51
|
Guo Y, Su M, Su M, McNutt MA, Gu J. Expression and distribution of cystic fibrosis transmembrane conductance regulator in neurons of the spinal cord. J Neurosci Res 2010; 87:3611-9. [PMID: 19533735 PMCID: PMC7167064 DOI: 10.1002/jnr.22154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To verify the hypothesis that cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in neurons of the human spinal cord, we investigated the presence and distribution of CFTR protein and mRNA in different segments of the human spinal cord obtained from autopsies. The techniques employed included reverse transcriptase‐polymerase chain reaction (RT‐PCR) to detect CFTR gene expression, in situ hybridization to detect mRNA distribution, and immunohistochemistry to detect protein distribution. The specificity of these experiments was established with extensive controls. We found widespread and abundant expression of CFTR in neurons of the human spinal cord. CFTR protein and mRNA are localized to the cytoplasm of neurons in all segments of the spinal cord but not to glial fibrillary acidic protein (GFAP)‐positive cells. CFTR is a very important molecule, acting as a chloride channel and regulating many physiological functions, including salt transport, fluid flow, and intracellular ion concentrations. Its mutation causes cystic fibrosis. Our finding of abundant CFTR in the spinal cord suggests that this molecule may be significant in the normal function and pathology of the spinal cord. © 2009 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Yong Guo
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | | | | | | | | |
Collapse
|
52
|
Abstract
Emerging pathogens are either new or newly recognized or those that are increasing in incidence and spread. Since the identity of emerging pathogens from animal reservoirs is difficult to predict, the development for pathogen-specific therapeutics and vaccines is problematic. The highly pathogenic SARS coronavirus (SARS-CoV) emerged from zoonotic pools in 2002 to cause a global epidemic of severe acute respiratory syndrome (SARS). Many patients with SARS-CoV experienced an exacerbated form of disease called acute respiratory distress syndrome (ARDS) requiring mechanical ventilation and supplemental oxygen and half of these patients died. Similar to other viral pathogens like influenza and West Nile Virus, the severity of SARS-CoV disease increased with age. Unfortunately, successful vaccination in the most vulnerable populations is a difficult task because of immunological deficiencies associated with aging (immune senescence). Due to the rapidity of virus emergence, technologies like synthetic biology can be harnessed to facilitate rapid recombinant virus construction for studying the novel virus biology, pathogenesis and the evaluation of therapeutic interventions. Since predicting the antigenic identity of future emergence is difficult, candidate vaccines and therapeutics should have a maximal breadth of cross-protection, and panels of antigenically divergent synthetically reconstructed viruses can be used as tools for this evaluation. We discuss how synthetic reconstruction of many animal and human SARS-CoV has provided a model to study the molecular mechanisms governing emergence and pathogenesis of viral diseases. In addition, we review the evolution, epidemiology, and pathogenesis of epidemic and zoonotic SARS-CoV with focus on the development of broadly reactive therapeutics and vaccines that protect aged populations from the zoonotic pool.
Collapse
|
53
|
Zhou Y, Pan P, Yao L, Su M, He P, Niu N, McNutt MA, Gu J. CD117-positive cells of the heart: progenitor cells or mast cells? J Histochem Cytochem 2009; 58:309-16. [PMID: 20026668 DOI: 10.1369/jhc.2009.955146] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cardiac stem/progenitor cells and their potential for repair of heart injury are a current hot topic of research. CD117 has been used frequently as a marker for identification of stem/progenitor cells in the heart. However, cardiac mast cells, which are also CD117(+), have not been excluded by credible means when selecting putative cardiac progenitors by using CD117 as a marker. We evaluated the relationship between CD117(+) cells and mast cells in the left ventricle of human hearts (n=5 patients, ages 1 week-75 years) with the well-established mast cell markers tryptase, toluidine blue, and thionine. A large number (85-100%) of CD117(+) cells in the human heart were specifically identified as mast cells. In addition, mast cells showed weak or moderate CD45 immunostaining signals. These results indicate that the majority of CD117(+) cells in the heart are mast cells and that these cells are distinctly positive for CD45, although staining was weak or moderate. These results strongly suggest that the newly reported CD117(+)/CD45(dim/moderate) putative cardiac progenitor cells are mast cells. The significance of this observation in stem cell research of the heart is discussed.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, Smee DF, Barnard DL. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 2009; 395:210-22. [PMID: 19853271 PMCID: PMC2787736 DOI: 10.1016/j.virol.2009.09.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 06/26/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a highly lethal emerging disease caused by coronavirus SARS-CoV. New lethal animal models for SARS were needed to facilitate antiviral research. We adapted and characterized a new strain of SARS-CoV (strain v2163) that was highly lethal in 5- to 6-week-old BALB/c mice. It had nine mutations affecting 10 amino acid residues. Strain v2163 increased IL-1alpha, IL-6, MIP-1alpha, MCP-1, and RANTES in mice, and high IL-6 expression correlated with mortality. The infection largely mimicked human disease, but lung pathology lacked hyaline membrane formation. In vitro efficacy against v2163 was shown with known inhibitors of SARS-CoV replication. In v2163-infected mice, Ampligen was fully protective, stinging nettle lectin (UDA) was partially protective, ribavirin was disputable and possibly exacerbated disease, and EP128533 was inactive. Ribavirin, UDA, and Ampligen decreased IL-6 expression. Strain v2163 provided a valuable model for anti-SARS research.
