51
|
Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S, Wang Y. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol 2023; 12:1063423. [PMID: 36686771 PMCID: PMC9853001 DOI: 10.3389/fonc.2022.1063423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Tumors meet their energy, biosynthesis, and redox demands through metabolic reprogramming. This metabolic abnormality results in elevated levels of metabolites, particularly lactate, in the tumor microenvironment. Immune cell reprogramming and cellular plasticity mediated by lactate and lactylation increase immunosuppression in the tumor microenvironment and are emerging as key factors in regulating tumor development, metastasis, and the effectiveness of immunotherapies such as immune checkpoint inhibitors. Reprogramming of glucose metabolism and the "Warburg effect" in hepatocellular carcinoma (HCC) lead to the massive production and accumulation of lactate, so lactate modification in tumor tissue is likely to be abnormal as well. This article reviews the immune regulation of abnormal lactate metabolism and lactate modification in hepatocellular carcinoma and the therapeutic strategy of targeting lactate-immunotherapy, which will help to better guide the medication and treatment of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yiwei Xu
- Marine College, Shandong University, Weihai, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| |
Collapse
|
52
|
Peng Q, Hao L, Guo Y, Zhang Z, Ji J, Xue Y, Liu Y, Li C, Lu J, Shi X. Dihydroartemisinin inhibited the Warburg effect through YAP1/SLC2A1 pathway in hepatocellular carcinoma. J Nat Med 2023; 77:28-40. [PMID: 36068393 DOI: 10.1007/s11418-022-01641-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/21/2022] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) was the third most common cause of cancer death. But it has only limited therapeutic options, aggressive nature, and very low overall survival. Dihydroartemisinin (DHA), an anti-malarial drug approved by the Food and Drug Administration (FDA), inhibited cell growth in HCC. The Warburg effect was one of the ten new hallmarks of cancer. Solute carrier family 2 member 1 (SLC2A1) was a crucial carrier for glucose to enter target cells in the Warburg effect. Yes-associated transcriptional regulator 1 (YAP1), an effector molecule of the hippo pathway, played a crucial role in promoting the development of HCC. This study sought to determine the role of DHA in the SLC2A1 mediated Warburg effect in HCC. In this study, DHA inhibited the Warburg effect and SLC2A1 in HepG2215 cells and mice with liver tumors in situ. Meanwhile, DHA inhibited YAP1 expression by inhibiting YAP1 promoter binding protein GA binding protein transcription factor subunit beta 1 (GABPB1) and cAMP responsive element binding protein 1 (CREB1). Further, YAP1 knockdown/knockout reduced the Warburg effect and SLC2A1 expression by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors. Taken together, our data indicated that YAP1 knockdown/knockout reduced the SLC2A1 mediated Warburg effect by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors induced by DEN/TCPOBOP. DHA, as a potential YAP1 inhibitor, suppressed the SLC2A1 mediated Warburg effect in HCC.
Collapse
Affiliation(s)
- Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
| |
Collapse
|
53
|
Bhat SA, Farooq Z, Ismail H, Corona-Avila I, Khan MW. Unraveling the Sweet Secrets of HCC: Glucometabolic Rewiring in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231219434. [PMID: 38083797 PMCID: PMC10718058 DOI: 10.1177/15330338231219434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2017] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary form of liver cancer. It causes ∼ 800 000 deaths per year, which is expected to increase due to increasing rates of obesity and metabolic dysfunction associated steatotic liver disease (MASLD). Current therapies include immune checkpoint inhibitors, tyrosine kinase inhibitors, and monoclonal antibodies, but these therapies are not satisfactorily effective and often come with multiple side effects and recurrences. Metabolic reprogramming plays a significant role in HCC progression and is often conserved between tumor types. Thus, targeting rewired metabolic pathways could provide an attractive option for targeting tumor cells alone or in conjunction with existing treatments. Therefore, there is an urgent need to identify novel targets involved in cancer-mediated metabolic reprogramming in HCC. In this review, we provide an overview of molecular rewiring and metabolic reprogramming of glucose metabolism in HCC to understand better the concepts that might widen the therapeutic window against this deadly cancer.
Collapse
Affiliation(s)
- Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Sri Pratap College, Cluster University Srinagar, Srinagar, Jammu & Kashmir, India
| | - Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
54
|
Saka W, Anigbogu C, Kehinde M, Jaja S. L-Arginine supplementation enhanced expression of glucose transporter (GLUT 1) in sickle cell anaemia subjects in the steady state. Curr Res Physiol 2023; 6:100096. [DOI: 10.1016/j.crphys.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/05/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
|
55
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
56
|
Glycosylated triptolide affords a potent in vivo therapeutic activity to hepatocellular carcinoma in mouse model. Med Chem Res 2022. [DOI: 10.1007/s00044-022-03008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
57
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
58
|
SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel) 2022; 14:cancers14235811. [PMID: 36497303 PMCID: PMC9738342 DOI: 10.3390/cancers14235811] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A new group of antidiabetic drugs, sodium-glucose cotransporter 2 inhibitors (SGLT-2 inhibitors), have recently been shown to have anticancer effects and their expression has been confirmed in many cancer cell lines. Given the metabolic reprogramming of these cells in a glucose-based model, the ability of SGLT-2 inhibitors to block the glucose uptake by cancer cells appears to be an attractive therapeutic approach. In addition to tumour cells, SGLT-2s are only found in the proximal tubules in the kidneys. Furthermore, as numerous clinical trials have shown, the use of SGLT-2 inhibitors is well-tolerated and safe in patients with diabetes and/or heart failure. In vitro cell culture studies and preclinical in vivo studies have confirmed that SGLT-2 inhibitors exhibit antiproliferative effects on certain types of cancer. However, the mechanisms of this action remain unclear. Even in those tumour cell types in which SGLT-2 is present, there is sometimes an SGLT-2-independent mechanism of anticancer action of this group of drugs. This article presents the current state of knowledge of the potential mechanisms of the anticancer action of SGLT-2 inhibitors and their possible future application in clinical oncology.
