51
|
Reis RS, Pereira AG, Neves BC, Freire DMG. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa--a review. BIORESOURCE TECHNOLOGY 2011; 102:6377-84. [PMID: 21498076 DOI: 10.1016/j.biortech.2011.03.074] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 05/09/2023]
Abstract
Pseudomonas aeruginosa produces abundant levels of rhamnolipid biosurfactants which exhibit remarkable chemical and physical characteristics, making these compounds attractive targets for biotechnology research. The complex gene regulation network involved in rhamnolipids' biosynthesis represents a challenge to industrial production, which has been the object of a growing number of studies. This article provides a comprehensive review of the known gene regulatory factors involved in rhamnolipid production within P. aeruginosa. The regulatory factors include quorum sensing systems proteins and environmental response, and global regulatory systems within basal bacterial physiology, acting either at transcriptional or post-transcriptional level. The multilayer gene regulation responds to a wide variety of environmental and physiologic signals, and is capable of combining different signals in unique and specific responses.
Collapse
Affiliation(s)
- Rodrigo S Reis
- University of Sydney, School of Molecular Biology, NSW 2006, Australia.
| | | | | | | |
Collapse
|
52
|
Eberl L, Riedel K. Mining quorum sensing regulated proteins - Role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics. Proteomics 2011; 11:3070-85. [PMID: 21548094 DOI: 10.1002/pmic.201000814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/20/2011] [Accepted: 02/17/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zurich, Switzerland
| | | |
Collapse
|
53
|
Tsai CS, Winans SC. The quorum-hindered transcription factor YenR of Yersinia enterocolitica inhibits pheromone production and promotes motility via a small non-coding RNA. Mol Microbiol 2011; 80:556-71. [PMID: 21362062 DOI: 10.1111/j.1365-2958.2011.07595.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The YenR and YenI proteins of Yersinia enterocolitica resemble the quorum sensing proteins LuxR and LuxI of Vibrio fischeri. Apo-YenR activated a gene, designated yenS, that lies adjacent to and divergent from yenR. YenR-dependent expression of yenS was inhibited by endogenous or exogenous 3-oxohexanoylhomoserine lactone (OHHL) a pheromone made by YenI. Purified apo-YenR bound non-cooperatively to two 20-nucleotide sites that lie upstream of yenS. Binding occurred in the absence of (OHHL), and YenR was largely released from the DNA by this pheromone. yenS encoded two non-translated RNAs 169 and 105 nucleotides long that share the same 5' end but have different 3' ends. One or both RNAs inhibited the translation and accumulation of the yenI mRNA by binding to a region that overlaps the YenI start codon. A mutation in yenI strongly stimulated swarming motility on the surface of semi-solid agar, while exogenous OHHL completely suppressed this phenotype. Hypermotility in yenI mutants was also suppressed by mutations in yenR or yenS, suggesting that YenS plays a direct, stimulatory role in swarming motility.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
54
|
Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29-70. [PMID: 21233507 PMCID: PMC3021203 DOI: 10.1128/cmr.00036-10] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, 303 E. Chicago Ave., Searle 6-495, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
55
|
Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:739-744. [PMID: 23766278 DOI: 10.1111/j.1758-2229.2010.00169.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Extracts of several cyanobacterial species collected from different marine and estuarine locations predominately in Florida (USA), with one sample each from Belize and Oman, were screened for their ability to disrupt quorum sensing (QS) in the reporter strain Chromobacterium violaceum CV017. Inhibitory activities were detected in the ethyl acetate : methanol (1:1) extracts of several Lyngbya spp., and extracts of Lyngbya majuscula contained the strongest QS inhibitory activities. Extracts of L. majuscula from the Indian River Lagoon, FL, USA, were further purified by bioassay-guided fractionation. The antibiotic malyngolide (MAL) was identified as a QS inhibitor. Activity of MAL was investigated using N-acyl homoserine lactone (AHL) reporters based on the LasR receptor of Pseudomonas aeruginosa. MAL at concentrations ranging from 3.57 µM to 57 µM (EC50 = 12.2 ± 1.6 µM) inhibited responses of the LasR reporters without affecting bacterial growth. MAL inhibited (EC50 = 10.6 ± 1.8 µM) Las QS-dependent production of elastase by P. aeruginosa PAO1. We propose that this QS inhibitor plays a role in controlling interactions of heterotrophic bacteria associated with the cyanobacterium L. majuscula.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Sultanate of Oman. Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, FL, USA. Smithsonian Marine Station, Fort Pierce, FL, USA
| | | | | | | | | |
Collapse
|
56
|
Schobert M, Tielen P. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol 2010; 5:603-21. [PMID: 20353301 DOI: 10.2217/fmb.10.16] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic human pathogen that is able to colonize a broad spectrum of different aquatic and soil habitats. In the environment and during pathogenesis, P. aeruginosa encounters oxygen-limited and anaerobic environments. Particularly during chronic infection of the cystic fibrosis lung, oxygen-limiting conditions seem to contribute to persistent infection. Oxygen limitation increases antibiotic tolerance, robust biofilms and alginate biosynthesis, which contribute to the persistence of this opportunistic pathogen. Despite the importance of anaerobic metabolism during persistent infection of P. aeruginosa, we are just beginning to understand the underlying regulatory network and the molecular basis of how anaerobic metabolism contributes to a persistent infection. A deeper understanding of the anaerobic physiology of P. aeruginosa will allow the identification of new antibiotic targets and new therapeutic strategies.