Collapse
Affiliation(s)
- Craig W Day
- Institute for Antiviral Research, Utah State University, UMC 5600, Logan, UT 84322-5600, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Miura TA, Holmes KV. Host-pathogen interactions during coronavirus infection of primary alveolar epithelial cells. J Leukoc Biol 2009; 86:1145-51. [PMID: 19638499 PMCID: PMC2774885 DOI: 10.1189/jlb.0209078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Innate immune responses in coronavirus infections of the respiratory tract are analyzed in primary differentiated airway and alveolar epithelial cells. Viruses that infect the lung are a significant cause of morbidity and mortality in animals and humans worldwide. Coronaviruses are being associated increasingly with severe diseases in the lower respiratory tract. Alveolar epithelial cells are an important target for coronavirus infection in the lung, and infected cells can initiate innate immune responses to viral infection. In this overview, we describe in vitro models of highly differentiated alveolar epithelial cells that are currently being used to study the innate immune response to coronavirus infection. We have shown that rat coronavirus infection of rat alveolar type I epithelial cells in vitro induces expression of CXC chemokines, which may recruit and activate neutrophils. Although neutrophils are recruited early in infection in several coronavirus models including rat coronavirus. However, their role in viral clearance and/or immune‐mediated tissue damage is not understood. Primary cultures of differentiated alveolar epithelial cells will be useful for identifying the interactions between coronaviruses and alveolar epithelial cells that influence the innate immune responses to infection in the lung. Understanding the molecular details of these interactions will be critical for the design of effective strategies to prevent and treat coronavirus infections in the lung.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
56
|
van den Brand JMA, Haagmans BL, Leijten L, van Riel D, Martina BEE, Osterhaus ADME, Kuiken T. Pathology of experimental SARS coronavirus infection in cats and ferrets. Vet Pathol 2008; 45:551-62. [PMID: 18587105 DOI: 10.1354/vp.45-4-551] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathology of severe acute respiratory syndrome-coronavirus (SARS-CoV) infection in cats and ferrets is poorly described, and the distribution of angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV, in the respiratory tracts of these species is unknown. We observed SARS-CoV antigen expression and lesions in the respiratory tracts of 4 cats and 4 ferrets at 4 days postinoculation and ACE2 expression in the respiratory tracts of 3 cats and 3 ferrets without infection. All infected cats and ferrets had diffuse alveolar damage associated with SARS-CoV antigen expression. A novel SARS-CoV-associated lesion was tracheo-bronchoadenitis in cats. SARS-CoV antigen expression occurred mainly in type I and II pneumocytes and serous cells of tracheo-bronchial submucosal glands of cats and in type II pneumocytes of ferrets. ACE2 expression occurred mainly in type I and II pneumocytes, tracheo-bronchial goblet cells, serous epithelial cells of tracheo-bronchial submucosal glands in cats, and type II pneumocytes and serous epithelial cells of tracheo-bronchial submucosal glands in ferrets. In conclusion, the pathology of SARS-CoV infection in cats and ferrets resembles that in humans except that syncytia and hyaline membranes were not observed. The identification of tracheo-bronchoadenitis in cats has potential implications for SARS pathogenesis and SARS-CoV excretion. Finally, these results show the importance of ACE2 expression for SARS-CoV infection in vivo: whereas ACE2 expression in type I and II pneumocytes in cats corresponded to SARS-CoV antigen expression in both cell types, expression of both ACE2 and SARS-CoV antigen in ferrets was limited mainly to type II pneumocytes.