Collapse
|
59
|
RIP140-Mediated NF-κB Inflammatory Pathway Promotes Metabolic Dysregulation in Retinal Pigment Epithelium Cells. Curr Issues Mol Biol 2022; 44:5788-5801. [DOI: 10.3390/cimb44110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Metabolic dysregulation of the retinal pigment epithelium (RPE) has been implicated in age-related macular degeneration (AMD). However, the molecular regulation of RPE metabolism remains unclear. RIP140 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PPAR-γ co-activator-1 α(PGC-1α). This study aims to disclose the effect of RIP140 on the RPE metabolic program in vitro and in vivo. RIP140 protein levels were assayed by Western blotting. Gene expression was tested using quantitative real-time PCR (qRT-PCR), ATP production, and glycogen concentration assays, and the release of inflammatory factors was analyzed by commercial kits. Mice photoreceptor function was measured by electroretinography (ERG). In ARPE-19 cells, RIP140 overexpression changed the expression of the key metabolic genes and lipid processing genes, inhibited mitochondrial ATP production, and enhanced glycogenesis. Moreover, RIP140 overexpression promoted the translocation of NF-κB and increased the expression and production of IL-1β, IL-6, and TNF-α in ARPE-19 cells. Importantly, we also observed the overexpression of RIP140 through adenovirus delivery in rat retinal cells, which significantly decreased the amplitude of the a-wave and b-wave measured by ERG assay. Therapeutic strategies that modulate the activity of RIP140 could have clinical utility for the treatment of AMD in terms of preventing RPE degeneration.
Collapse
|
60
|
Xu R, Qi L, Ren X, Zhang W, Li C, Liu Z, Tu C, Li Z. Integrated Analysis of TME and Hypoxia Identifies a Classifier to Predict Prognosis and Therapeutic Biomarkers in Soft Tissue Sarcomas. Cancers (Basel) 2022; 14:cancers14225675. [PMID: 36428766 PMCID: PMC9688460 DOI: 10.3390/cancers14225675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Soft tissue sarcoma (STS) is one of the rarest but most aggressive cancer. It is important to note that intratumoral hypoxia and tumor microenvironment (TME) infiltration play a significant role in the growth and therapeutic resistance of STS. The goal of this study was therefore to determine whether linking hypoxia-related parameters to TME cells could provide a more accurate prediction of prognosis and therapeutic response. An analysis of 109 hypoxia-related genes and 64 TME cells was conducted in STS. Hypoxia-TME classifier was constructed based on 6 hypoxia prognostic genes and 8 TME cells. As a result, we evaluated the prognosis, tumor, and immune characteristics, as well as the effectiveness of therapies in Hypoxia-TME-defined subgroups. The Lowplus group showed a better prognosis and therapeutic response than any other subgroup. It is possible to unravel these differences based on immune-related molecules and somatic mutations in tumors. Further validation of Hypoxia-TME was done in an additional cohort of 225 STS patients. Additionally, we identified five key genes through differential analysis and RT-qPCR, namely, ACSM5, WNT7B, CA9, MMP13, and RAC3, which could be targeted for therapy. As a whole, the Hypoxia-TME classifier demonstrated a pretreatment predictive value for prognosis and therapeutic outcome, providing new approaches to therapy strategizing for patients.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Chenbei Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
- Correspondence:
| |
Collapse
|
61
|
Zhang J, Han H, Wang L, Wang W, Yang M, Qin Y. Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol 2022; 12:988956. [DOI: 10.3389/fonc.2022.988956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is the third leading cause of cancer-related mortality worldwide. Multifactorial drug resistance is regarded as the major cause of treatment failure in HCC. Accumulating evidence shows that the constituents of the tumor microenvironment (TME), including cancer-associated fibroblasts, tumor vasculature, immune cells, physical factors, cytokines, and exosomes may explain the therapeutic resistance mechanisms in HCC. In recent years, anti-angiogenic drugs and immune checkpoint inhibitors have shown satisfactory results in HCC patients. However, due to enhanced communication between the tumor and TME, the effect of heterogeneity of the microenvironment on therapeutic resistance is particularly complicated, which suggests a more challenging research direction. In addition, it has been reported that the three-dimensional (3D) organoid model derived from patient biopsies is more intuitive to fully understand the role of the TME in acquired resistance. Therefore, in this review, we have focused not only on the mechanisms and targets of therapeutic resistance related to the contents of the TME in HCC but also provide a comprehensive description of 3D models and how they contribute to the exploration of HCC therapies.
Collapse
|
62
|
Tang Y, Zhang H, Chen L, Zhang T, Xu N, Huang Z. Identification of Hypoxia-Related Prognostic Signature and Competing Endogenous RNA Regulatory Axes in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:13590. [PMID: 36362375 PMCID: PMC9658439 DOI: 10.3390/ijms232113590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of liver cancer and one of the highly lethal diseases worldwide. Hypoxia plays an important role in the development and prognosis of HCC. This study aimed to construct a new hypoxia-related prognosis signature and investigate its potential ceRNA axes in HCC. RNA profiles and hypoxia genes were downloaded, respectively, from the Cancer Genome Atlas hepatocellular carcinoma database and Gene Set Enrichment Analysis website. Cox regression analyses were performed to select the prognostic genes and construct the risk model. The ENCORI database was applied to build the lncRNA-miRNA-mRNA prognosis-related network. The TIMER and CellMiner databases were employed to analyze the association of gene expression in ceRNA with immune infiltration and drug sensitivity, respectively. Finally, the co-expression analysis was carried out to construct the potential lncRNA/miRNA/mRNA regulatory axes. We obtained a prognostic signature including eight hypoxia genes (ENO2, KDELR3, PFKP, SLC2A1, PGF, PPFIA4, SAP30, and TKTL1) and further established a hypoxia-related prognostic ceRNA network including 17 lncRNAs, six miRNAs, and seven mRNAs for hepatocellular carcinoma. Then, the analysis of immune infiltration and drug sensitivity showed that gene expression in the ceRNA network was significantly correlated with the infiltration abundance of multiple immune cells, the expression level of immune checkpoints, and drug sensitivity. Finally, we identified three ceRNA regulatory axes (SNHG1/miR-101-3p/PPFIA4, SNHG1/miR-101-3p/SAP30, and SNHG1/miR-101-3p/TKTL1) associated with the progression of HCC under hypoxia. Here, we constructed a prognosis gene signature and a ceRNA network related to hypoxia for hepatocellular carcinoma. Among the ceRNA network, six highly expressed lncRNAs (AC005540.1, AC012146.1, AC073529.1, AC090772.3, AC138150.2, AL390728.6) and one highly expressed mRNA (PPFIA4) were the potential biomarkers of hepatocellular carcinoma which we firstly reported. The three predicted hypoxia-related regulatory axes may play a vital role in the progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yulai Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- The First Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Hua Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Lingli Chen