Collapse
Affiliation(s)
- Max Schobert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | | |
Collapse
|
57
|
Hazan R, He J, Xiao G, Dekimpe V, Apidianakis Y, Lesic B, Astrakas C, Déziel E, Lépine F, Rahme LG. Homeostatic interplay between bacterial cell-cell signaling and iron in virulence. PLoS Pathog 2010; 6:e1000810. [PMID: 20300606 PMCID: PMC2837411 DOI: 10.1371/journal.ppat.1000810] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 02/05/2010] [Indexed: 12/28/2022] Open
Abstract
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens. Bacterial cells can communicate with one another about their surrounding environment. This information can be in the form of small self-secreted molecules acting as signals to activate or inhibit the expression of genes. Pseudomonas aeruginosa is an environmental bacterium that infects diverse organisms from plants to humans. Our results show that this pathogen uses two highly sensitive networks, namely MvfR and LasR/RhlR pathways, to modulate its virulence functions by titrating the concentration of the small molecules HHQ and PQS in a manner that depends upon the presence or absence of iron. Via negative and positive feedback loops, this bacterium processes the signaled information to regulate its virulence functions and homeostatically balance the production of the small molecules required for the activation of the MvfR virulence network. Our study sheds light on paradigmatic complex networks that maintain a homeostatic bacterial virulence response.
Collapse
Affiliation(s)
- Ronen Hazan
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gaoping Xiao
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Yiorgos Apidianakis
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Biliana Lesic
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christos Astrakas
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
58
|
Mittal R, Sharma S, Chhibber S, Aggarwal S, Gupta V, Harjai K. Correlation between serogroup,in vitrobiofilm formation and elaboration of virulence factors by uropathogenicPseudomonas aeruginosa. ACTA ACUST UNITED AC 2010; 58:237-43. [DOI: 10.1111/j.1574-695x.2009.00627.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Cai Y, Yu XH, Wang R, An MM, Liang BB. Effects of iron depletion on antimicrobial activities against planktonic and biofilm Pseudomonas aeruginosa. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.09.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
Iron plays an important role in the development of Pseudomonas aeruginosa biofilm. Here we evaluated effects of iron depletion on the antimicrobial activity of ceftazidime, tobramycin and ciprofloxacin against planktonic and biofilm Pseudomonas aeruginosa.
Methods
We tested the sensitivities of wild-type PAO1, type-IV pilus mutant PAO-ΔpilHIJK and the quorum-sensing mutant PAO-JP2 P. aeruginosa planktonic cultures and biofilms to antibiotics under iron-depleted conditions.
Key findings
In planktonic bacteria, the minimum concentration that inhibited visible growth (MIC) of ciprofloxacin was increased slightly in an iron-depleted environment in all three strains, whereas the MIC of tobramycin was similar in iron-depleted and control environments. The MIC of ceftazidime increased in the PAO-JP2 strain when iron was depleted. Tobramycin achieved the best bactericidal effect in biofilms. Viable counts were reduced by one log under iron-depleted conditions in all three strains when tobramycin reached 4 MIC and when ceftazidime and ciprofloxacin reached 8 MIC.