Collapse
Affiliation(s)
- J M A van den Brand
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
57
|
|
58
|
Pan P, Guo Y, Gu J. Expression of cystic fibrosis transmembrane conductance regulator in ganglion cells of the hearts. Neurosci Lett 2008; 441:35-8. [PMID: 18584958 DOI: 10.1016/j.neulet.2008.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) as an important chloride-selective channel is known to distribute on the apical membrane of chloride-secreting epithelial cells. However, CFTR is also reported to express in the neurons of human and rat brain. In this study we aim to investigate the expression of CFTR in ganglion cells of the hearts. We used immunohistochemistry, in situ hybridization, laser microdissection (LMD) and nested reverse transcriptase polymerase chain reaction (nested RT-PCR) to detect CFTR in the ganglion cells of the Sprague-Dawley rat hearts and found widespread and abundant the expression of CFTR protein and its mRNA in the ganglion cells of the rat hearts. The presence of CFTR in ganglia does not only provide a possible explanation for cardiovascular symptoms of cystic fibrosis patients but also may lead to a better understanding of a possible role for CFTR in the neuronal regulation of the heart.
Collapse
Affiliation(s)
- Peng Pan
- Department of Pathology, School of Basic Medical Sciences, Beijing University Health Science Center, Beijing, China
| | | | | |
Collapse
|
59
|
Current World Literature. Curr Opin Pulm Med 2008; 14:266-73. [DOI: 10.1097/mcp.0b013e3282ff8c19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
|
61
|
Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, Funk CJ, Manzer R, Miura TA, Pearson LD, Holmes KV, Mason RJ. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology 2007; 372:127-35. [PMID: 18022664 PMCID: PMC2312501 DOI: 10.1016/j.virol.2007.09.045] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/03/2007] [Accepted: 09/28/2007] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome (SARS) is a disease characterized by diffuse alveolar damage. We isolated human alveolar type II cells and maintained them in a highly differentiated state. Type II cell cultures supported SARS-CoV replication as evidenced by RT-PCR detection of viral subgenomic RNA and an increase in virus titer. Virus titers were maximal by 24 h and peaked at approximately 105 pfu/mL. Two cell types within the cultures were infected. One cell type was type II cells, which were positive for SP-A, SP-C, cytokeratin, a type II cell-specific monoclonal antibody, and Ep-CAM. The other cell type was composed of spindle-shaped cells that were positive for vimentin and collagen III and likely fibroblasts. Viral replication was not detected in type I-like cells or macrophages. Hence, differentiated adult human alveolar type II cells were infectible but alveolar type I-like cells and alveolar macrophages did not support productive infection.
Collapse
Affiliation(s)
- Eric C Mossel
- Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Danesh A, Seneviratne C, Cameron CM, Banner D, Devries ME, Kelvin AA, Xu L, Ran L, Bosinger SE, Rowe T, Czub M, Jonsson CB, Cameron MJ, Kelvin DJ. Cloning, expression and characterization of ferret CXCL10. Mol Immunol 2007; 45:1288-97. [PMID: 18006061 PMCID: PMC5653245 DOI: 10.1016/j.molimm.2007.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 11/19/2022]
Abstract
Chemokines and their receptors function in the recruitment and activation of cells of the immune system to sites of inflammation. As such, chemokines play an important role in mediating pathophysiological events during microbial infection. In particular, CXCL9, CXCL10 and CXCL11 and their cognate receptor CXCR3 have been associated with the clinical course of several infectious diseases, including severe acute respiratory syndrome (SARS) and influenza. While CXCL9, CXCL10 and CXCL11 share the same receptor and have overlapping functions, each can also have unique activity in host defense. The lack of a preferred characterized animal model for SARS has brought our attention to ferrets, which have been used for years in influenza studies. The lack of immunological reagents for ferrets prompted us to clone CXCL9, CXCL10, CXCL11 and CXCR3 and, in the case of CXCL10, to express the gene as a recombinant protein. In this study we demonstrate that endogenous ferret CXCL10 exhibits similar mRNA expression patterns in the lungs of deceased SARS patients and ferrets experimentally infected with SARS coronavirus. This study therefore represents an important step towards development of the ferret as a model for the role of CXCL9, CXCL10 and CXCL11:CXCR3 axis in severe viral infections.