- The First Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Taomin Zhang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Na Xu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Zunnan Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
- Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
63
|
Wang K, Dai X, Yu A, Feng C, Liu K, Huang L. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression. J Exp Clin Cancer Res 2022; 41:289. [PMID: 36171633 PMCID: PMC9520815 DOI: 10.1186/s13046-022-02483-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background Peptide proteolysis-targeting chimeras (p-PROTACs) with advantages of high specificity and low toxicity have emerged as a powerful technology of targeted protein degradation for biomedical applications. FOXM1, a proliferation-associated transcription factor, is overexpressed in a variety of human tumors as a key driver of tumorigenesis and cancer progression, and is a potential anticancer therapeutic target. However, FOXM1-targeting p-PROTACs has not been researched. Methods Here, we first analyzed the expression of FOXM1, GLUT1 and PD-L1 in liver cancer through database and clinical samples of patients. FOXM1-targeting peptides, selected by screening phage display library, are verified its targeting effect by immunofluorescence and CCK-8 test. The novel p-PROTAC degrader of FOXM1 is chemically synthesis, named FOXM1-PROTAC, by linking a FOXM1-binding antagonistic peptide, with the E3 ubiquitin ligase recruitment ligand Pomalidomide and with the cell membrane penetrating peptide TAT. Its degradation effect on FOXM1 was detected by Western blotting, qPCR, and we verified its effect on the behavior of cancer cells by flow cytometry, scratch assay, and Transwell in vitro. The tumor xenografted mice model was used for evaluating FOXM1-PROTAC therapeutic response in vivo. Finally, we detected the expression of GLUT1 and PD-L1 after FOXM1-PROTAC degraded FOXM1 by using Western Blotting and hippocampal detectors and dual immunofluorescence. Results We found that the novel FOXM1-PROTAC efficiently entered cells and induced degradation of FOXM1 protein, which strongly inhibits viability as well as migration and invasion in various cancer cell lines, and suppressed tumor growth in HepG2 and MDA-MB-231 cells xenograft mouse models, without detected toxicity in normal tissues. Meanwhile, FOXM1-PROTAC decreased the cancer cells glucose metabolism via downregulating the protein expression levels of glucose transporter GLUT1 and the immune checkpoint PD-L1, which suggests involvement of FOXM1 in cancer cell metabolism and immune regulation. Conclusions Our results indicate that biologically targeted degradation of FOXM1 is an attractive therapeutic strategy, and antagonist peptide-containing FOXM1-PROTACs as both degrader and inhibitor of FOXM1 could be developed as a safe and promising drug for FOXM1-overexpressed cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02483-2.
Collapse
|
64
|
Dou Q, Grant AK, Callahan C, Coutinho de Souza P, Mwin D, Booth AL, Nasser I, Moussa M, Ahmed M, Tsai LL. PFKFB3-mediated Pro-glycolytic Shift in Hepatocellular Carcinoma Proliferation. Cell Mol Gastroenterol Hepatol 2022; 15:61-75. [PMID: 36162723 PMCID: PMC9672450 DOI: 10.1016/j.jcmgh.2022.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Metabolic reprogramming, in particular, glycolytic regulation, supports abnormal survival and growth of hepatocellular carcinoma (HCC) and could serve as a therapeutic target. In this study, we sought to identify glycolytic regulators in HCC that could be inhibited to prevent tumor progression and could also be monitored in vivo, with the goal of providing a theragnostic alternative to existing therapies. METHODS An orthotopic HCC rat model was used. Tumors were stimulated into a high-proliferation state by use of off-target liver ablation and were compared with lower-proliferating controls. We measured in vivo metabolic alteration in tumors before and after stimulation, and between stimulated tumors and control tumors using hyperpolarized 13C magnetic resonance imaging (MRI) (h13C MRI). We compared metabolic alterations detected by h13C MRI to metabolite levels from ex vivo mass spectrometry, mRNA levels of key glycolytic regulators, and histopathology. RESULTS Glycolytic lactate flux increased within HCC tumors 3 days after tumor stimulation, correlating positively with tumor proliferation as measured with Ki67. This was associated with a shift towards aerobic glycolysis and downregulation of the pentose phosphate pathway detected by mass spectrometry. MRI-measured lactate flux was most closely coupled with PFKFB3 expression and was suppressed with direct inhibition using PFK15. CONCLUSIONS Inhibition of PFKFB3 prevents glycolytic-mediated HCC proliferation, trackable by in vivo h13C MRI.
Collapse
Affiliation(s)
- Qianhui Dou
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Aaron K Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Cody Callahan
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Patricia Coutinho de Souza
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David Mwin
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Adam L Booth
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marwan Moussa
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Muneeb Ahmed
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Leo L Tsai
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
65
|
Siglec-15 Regulates the Inflammatory Response and Polarization of Tumor-Associated Macrophages in Pancreatic Cancer by Inhibiting the cGAS-STING Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3341038. [PMID: 36105484 PMCID: PMC9467737 DOI: 10.1155/2022/3341038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
Tumor-associated macrophages especially M2 phenotype macrophages play an important role in tumor progression and the formation of immunosuppressive tumor microenvironment. Previous studies indicated that infiltration of a large number of M2-macrophages was positively associated with a low survival rate and poor prognosis of patients with pancreatic ductal cancer. However, the mechanisms responsible for M2-macrophage polarization remain unclear. Recently, Siglec-15 appears as an emerging target for the normalization of the tumor immune microenvironment. Hence, we detected the Sigelc-15 expression on macrophages by using qPCR and Western blot assay and found that the expression of Siglec-15 was upregulated on M2 macrophages induced by IL-4 and conditioned media from pancreatic ductal cancer. In addition, after knocking out Siglec-15, the expression of M2 phenotype macrophage biomarkers such as Arg1 and CD206 was significantly downregulated. Besides, in our study we also found that Siglec-15 could upregulate the glycolysis of macrophage possibly by interacting with Glut1 to regulate the M2-macrophage polarization. The regulation was also partly dependent on STING, and Glut1-related glycose metabolism was involved in regulating cGAS/STING signaling. When utilizing a subcutaneous transplantation mouse model, we observed that knocking out of Siglec-15 or co-injecting tumor cells with macrophage from Siglec-15 KO mice could significantly inhibit the growth of subcutaneous tumors in mice. Taken together, these findings suggest that Siglec-15 is essential for the M2-macrophage polarization to shape an immune suppressive tumor microenvironment in pancreatic cancer and makes it an attractive target for pancreatic cancer immunotherapy.