Conclusions
This study suggests that once the biofilm is formed, iron depletion may only slightly promote the bactericidal effect of antibiotics on PAO1, PAO-ΔpilHIJK and PAO-JP2. Although these changes were relatively small, iron as one of the environmental factors should not be ignored when evaluating bactericidal effect of antibiotics. The combination of an iron chelator and antibiotics may have therapeutic value under certain bacterial growth conditions.
Collapse
Affiliation(s)
- Yun Cai
- Department of Clinical Pharmacology, the PLA General Hospital, Beijing, PR China
| | - Xu-Hong Yu
- Department of Clinical Pharmacology, the PLA General Hospital, Beijing, PR China
| | - Rui Wang
- Department of Clinical Pharmacology, the PLA General Hospital, Beijing, PR China
| | - Mao-Mao An
- Department of Clinical Pharmacology, the PLA General Hospital, Beijing, PR China
| | - Bei-Bei Liang
- Department of Clinical Pharmacology, the PLA General Hospital, Beijing, PR China
| |
Collapse
|
60
|
Ecthyma gangrenosum caused by Pseudomonas aeruginosa in a patient with astrocytoma treated with chemotherapy. J Infect Chemother 2010; 16:59-61. [PMID: 20054603 DOI: 10.1007/s10156-009-0017-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
Ecthyma gangrenosum, presenting as embolic lesions caused by Pseudomonas aeruginosa infection, has distinct pathognomonic features and a high mortality rate in patients with bacteremia, but when recognized early is easily treated. In this case report we describe this disseminated infection in an adult patient treated with chemotherapy for an astrocytoma.
Collapse
|
61
|
Yu S, Jensen V, Seeliger J, Feldmann I, Weber S, Schleicher E, Häussler S, Blankenfeldt W. Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 2009; 48:10298-307. [PMID: 19788310 DOI: 10.1021/bi900123j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In bacteria, the transcription of virulence genes is usually controlled by a cell density-dependent process known as "quorum sensing" (QS). QS relies on small diffusible signaling molecules that cross the bacterial cell wall and activate target transcription factors after a threshold concentration has been reached. Besides two hierarchical QS circuits based on N-acylhomoserine lactones, the human opportunistic pathogen Pseudomonas aeruginosa integrates a signaling system that depends on 2-heptyl-3-hydroxy-4-quinolone, termed "Pseudomonas quinolone signal" (PQS). PQS is produced from genes encoded in the pqs operon, which in addition to the biosynthetic enzymes PqsA-D contains a fifth gene, pqsE, that is not required for production of PQS but whose disruption leads to loss of signal transduction in several but not all pqs operon-dependent processes. PqsE was hence termed "PQS response protein", but its exact mechanism of action is unknown. We have determined the crystal structure of recombinant PqsE and show that it possesses a metallo-beta-lactamase fold with an Fe(II)Fe(III) center in the active site. A copurified ligand was assigned as benzoate and may indicate that PqsE exerts its regulatory effect by converting a chorismate-derived molecule. Further, PqsE was found to slowly hydrolyze phosphodiesters including single- and double-stranded DNA as well as mRNA and also the thioester S-(4-nitrobenzoyl)mercaptoethane. Higher activity was observed after incubation with Co(2+) and, to lesser entent, Mn(2+), suggesting that the Fe(II)Fe(III) center of recombinant PqsE may be an artifact of heterologous expression. A crystal complex of the E182A mutant with bis-pNPP was obtained and suggests a catalytic mechanism for hydrolysis.
Collapse
Affiliation(s)
- Shen Yu
- Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun 2009; 77:5631-9. [PMID: 19805523 DOI: 10.1128/iai.00755-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, acyl-homoserine lactone (acyl-HSL) quorum sensing (QS) regulates biofilm formation and expression of many extracellular virulence factors. Curiously, QS-deficient variants, often carrying mutations in the central QS regulator LasR, are frequently isolated from infections, particularly from cystic fibrosis (CF) lung infections. Very little is known about the proportion and diversity of these QS variants in individual infections. Such information is desirable to better understand the selective forces that drive the evolution of QS phenotypes, including social cheating and innate (nonsocial) benefits. To obtain insight into the instantaneous within-patient diversity of QS, we assayed a panel of 135 concurrent P. aeruginosa isolates from eight different adult CF patients (9 to 20 isolates per patient) for various QS-controlled phenotypes. Most patients contained complex mixtures of QS-proficient and -deficient isolates. Among all patients, deficiency in individual phenotypes ranged from 0 to about 90%. Acyl-HSL, sequencing, and complementation analyses of variants with global loss-of-function phenotypes revealed dependency upon the central QS circuitry genes lasR, lasI, and rhlI. Deficient and proficient isolates were clonally related, implying evolution from a common ancestor in vivo. Our results show that the diversity of QS types is high within and among patients, suggesting diverse selection pressures in the CF lung. A single selective mechanism, be it of a social or nonsocial nature, is unlikely to account for such heterogeneity. The observed diversity also shows that conclusions about the properties of P. aeruginosa QS populations in individual CF infections cannot be drawn from the characterization of one or a few selected isolates.