Collapse
Affiliation(s)
- Ali Danesh
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Charit Seneviratne
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Cheryl M. Cameron
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Mark E. Devries
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Alyson A. Kelvin
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Luoling Xu
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Longsi Ran
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Steven E. Bosinger
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Thomas Rowe
- Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, AL 35205, USA
| | - Marcus Czub
- National Microbiology Laboratory, Canadian Science Center for Human and Animal Health, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3R2
| | - Colleen B. Jonsson
- Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, AL 35205, USA
| | - Mark J. Cameron
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - David J. Kelvin
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada M5G 1L7
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, AL 35205, USA
- Corresponding author at: Toronto General Research Institute, Division of Experimental Therapeutics, Toronto General Hospital, TMDT, 101 College Street, 3rd Floor, Room 913, Toronto, Ontario, Canada M5G 1L7. Tel.: +1 416 581 7608; fax: +1 416 581 7606.
| |
Collapse
|
63
|
Guo Y, Korteweg C, McNutt MA, Gu J. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res 2007; 133:4-12. [PMID: 17825937 PMCID: PMC7114157 DOI: 10.1016/j.virusres.2007.01.022] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 12/23/2006] [Accepted: 01/09/2007] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome (SARS) is an acute respiratory disease with significant morbidity and mortality. While its clinical manifestations have been extensively studied, its pathogenesis is not yet fully understood. A limited number of autopsy studies have revealed that the lungs and the immune system are the organs that sustain the most severe damage. Other organs affected include the kidneys, brain, digestive tract, heart, liver, thyroid gland and urogenital tract. The primary target cells are pneumocytes and enterocytes, both cell types abundantly expressing angiotensin-converting enzyme 2 which is the main SARS-CoV receptor. Other cell types infected include the epithelial cells of renal tubules, cerebral neurons, and immune cells. The pathology of this disease results from both direct and indirect injury. Direct injury is caused by infection of the target cells by the virus. Indirect injury mainly results from immune responses, circulatory dysfunction, and hypoxia. In this review, we summarize the major pathological findings at the gross, cellular and molecular levels and discuss the various possible mechanisms that may contribute to the pathogenesis of SARS. The implications of the proposed pathogenesis for prevention, diagnosis and therapy of the disease are discussed.
Collapse
Affiliation(s)
| | | | | | - Jiang Gu
- Corresponding author at: Department of Pathology, School of Medical Sciences, Infectious Disease Center, Peking (Beijing) University, 38 Xueyuan Road, 100083 Beijing, China. Tel.: +86 10 8280 1237; fax: +86 10 8280 1380.
| |
Collapse
|
64
|
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1136-47. [PMID: 17392154 PMCID: PMC1829448 DOI: 10.2353/ajpath.2007.061088] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory syndrome (SARS) is an emerging infectious viral disease characterized by severe clinical manifestations of the lower respiratory tract. The pathogenesis of SARS is highly complex, with multiple factors leading to severe injury in the lungs and dissemination of the virus to several other organs. The SARS coronavirus targets the epithelial cells of the respiratory tract, resulting in diffuse alveolar damage. Several organs/cell types may be infected in the course of the illness, including mucosal cells of the intestines, tubular epithelial cells of the kidneys, neurons of the brain, and several types of immune cells, and certain organs may suffer from indirect injury. Extensive studies have provided a basic understanding of the pathogenesis of this disease. In this review we describe the most significant pathological features of SARS, explore the etiological factors causing these pathological changes, and discuss the major pathogenetic mechanisms. The latter include dysregulation of cytokines/chemokines, deficiencies in the innate immune response, direct infection of immune cells, direct viral cytopathic effects, down-regulation of lung protective angiotensin converting enzyme 2, autoimmunity, and genetic factors. It seems that both abnormal immune responses and injury to immune cells may be key factors in the pathogenesis of this new disease.
Collapse
Affiliation(s)
- Jiang Gu
- Professor and Chairman, Department of Pathology, Dean, School of Medical Sciences, Director, Infectious Disease Center, Peking (Beijing) University, 38 Xueyuan Rd., 100083 Beijing, China.
| | | |
Collapse
|
65
|
Hänel K, Willbold D. SARS-CoV accessory protein 7a directly interacts with human LFA-1. Biol Chem 2007; 388:1325-32. [DOI: 10.1515/bc.2007.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|