Collapse
|
66
|
Chen S, Gao Y, Wang Y, Daemen T. The combined signatures of hypoxia and cellular landscape provides a prognostic and therapeutic biomarker in hepatitis B virus-related hepatocellular carcinoma. Int J Cancer 2022; 151:809-824. [PMID: 35467769 PMCID: PMC9543189 DOI: 10.1002/ijc.34045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Prognosis and treatment options of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) are generally based on tumor burden and liver function. Yet, tumor growth and therapeutic resistance of HBV-HCC are strongly influenced by intratumoral hypoxia and cells infiltrating the tumor microenvironment (TME). We, therefore, studied whether linking parameters associated with hypoxia and TME cells could have a better prediction of prognosis and therapeutic responses. Quantification of 109 hypoxia-related genes and 64 TME cells was performed in 452 HBV-HCC tumors. Prognostic hypoxia and TME cells signatures were determined based on Cox regression and meta-analysis for generating the Hypoxia-TME classifier. Thereafter, the prognosis, tumor, and immune characteristics as well as the benefit of therapies in Hypoxia-TME defined subgroups were analyzed. Patients in the Hypoxialow /TMEhigh subgroup showed a better prognosis and therapeutic responses than any other subgroups, which can be well elucidated based on the differences in terms of immune-related molecules, tumor somatic mutations, and cancer cellular signaling pathways. Notably, our analysis furthermore demonstrated the synergistic influence of hypoxia and TME on tumor metabolism and proliferation. Besides, the classifier allowed a further subdivision of patients with early- and late-HCC stages. In addition, the Hypoxia-TME classifier was validated in another independent HBV-HCC cohort (n = 144) and several pan-cancer cohorts. Overall, the Hypoxia-TME classifier showed a pretreatment predictive value for prognosis and therapeutic responses, which might provide new directions for strategizing patients with optimal therapies.
Collapse
Affiliation(s)
- Shipeng Chen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer ImmunotherapyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Yuzhen Gao
- Department of Clinical LaboratorySir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Ying Wang
- Department of Laboratory MedicineShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
- Research Center for Translational MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer ImmunotherapyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
67
|
Zhou L, Zhao Y, Pan LC, Wang J, Shi XJ, Du GS, He Q. Sirolimus increases the anti-cancer effect of Huai Er by regulating hypoxia inducible factor-1α-mediated glycolysis in hepatocellular carcinoma. World J Gastroenterol 2022; 28:4600-4619. [PMID: 36157928 PMCID: PMC9476881 DOI: 10.3748/wjg.v28.i32.4600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glycolysis caused by hypoxia-induced abnormal activation of hypoxia inducible factor-1α (HIF-1α) in the immune microenvironment promotes the progression of hepatocellular carcinoma (HCC), leading to enhanced drug resistance in cancer cells. Therefore, altering the immunosuppressive microenvironment by imp-roving the hypoxic state is a new goal in improving cancer treatment. AIM To analyse the role of HIF-1α, which is closely related to tumour proliferation, invasion, metastasis, and angiogenesis, in the proliferation and invasion of liver cancer, and to explore the HIF-1α pathway-mediated anti-cancer mechanism of sirolimus (SRL) combined with Huai Er. METHODS Previous studies on HCC tissues identified the importance of HIF-1α, glucose transporter 1 (GLUT1), and lactate dehydrogenase A (LDHA) expression. In this study, HepG2 and Huh7 cell lines were treated, under hypoxic and normoxic conditions, with a combination of SRL and Huai Er. The effects on proliferation, invasion, cell cycle, and apoptosis were analysed. Proteomics and genomics techniques were used to analyze the HIF-1α-related signalling pathway during SRL combined with Huai Er treatment and its inhibition of the proliferation of HCC cells. RESULTS High levels of HIF-1α, LDHA, and GLUT-1 were found in poorly differentiated HCC, with lower patient survival rates. Hypoxia promoted the proliferation of HepG2 and Huh7 cells and weakened the apoptosis and cell cycle blocking effects of the SRL/Huai Er treatment. This was achieved by activation of HIF-1α and glycolysis in HCC, leading to the upregulation of LDHA, GLUT-1, Akt/mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and Forkhead box P3 and downregulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and p27. The hypoxia-induced activation of HIF-1α showed the greatest attenuation in the SRL/Huai Er (S50 + H8) group compared to the drug treatments alone (P < 0.001). The S50 + H8 treatment significantly downregulated the expression of mTOR and HIF-1α, and significantly reduced the expression of VEGF mRNA. Meanwhile, the combined blocking of mTOR and HIF-1α enhanced the downregulation of Akt/mTOR, HIF-1α, LDHA, and GLUT-1 mRNA and resulted in the downregulation of PTEN, p27, and VEGF mRNA (P < 0.001). CONCLUSION SRL increases the anti-cancer effect of Huai Er, which reduces the promotion of hypoxia-induced HIF-1α on the Warburg effect by inhibition of the PI3K/Akt/mTOR-HIF-1α and HIF-1α-PTEN signalling pathways in HCC.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Yang Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Li-Chao Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Xian-Jie Shi
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Guo-Sheng Du
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
68
|
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K, Shanmughapriya S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J Pers Med 2022; 12:1329. [PMID: 36013278 PMCID: PMC9410355 DOI: 10.3390/jpm12081329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly reprogram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid, and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy production in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally, miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins are directed towards the ETC rather than to the apoptotic pathway. This review will highlight how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell metabolism and mitochondrial calcium import/export pathways. The review will also focus on the metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis with an emphasis on the therapeutic potential of miRNAs for cancer treatment.