Collapse
|
63
|
Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 2009; 73:1072-85. [PMID: 19682264 PMCID: PMC2759405 DOI: 10.1111/j.1365-2958.2009.06832.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In Pseudomonas aeruginosa quorum sensing (QS), the transcriptional regulator LasR controls the expression of more than 300 genes. Several of these genes are activated indirectly via a second, subordinate QS regulator, RhlR. Conserved sequence elements upstream of individual other genes have been shown to bind LasR in vitro. To comprehensively identify all regions that are bound by LasR in vivo, we employed chromatin immunoprecipitation in conjunction with microarray analysis. We identified 35 putative promoter regions that direct the expression of up to 74 genes. In vitro DNA binding studies allowed us to distinguish between cooperative and non-cooperative LasR binding sites, and allowed us to build consensus sequences according to the mode of binding. Five promoter regions were not previously recognized as QS-controlled. Two of the associated transcript units encode proteins involved in the cold-shock response and in Psl exopolysaccharide synthesis respectively. The LasR regulon includes seven genes encoding transcriptional regulators, while secreted factors and secretion machinery are the most over-represented functional categories overall. This supports the notion that the core function of LasR is to co-ordinate the production of extracellular factors, although many of its effects on global gene expression are likely mediated indirectly by regulatory genes under its control.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Department of Microbiology, Oregon State University, Corvallis, OR 97331
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| | - Tae Hoon Kim
- Department of Genetics, Yale University, New Haven, CT 06520
| | - Rashmi Gupta
- Department of Microbiology, Oregon State University, Corvallis, OR 97331
| | - E. P. Greenberg
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
64
|
Campagna SR, Gooding JR, May AL. Direct Quantitation of the Quorum Sensing Signal, Autoinducer-2, in Clinically Relevant Samples by Liquid Chromatography−Tandem Mass Spectrometry. Anal Chem 2009; 81:6374-81. [DOI: 10.1021/ac900824j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shawn R. Campagna
- Department of Chemistry; The University of Tennessee, Knoxville, Tennessee 37996
| | - Jessica R. Gooding
- Department of Chemistry; The University of Tennessee, Knoxville, Tennessee 37996
| | - Amanda L. May
- Department of Chemistry; The University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
65
|
GidA posttranscriptionally regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 2009; 191:5785-92. [PMID: 19592591 DOI: 10.1128/jb.00335-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes two interconnected acyl-homoserine lactone quorum-sensing (acyl-HSL QS) systems, LasRI and RhlRI, to regulate the expression of hundreds of genes. The QS circuitry itself is integrated into a complex network of regulation by other factors. However, our understanding of this network is still unlikely to be complete, as a comprehensive, saturating approach to identifying regulatory components has never been attempted. Here, we utilized a nonredundant P. aeruginosa PA14 transposon library to identify additional genes that regulate QS at the level of LasRI/RhlRI. We initially screened all 5,459 mutants for loss of function in one QS-controlled trait (skim milk proteolysis) and then rescreened attenuated candidates for defects in other QS phenotypes (LasA protease, rhamnolipid, and pyocyanin production) to exclude mutants defective in functions other than QS. We identified several known and novel genes, but only two novel genes, gidA and pcnB, affected all of the traits assayed. We characterized gidA, which exhibited the most striking QS phenotypes, further. This gene is predicted to encode a conserved flavin adenine dinucleotide-binding protein involved in tRNA modification. Inactivation of the gene primarily affected rhlR-dependent QS phenotypes such as LasA, pyocyanin, and rhamnolipid production. GidA affected RhlR protein but not transcript levels and also had no impact on LasR and acyl-HSL production. Overexpression of rhlR in a gidA mutant partially restored QS-dependent phenotypes. Taken together, these results indicate that GidA selectively controls QS gene expression posttranscriptionally via RhlR-dependent and -independent pathways.
