of novel inhibitors of deubiquitinating enzymes. Biochem Soc Trans 2008; 36:828-32. [PMID: 18793145 DOI: 10.1042/bst0360828] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dysregulation of the UPS (ubiquitin-proteasome system) has been implicated in a wide range of pathologies including cancer, neurodegeneration and viral infection. Inhibiting the proteasome has been shown to be an effective therapeutic strategy in humans; yet toxicity with this target remains high. DUBs (deubiquitinating enzymes) represent an alternative target in the UPS with low predicted toxicity. Currently, there are no DUB inhibitors that have been used clinically. To address this situation, Progenra has developed a novel assay to measure the proteolytic cleavage of Ub (ubiquitin) or UBL (Ub-like protein) conjugates such as SUMO (small Ub-related modifier), NEDD8 (neural-precursor-cell-expressed, developmentally down-regulated 8) or ISG15 (interferon-stimulated gene 15) by isopeptidases. In this review, current platforms for detecting DUB inhibitors are discussed and the advantages and disadvantages of the approaches are underlined.
Collapse
|
99
|
A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc Natl Acad Sci U S A 2008; 105:16119-24. [PMID: 18852458 DOI: 10.1073/pnas.0805240105] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC(50) value of 20 microM, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC(50) of 15 microM and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.
Collapse
|
100
|
Nicholson B, Leach CA, Goldenberg SJ, Francis DM, Kodrasov MP, Tian X, Shanks J, Sterner DE, Bernal A, Mattern MR, Wilkinson KD, Butt TR. Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Sci 2008; 17:1035-43. [PMID: 18424514 PMCID: PMC2386736 DOI: 10.1110/ps.083450408] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/08/2008] [Accepted: 03/10/2008] [Indexed: 11/24/2022]
Abstract
Conjugation or deconjugation of ubiquitin (Ub) or ubiquitin-like proteins (UBLs) to or from cellular proteins is a multifaceted and universal means of regulating cellular physiology, controlling the lifetime, localization, and activity of many critical proteins. Deconjugation of Ub or UBL from proteins is performed by a class of proteases called isopeptidases. Herein is described a readily quantifiable novel isopeptidase assay platform consisting of Ub or UBL fused to the reporter enzyme phospholipase A(2) (PLA(2)). Isopeptidase activity releases PLA(2), which cleaves its substrate, generating a signal that is linear with deubiquitylase (DUB) concentration and is able to discriminate DUB, deSUMOylase, deNEDDylase, and deISGylase activities. The power and sensitivity of the UBL-PLA(2) assay are demonstrated by its ability to differentiate the contrasting deISGylase and DUB activities of two coronavirus proteases: severe acute respiratory syndrome papain-like protease (SARS-CoV PLpro) and NL63 CoV papain-like protease 2 (PLP2). Furthermore, direct comparisons with the current Ub-7-amino-4-methylcoumarin (Ub-AMC) assay demonstrated that the Ub-PLA(2) assay is an effective tool for characterizing modulators of isopeptidase activity. This observation was expanded by profiling the inhibitory activity of the nonselective isopeptidase inhibitor NSC 632839 against DUBs and deSUMOylases. Taken together, these studies illustrate the utility of the reporter-based approach to measuring isopeptidase activity.
Collapse
Affiliation(s)
- Benjamin Nicholson
- Division of Research and Development, Progenra, Inc., Malvern, Pennsylvania 19355, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|