Collapse
Affiliation(s)
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| |
Collapse
|
69
|
Takiyama T, Sera T, Nakamura M, Hoshino M, Uesugi K, Horike SI, Meguro-Horike M, Bessho R, Takiyama Y, Kitsunai H, Takeda Y, Sawamoto K, Yagi N, Nishikawa Y, Takiyama Y. A maternal high-fat diet induces fetal origins of NASH-HCC in mice. Sci Rep 2022; 12:13136. [PMID: 35907977 PMCID: PMC9338981 DOI: 10.1038/s41598-022-17501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal overnutrition affects offspring susceptibility to nonalcoholic steatohepatitis (NASH). Male offspring from high-fat diet (HFD)-fed dams developed a severe form of NASH, leading to highly vascular tumor formation. The cancer/testis antigen HORMA domain containing protein 1 (HORMAD1), one of 146 upregulated differentially expressed genes in fetal livers from HFD-fed dams, was overexpressed with hypoxia-inducible factor 1 alpha (HIF-1alpha) in hepatoblasts and in NASH-based hepatocellular carcinoma (HCC) in offspring from HFD-fed dams at 15 weeks old. Hypoxia substantially increased Hormad1 expression in primary mouse hepatocytes. Despite the presence of three putative hypoxia response elements within the mouse Hormad1 gene, the Hif-1alpha siRNA only slightly decreased hypoxia-induced Hormad1 mRNA expression. In contrast, N-acetylcysteine, but not rotenone, inhibited hypoxia-induced Hormad1 expression, indicating its dependency on nonmitochondrial reactive oxygen species production. Synchrotron-based phase-contrast micro-CT of the fetuses from HFD-fed dams showed significant enlargement of the liver accompanied by a consistent size of the umbilical vein, which may cause hypoxia in the fetal liver. Based on these findings, a maternal HFD induces fetal origins of NASH/HCC via hypoxia, and HORMAD1 is a potential therapeutic target for NASH/HCC.
Collapse
Affiliation(s)
- Takao Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Ryoichi Bessho
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuri Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kitsunai
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasutaka Takeda
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuki Sawamoto
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yumi Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
70
|
Lou Q, Zhang M, Yang Y, Gao Y. Low-dose arsenic trioxide enhances membrane-GLUT1 expression and glucose uptake via AKT activation to support L-02 cell aberrant proliferation. Toxicology 2022; 475:153237. [PMID: 35714947 DOI: 10.1016/j.tox.2022.153237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Long term low dose exposure of arsenic has been reported to lead various cells proliferation and malignant transformation. GLUT1, as the key transporter of glucose, has been reported to have association with rapid proliferation of various cells or tumor cells. In our study, we found that low dose exposure to arsenic trioxide (0.1μmol/L As2O3) could induce an increase in glucose uptake and promote cell viability and DNA synthesis. And, 2-DG, a non-metabolized glucose analog, significantly decreased the glucose uptake and cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. However, 4 mmol/L 2-DG was co-utilized with equal dose glucose had no significant effect on the cell proliferation of 0.1μmol/L As2O3 treated L-02 cells. Further studies showed that exposure to 0.1μmol/L As2O3 could promote the expression of GLUT1 on plasma membrane. Inhibition of GLUT1 expression by 5μmol/L BAY-876 significantly decreased the abilities of glucose uptake and cell proliferation in As2O3-treated L-02 cells. Moreover, 0.1μmol/L As2O3 induced the AKT activation indicated by increased the phospho-AKT (Ser473 and Thr308). Knockdown AKT by shRNA or inhibited AKT activation by LY294002 was followed by significantly decreased glucose uptake, GLUT1 plasma membrane expression and cell proliferation in As2O3-treated L-02 cells. All in all, these results demonstrated that arsenic trioxide-induced AKT activation contributed to the cells proliferation through upregulating expression of GLUT1 on plasma membrane that enhanced glucose uptake.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
71
|
Serra M, Di Matteo M, Serneels J, Pal R, Cafarello ST, Lanza M, Sanchez-Martin C, Evert M, Castegna A, Calvisi DF, Mazzone M, Columbano A. Deletion of Lactate Dehydrogenase-A Impairs Oncogene-Induced Mouse Hepatocellular Carcinoma Development. Cell Mol Gastroenterol Hepatol 2022; 14:609-624. [PMID: 35714859 PMCID: PMC9307943 DOI: 10.1016/j.jcmgh.2022.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a multistep process whereby abnormally proliferating cancer cells undergo extensive metabolic reprogramming. Metabolic alterations in hepatocarcinogenesis depend on the activation of specific oncogenes, thus partially explaining HCC heterogeneity. c-Myc oncogene overexpression, frequently observed in human HCCs, leads to a metabolic rewiring toward a Warburg phenotype and production of lactate, resulting in the acidification of the extracellular space, favoring the emergence of an immune-permissive tumor microenvironment. Here, we investigated whether Ldha genetic ablation interferes with metabolic reprogramming and HCC development in the mouse. METHODS We characterized the metabolic reprogramming in tumors induced in C57BL/6J mice hydrodynamically cotransfected with c-Myc and h-Ras. Using the same experimental model, we investigated the effect of Ldha inhibition-gained through the inducible and hepatocyte-specific Ldha knockout-on cancer cell metabolic reprogramming, number and size of HCC lesions, and tumor microenvironment alterations. RESULTS c-Myc/h-Ras-driven tumors display a striking glycolytic metabolism, suggesting a switch to a Warburg phenotype. The tumors also exhibited enhanced pentose phosphate pathway activity, the switch of glutamine to sustain glutathione synthesis instead of the tricarboxylic acid cycle, and the impairment of oxidative phosphorylation. In addition, Ldha abrogation significantly hampered tumor number and size together with an evident inhibition of the Warburg-like metabolic feature and a remarkable increase of CD4+ lymphocytes compared with Ldha wild-type livers. CONCLUSIONS These results demonstrate that Ldha deletion significantly impairs mouse HCC development and suggest lactate dehydrogenase as a potential target to enhance the efficacy of the current therapeutic options.