Collapse
|
66
|
Abstract
Investigations of antibiotic resistance from an environmental prospective shed new light on a problem that was traditionally confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. It is clear that the environmental microbiota, even in apparently antibiotic-free environments, possess an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. It is difficult to explain the role of antibiotics and antibiotic resistance in natural environments from an anthropocentric point of view, which is focused on clinical aspects such as the efficiency of antibiotics in clearing infections and pathogens that are resistant to antibiotic treatment. A broader overview of the role of antibiotics and antibiotic resistance in nature from the evolutionary and ecological prospective suggests that antibiotics have evolved as another way of intra- and inter-domain communication in various ecosystems. This signalling by non-clinical concentrations of antibiotics in the environment results in adaptive phenotypic and genotypic responses of microbiota and other members of the community. Understanding the complex picture of evolution and ecology of antibiotics and antibiotic resistance may help to understand the processes leading to the emergence and dissemination of antibiotic resistance and also help to control it, at least in relation to the newer antibiotics now entering clinical practice.
Collapse
Affiliation(s)
- Rustam I Aminov
- University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK.
| |
Collapse
|
67
|
Ribeiro NFF, Heath CH, Kierath J, Rea S, Duncan-Smith M, Wood FM. Burn wounds infected by contaminated water: case reports, review of the literature and recommendations for treatment. Burns 2009; 36:9-22. [PMID: 19501977 DOI: 10.1016/j.burns.2009.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 01/19/2009] [Accepted: 03/02/2009] [Indexed: 12/20/2022]
Abstract
First-aid education for the management of burns advocates cool running water over burnt skin to limit soft tissue damage. However, the water used may itself constitute a risk. We report three cases of severe invasive and necrotizing infection in patients who used or immersed themselves in contaminated water in an attempt to extinguish the fire following acute major burns. Wound cultures from all patients yielded Aeromonas hydrophila and two yielded Bacillus cereus. One patient had a complex polymicrobial infection, including zygomycosis with Rhizomucor variabilis. All patients were treated aggressively with wound débridement, including one patient who required bilateral lower limb amputations to control progressive infection. All infections were successfully treated and all patients survived their burn injuries. We review the management of burns complicated by exposure to contaminated water leading to burn wound infections. We describe commonly reported organisms from various water sources, the appropriate initial empirical antimicrobial chemotherapy and present the clinician with a proposed algorithm for managing these serious infections.
Collapse
Affiliation(s)
- Noel F F Ribeiro
- Department of Plastic Surgery, Royal Perth Hospital, Perth, Western Australia (WA), Australia.
| | | | | | | | | | | |
Collapse
|
68
|
Smole I, Thomann A, Frey J, Perreten V. Repression of common bull sperm flora and in vitro impairment of sperm motility with Pseudomonas aeruginosa introduced by contaminated lubricant. Reprod Domest Anim 2009; 45:737-42. [PMID: 19144031 DOI: 10.1111/j.1439-0531.2008.01319.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semen collected from clinically healthy bulls at an artificial insemination centre was examined for bacterial diversity. While bacteria that are normally present in the common flora of bovine semen were absent, such as Mycoplasma sp., Proteus sp. and Corynebacterium sp., all semen samples contained an unusually high number of Pseudomonas aeruginosa strains. Analysis via pulsed field gel electrophoresis demonstrated that one particular P. aeruginosa strain, present in a sealed bottle of lubricant, was widespread in bull semen. This strain was shown to secrete substances that inhibited both the growth of bacteria constituting the normal bull sperm flora and the motility of spermatozoa in vitro. This study demonstrated that commercially available lubricants might contain bacteria that can spread amongst breeding bulls and affect the quality of semen. Bacteriological controls and species' identification are necessary at several production levels, including lubricants and extenders, to ensure high semen quality and avoid the spread of pathogens.