Collapse
Affiliation(s)
- Marina Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jens Serneels
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rajesh Pal
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Martina Lanza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Carlos Sanchez-Martin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
72
|
Li Y, Song Z, Han Q, Zhao H, Pan Z, Lei Z, Zhang J. Targeted inhibition of STAT3 induces immunogenic cell death of hepatocellular carcinoma cells via glycolysis. Mol Oncol 2022; 16:2861-2880. [PMID: 35665592 PMCID: PMC9348600 DOI: 10.1002/1878-0261.13263] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
In hepatocellular carcinoma (HCC), the signal transducer and activator of transcription 3 (STAT3) is present in an overactive state that is closely related to tumour development and immune escape. STAT3 inhibition reshapes the tumour immune microenvironment, but the underlying mechanisms have not been fully clarified. We found that STAT3 inhibition could induce immunogenic cell death (ICD) of HCC cells via translocation of the “eat me” molecule calreticulin to the cell surface and a significant reduction in the expression of the “don’t eat me” molecule leucocyte surface antigen CD47. STAT3 inhibition promoted dendritic cell (DC) activation and enhanced the recognition and phagocytosis of HCC cells by macrophages. Furthermore, STAT3 inhibition prevented the expression of key glycolytic enzymes, facilitating the induction of ICD in HCC. Interestingly, STAT3 directly regulated the transcription of CD47 and solute carrier family 2 member 1 (SLC2A1; also known as GLUT1). In subcutaneous and orthotopic transplantation mouse tumour models, the STAT3 inhibitor napabucasin prevented tumour growth and induced the expression of calreticulin and the protein disulfide isomerase family A member 3 (PDIA3; also known as ERp57) but suppressed that of CD47 and GLUT1. Meanwhile, the amount of tumour‐infiltrated DCs and macrophages increased, along with the expression of costimulatory molecules. More CD4+ and CD8+ T cells accumulated in tumour tissues, and CD8+ T cells had lower expression of checkpoint molecules such as lymphocyte activation gene 3 protein (LAG‐3) and programmed cell death protein 1 (PD‐1). Significantly, the antitumour immune memory response was induced by treatment targeting STAT3. These findings provide a new mechanism for targeting STAT3‐induced ICD in HCC, and confirms STAT3 as a potential target for the treatment of HCC via reshaping the tumour immune microenvironment.
Collapse
Affiliation(s)
- Ya Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhengyang Lei
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
73
|
Vishnoi K, Kumar S, Ke R, Rana A, Rana B. Dysregulation of immune checkpoint proteins in hepatocellular carcinoma: Impact on metabolic reprogramming. Curr Opin Pharmacol 2022; 64:102232. [DOI: 10.1016/j.coph.2022.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
|
74
|
Li C, Zhao L, Jia L, Ouyang Z, Gao Y, Guo R, Song S, Shi X, Cao X. 68Ga-labeled dendrimer-entrapped gold nanoparticles for PET/CT dual-modality imaging and immunotherapy of tumors. J Mater Chem B 2022; 10:3648-3656. [PMID: 35451446 DOI: 10.1039/d2tb00378c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design and fabrication of nanoplatforms with both nuclear medical imaging and therapeutic functions remain challenging in current precision nanomedicine. Herein, we report the design of a novel nanoplatform based on glucose-modified dendrimer-entrapped gold nanoparticles (Au DENPs) labeled with radionuclide 68Ga and incorporated with cytosine-guanine (CpG) oligonucleotide for positron emission tomography (PET)/computed tomography (CT) dual-mode imaging and immunotherapy of tumors. In this study, generation 5 poly(amidoamine) (PAMAM) dendrimers were first modified to have 8.2 DOTA and 7.3 polyethylene glycol with the other end functionalized with 2-amino-2-deoxy-D-glucose (DG) for each dendrimer, entrapped with Au NPs, and then radiolabeled with 68Ga through the DOTA chelation. The synthesized DG-Au DENPs have good cytocompatibility, targeting specificity toward cancer cells expressing glucose transporters, and the ability to be labeled by 68Ga with great labeling efficiency (≥85%) and stability (≥95%). After being loaded with CpG, the formed DG-Au DENPs/CpG polyplexes were proven to be used for tumor dual-mode PET/CT imaging and immunotherapy by effectively maturing dendritic cells to initiate a T cell-based antitumor immune response in vivo. Compared with the DG-free polyplexes, the developed DG-Au DENPs/CpG polyplexes show a much more sensitive imaging effect and better inhibition effect of tumors. These findings demonstrate a unique design of 68Ga-labeled DG-Au DENPs, a promising theranostic nanoplatform that may be extended to tackle different tumor types.
Collapse
Affiliation(s)
- Cai Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Liang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Shanghai Cancer Center, Fudan University, Shanghai 200030, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
75
|
Yu S, Wang H, Gao J, Liu L, Sun X, Wang Z, Wen P, Shi X, Shi J, Guo W, Zhang S. Identification of Context-Specific Fitness Genes Associated With Metabolic Rearrangements for Prognosis and Potential Treatment Targets for Liver Cancer. Front Genet 2022; 13:863536. [PMID: 35646101 PMCID: PMC9136325 DOI: 10.3389/fgene.2022.863536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the most frequent fatal malignancy. Furthermore, there is a lack of effective therapeutics for this cancer type. To construct a prognostic model for potential beneficiary screens and identify novel treatment targets, we used an adaptive daisy model (ADaM) to identify context-specific fitness genes from the CRISPR-Cas9 screens database, DepMap. Functional analysis and prognostic significance were assessed using data from TCGA and ICGC cohorts, while drug sensitivity analysis was performed using data from the Liver Cancer Model Repository (LIMORE). Finally, a 25-gene prognostic model was established. Patients were then divided into high- and low-risk groups; the high-risk group had a higher stemness index and shorter overall survival time than the low-risk group. The C-index, time-dependent ROC curves, and multivariate Cox regression analysis confirmed the excellent prognostic ability of this model. Functional enrichment analysis revealed the importance of metabolic rearrangements and serine/threonine kinase activity, which could be targeted by trametinib and is the key pathway in regulating liver cancer cell viability. In conclusion, the present study provides a prognostic model for patients with liver cancer and might help in the exploration of novel therapeutic targets to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Shizhe Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Haoren Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Xiaoyan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China
- *Correspondence: Shuijun Zhang,
| |
Collapse
|
76
|
Molecular basis for inhibiting human glucose transporters by exofacial inhibitors. Nat Commun 2022; 13:2632. [PMID: 35552392 PMCID: PMC9098912 DOI: 10.1038/s41467-022-30326-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Human glucose transporters (GLUTs) are responsible for cellular uptake of hexoses. Elevated expression of GLUTs, particularly GLUT1 and GLUT3, is required to fuel the hyperproliferation of cancer cells, making GLUT inhibitors potential anticancer therapeutics. Meanwhile, GLUT inhibitor-conjugated insulin is being explored to mitigate the hypoglycemia side effect of insulin therapy in type 1 diabetes. Reasoning that exofacial inhibitors of GLUT1/3 may be favored for therapeutic applications, we report here the engineering of a GLUT3 variant, designated GLUT3exo, that can be probed for screening and validating exofacial inhibitors. We identify an exofacial GLUT3 inhibitor SA47 and elucidate its mode of action by a 2.3 Å resolution crystal structure of SA47-bound GLUT3. Our studies serve as a framework for the discovery of GLUTs exofacial inhibitors for therapeutic development. Human glucose transporters (GLUTs), particularly GLUT1 and GLUT3, are potential anticancer therapy targets. Here, Nan Wang et al. use an engineered GLUT 3 variant to identify an exofacial GLUT3 inhibitor, SA47, and elucidate the drug’s inhibitory mechanism.