Collapse
Affiliation(s)
- I Smole
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
69
|
Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F. Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 2009; 135:187-95. [PMID: 19185433 DOI: 10.1016/j.vetmic.2008.12.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 11/27/2022]
Abstract
Under certain circumstances the individuals of a bacterial population may find advantages in acting together and making "collective decisions". This phenomenon is better known as quorum sensing. When the concentration of signal molecules produced by the surrounding bacteria exceeds a certain threshold, the bacterial population acts as a single organism, collectively expressing virulence genes, biofilm forming genes, etc. Several mechanisms of quorum sensing are discussed, each with its distinct signal molecules and respective receptors. Some of these mechanisms are restricted to sensing intraspecies signalling, but interspecies and even interkingdom signalling have also been described. Several veterinary pathogens such as Staphylococcus aureus, Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Salmonella Typhimurium use quorum sensing as a means to optimize virulence gene expression and host colonization. Therefore, targeting of the QS mechanisms may provide a novel strategy for combating bacterial infections, also in veterinary medicine.
Collapse
Affiliation(s)
- F Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
70
|
Yawata Y, Maseda H, Okabe S, Ito A, Sawada I, Kurashima H, Uchiyama H, Nomura N. The Response of Pseudomonas aeruginosa PAO1 Efflux Pump-Defective Mutants to N-Octanoyl- L-Homoserine Lactone. Microbes Environ 2009; 24:338-42. [DOI: 10.1264/jsme2.me09130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yutaka Yawata
- Institute of Life and Environmental Sciences, University of Tsukuba
| | - Hideaki Maseda
- Institute of Life and Environmental Sciences, University of Tsukuba
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
| | - Satoshi Okabe
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University
| | - Akinobu Ito
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University
| | - Isao Sawada
- Institute of Life and Environmental Sciences, University of Tsukuba
| | | | - Hiroo Uchiyama
- Institute of Life and Environmental Sciences, University of Tsukuba
| | - Nobuhiko Nomura
- Institute of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
71
|
Abstract
Pseudomonas aeruginosa infections have emerged as a major infectious disease threat in recent decades as a result of the significant mortality of pseudomonal pneumonia and bacteraemia, and the evolving resistance exhibited by the pathogen to numerous antibacterials. Pseudomonas possesses a large genome; thus, the pathogen is environmentally adaptable, metabolically flexible, able to overcome antibacterial pressure by selecting for resistant strains and even able to accumulate resistance mechanisms, leading to multidrug resistance (MDR), an increasingly recognized therapeutic challenge. In fact, most research currently does not focus on maximizing the efficacy of available antibacterials; rather, it focuses on maximizing their ecological safety. The elderly population may be particularly prone to pseudomonal infection as a result of increased co-morbidities (such as diabetes mellitus and structural lung disease), the presence of invasive devices such as urinary catheters and feeding tubes, polypharmacy that includes antibacterials, and immune compromise related to age. However, age per se, as well as residence in nursing homes, may not predispose individuals to an increased risk for pseudomonal infection. On the other hand, age has been repeatedly outlined as a risk factor for MDR pseudomonal infections. The severity of pseudomonal infections necessitates prompt administration of appropriate antibacterials upon suspicion. Progress has been made in recognizing risk factors for P. aeruginosa infections both in hospitalized and community-residing patients. Antimicrobial therapy may be instituted as a combination or monotherapy: the debate cannot be definitively resolved since the available data are extracted from studies with varying targeted populations and varying definitions of response, adequacy and MDR. Empirical combination therapy maximizes the chances of bacterial coverage and exerts a lower resistance selection pressure. Although associated with increased percentages of adverse events, mainly as a result of the included aminoglycosides, empirical combination therapy seems a reasonable choice. Upon confirmation of Pseudomonas as the causative agent and awareness of its susceptibility profile, monotherapy is advocated by many, but not all, experts. Infections involving MDR strains can be treated with colistin, which has adequate efficacy and few renal adverse events, or doripenem. In the elderly, in addition to making dose modifications that are needed because of loss of renal function, the prescriber should be more cautious about the use of aminoglycoside-containing regimens, possibly replacing them with a combination of quinolone and a beta-lactam, notwithstanding the possible increased pressure for selection of resistance with the latter combination.
Collapse
Affiliation(s)
- Georgios Pappas
- Institute of Continuing Medical Education of Ioannina, Ioannina, Greece.
| | | | | |
Collapse
|
72
|
Zhou Y, Choi YL, Sun M, Yu Z. Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 2008; 80:563-72. [DOI: 10.1007/s00253-008-1610-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
73
|
Mittal R, Sharma S, Chhibber S, Harjai K. Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J Biomed Sci 2008; 15:731-41. [DOI: 10.1007/s11373-008-9274-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 07/25/2008] [Indexed: 11/21/2022] Open
|