Collapse
|
77
|
Peng Q, Hao LY, Guo YL, Zhang ZQ, Ji JM, Xue Y, Liu YW, Lu JL, Li CG, Shi XL. Solute carrier family 2 members 1 and 2 as prognostic biomarkers in hepatocellular carcinoma associated with immune infiltration. World J Clin Cases 2022; 10:3989-4019. [PMID: 35665115 PMCID: PMC9131213 DOI: 10.12998/wjcc.v10.i13.3989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metabolic reprogramming has been identified as a core hallmark of cancer. Solute carrier family 2 is a major glucose carrier family. It consists of 14 members, and we mainly study solute carrier family 2 member 1 (SLC2A1) and solute carrier family 2 member 2 (SLC2A2) here. SLC2A1, mainly existing in human erythrocytes, brain endothelial cells, and normal placenta, was found to be increased in hepatocellular carcinoma (HCC), while SLC2A2, the major transporter of the normal liver, was decreased in HCC. AIM To identify if SLC2A1 and SLC2A2 were associated with immune infiltration in addition to participating in the metabolic reprogramming in HCC. METHODS The expression levels of SLC2A1 and SLC2A2 were tested in HepG2 cells, HepG215 cells, and multiple databases. The clinical characteristics and survival data of SLC2A1 and SLC2A2 were examined by multiple databases. The correlation between SLC2A1 and SLC2A2 was analyzed by multiple databases. The functions and pathways in which SLC2A1, SLC2A2, and frequently altered neighbor genes were involved were discussed in String. Immune infiltration levels and immune marker genes associated with SLC2A1 and SLC2A2 were discussed from multiple databases. RESULTS The expression level of SLC2A1 was up-regulated, but the expression level of SLC2A2 was down-regulated in HepG2 cells, HepG215 cells, and liver cancer patients. The expression levels of SLC2A1 and SLC2A2 were related to tumor volume, grade, and stage in HCC. Interestingly, the expression levels of SLC2A1 and SLC2A2 were negatively correlated. Further, high SLC2A1 expression and low SLC2A2 expression were linked to poor overall survival and relapse-free survival. SLC2A1, SLC2A2, and frequently altered neighbor genes played a major role in the occurrence and development of tumors. Notably, SLC2A1 was positively correlated with tumor immune infiltration, while SLC2A2 was negatively correlated with tumor immune infiltration. Particularly, SLC2A2 methylation was positively correlated with lymphocytes. CONCLUSION SLC2A1 and SLC2A2 are independent therapeutic targets for HCC, and they are quintessential marker molecules for predicting and regulating the number and status of immune cells in HCC.
Collapse
Affiliation(s)
- Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Li-Yuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Ying-Lin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Zhi-Qin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jing-Min Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yi-Wei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jun-Lan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Cai-Ge Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Xin-Li Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| |
Collapse
|
78
|
Fujii T, Katoh M, Ootsubo M, Nguyen OTT, Iguchi M, Shimizu T, Tabuchi Y, Shimizu Y, Takeshima H, Sakai H. Cardiac glycosides stimulate endocytosis of GLUT1 via intracellular Na + ,K + -ATPase α3-isoform in human cancer cells. J Cell Physiol 2022; 237:2980-2991. [PMID: 35511727 DOI: 10.1002/jcp.30762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 01/20/2023]
Abstract
Glucose transporter GLUT1 plays a primary role in the glucose metabolism of cancer cells. Here, we found that cardiac glycosides (CGs) such as ouabain, oleandrin, and digoxin, which are Na+ ,K+ -ATPase inhibitors, decreased the GLUT1 expression in the plasma membrane of human cancer cells (liver cancer HepG2, colon cancer HT-29, gastric cancer MKN45, and oral cancer KB cells). The effective concentration of ouabain was lower than that for inhibiting the activity of Na+ ,K+ -ATPase α1-isoform (α1NaK) in the plasma membrane. The CGs also inhibited [3 H]2-deoxy- d-glucose uptake, lactate secretion, and proliferation of the cancer cells. In intracellular vesicles of human cancer cells, Na+ ,K+ -ATPase α3-isoform (α3NaK) is abnormally expressed. Here, a low concentration of ouabain inhibited the activity of α3NaK. Knockdown of α3NaK significantly inhibited the ouabain-decreased GLUT1 expression in HepG2 cells, while the α1NaK knockdown did not. Consistent with the results in human cancer cells, CGs had no effect on GLUT1 expression in rat liver cancer dRLh-84 cells where α3NaK was not endogenously expressed. Interestingly, CGs decreased GLUT expression in the dRLh-84 cells exogenously expressing α3NaK. In HepG2 cells, α3NaK was found to be colocalized with TPC1, a Ca2+ -releasing channel activated by nicotinic acid adenine dinucleotide phosphate (NAADP). The CGs-decreased GLUT1 expression was significantly inhibited by a Ca2+ chelator, a Ca2+ -ATPase inhibitor, and a NAADP antagonist. The GLUT1 decrease was also attenuated by inhibitors of dynamin and phosphatidylinositol-3 kinases (PI3Ks). In conclusion, the binding of CGs to intracellular α3NaK elicits the NAADP-mediated Ca2+ mobilization followed by the dynamin-dependent GLUT1 endocytosis in human cancer cells.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mizuki Katoh
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Manami Ootsubo
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Oanh T T Nguyen
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mayumi Iguchi
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yasuharu Shimizu
- Tokyo Research Center, Kyushin Pharmaceutical Co, Ltd., Tokyo, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
79
|
Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev 2022; 16:561. [PMID: 35340885 PMCID: PMC8941341 DOI: 10.4081/oncol.2022.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
The primary metabolic substrate for cells is glucose, which acts as both a source of energy and a substrate in several processes. However, being lipophilic, the cell membrane is impermeable to glucose and specific carrier proteins are needed to allow transport. In contrast to normal cells, cancer cells are more likely to generate energy by glycolysis; as this process generates fewer molecules of adenosine triphosphate (ATP) than complete oxidative breakdown, more glucose molecules are needed. The increased demand for glucose in cancer cells is satisfied by overexpression of a number of glucose transporters, and decreased levels of others. As specific correlations have been observed between the occurrence of cancer and the expression of glucose carrier proteins, the presence of changes in expression of glucose transporters may be treated as a marker of diagnosis and/or prognosis for cancer patients.
Collapse
|
80
|
He J, Wang T, Li Y, Deng Y, Wang S. Dynamic chaotic gravitational search algorithm-based kinetic parameter estimation of hepatocellular carcinoma on 18F-FDG PET/CT. BMC Med Imaging 2022; 22:20. [PMID: 35125095 PMCID: PMC8818192 DOI: 10.1186/s12880-022-00742-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Kinetic parameters estimated with dynamic 18F-FDG PET/CT can help to characterize hepatocellular carcinoma (HCC). We aim to evaluate the feasibility of the gravitational search algorithm (GSA) for kinetic parameter estimation and to propose a dynamic chaotic gravitational search algorithm (DCGSA) to enhance parameter estimation. Methods Five-minute dynamic PET/CT data of 20 HCCs were prospectively enrolled, and the kinetic parameters k1 ~ k4 and the hepatic arterial perfusion index (HPI) were estimated with a dual-input three-compartment model based on nonlinear least squares (NLLS), GSA and DCGSA. Results The results showed that there were significant differences between the HCCs and background liver tissues for k1, k4 and the HPI of NLLS; k1, k3, k4 and the HPI of GSA; and k1, k2, k3, k4 and the HPI of DCGSA. DCGSA had a higher diagnostic performance for k3 than NLLS and GSA. Conclusions GSA enables accurate estimation of the kinetic parameters of dynamic PET/CT in the diagnosis of HCC, and DCGSA can enhance the diagnostic performance.
Collapse
Affiliation(s)
- Jianfeng He
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, 650500, Yunnan, China
| | - Tao Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, 650500, Yunnan, China
| | - Yongjin Li
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, 650500, Yunnan, China
| | - Yinglei Deng
- PET/CT Center, Affiliated Hospital of Kunming University of Science and Technology, First People's Hospital of Yunnan, Kunming, 650031, China
| | - Shaobo Wang
- PET/CT Center, Affiliated Hospital of Kunming University of Science and Technology, First People's Hospital of Yunnan, Kunming, 650031, China.
| |
Collapse
|
81
|
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B 2022; 12:558-580. [PMID: 35256934 PMCID: PMC8897153 DOI: 10.1016/j.apsb.2021.09.019] [Citation(s) in RCA: 321] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.
Collapse
Key Words
- 1,3-BPG, 1,3-bisphosphoglycerate
- 2-DG, 2-deoxy-d-glucose
- 3-BrPA, 3-bromopyruvic acid
- ACC, acetyl-CoA carboxylase
- ACLY, adenosine triphosphate (ATP) citrate lyase
- ACS, acyl-CoA synthease
- AKT, protein kinase B
- AML, acute myeloblastic leukemia
- AMPK, adenosine mono-phosphate-activated protein kinase
- ASS1, argininosuccinate synthase 1
- ATGL, adipose triacylglycerol lipase
- CANA, canagliflozin
- CPT, carnitine palmitoyl-transferase
- CYP4, cytochrome P450s (CYPs) 4 family
- Cancer therapy
- DNL, de novo lipogenesis
- EMT, epithelial-to-mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular-signal regulated kinase
- FABP1, fatty acid binding protein 1
- FASN, fatty acid synthase
- FBP1, fructose-1,6-bisphosphatase 1
- FFA, free fatty acid
- Fatty acid β-oxidation
- G6PD, glucose-6-phosphate dehydrogenase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GLS1, renal-type glutaminase
- GLS2, liver-type glutaminase
- GLUT1, glucose transporter 1
- GOT1, glutamate oxaloacetate transaminase 1
- Glutamine metabolism
- Glycolysis
- HCC, hepatocellular carcinoma
- HIF-1α, hypoxia-inducible factor-1 alpha
- HK, hexokinase
- HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase
- HSCs, hepatic stellate cells
- Hepatocellular carcinoma
- IDH2, isocitrate dehydrogenase 2
- LCAD, long-chain acyl-CoA dehydrogenase
- LDH, lactate dehydrogenase
- LPL, lipid lipase
- LXR, liver X receptor
- MAFLD, metabolic associated fatty liver disease
- MAGL, monoacyglycerol lipase
- MCAD, medium-chain acyl-CoA dehydrogenase
- MEs, malic enzymes
- MMP9, matrix metallopeptidase 9
- Metabolic dysregulation
- NADPH, nicotinamide adenine nucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- OTC, ornithine transcarbamylase
- PCK1, phosphoenolpyruvate carboxykinase 1
- PFK1, phosphofructokinase 1
- PGAM1, phosphoglycerate mutase 1
- PGK1, phosphoglycerate kinase 1
- PI3K, phosphoinositide 3-kinase
- PKM2, pyruvate kinase M2
- PPARα, peroxisome proliferator-activated receptor alpha
- PPP, pentose phosphate pathway
- Pentose phosphate pathway
- ROS, reactive oxygen species
- SCD1, stearoyl-CoA-desaturase 1
- SGLT2, sodium-glucose cotransporter 2
- SLC1A5/ASCT2, solute carrier family 1 member 5/alanine serine cysteine preferring transporter 2
- SLC7A5/LAT1, solute carrier family 7 member 5/L-type amino acid transporter 1
- SREBP1, sterol regulatory element-binding protein 1
- TAGs, triacylglycerols
- TCA cycle, tricarboxylic acid cycle
- TKIs, tyrosine kinase inhibitors
- TKT, transketolase
- Tricarboxylic acid cycle
- VEGFR, vascular endothelial growth factor receptor
- WD-fed MC4R-KO, Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO)
- WNT, wingless-type MMTV integration site family
- mIDH, mutant IDH
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Danyu Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chan Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
82
|
Wang BR, Chu DX, Cheng MY, Jin Y, Luo HG, Li N. Progress of HOTAIR-microRNA in hepatocellular carcinoma. Hered Cancer Clin Pract 2022; 20:4. [PMID: 35093153 PMCID: PMC8800341 DOI: 10.1186/s13053-022-00210-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
The Hox transcript antisense intergenic RNA (HOTAIR) has been identified as a tumor gene, and its expression in HCC is significantly increased. HOTAIR is associated with the proliferation, invasion, metastasis and poor prognosis of HCC. In addition, HOTAIR can also regulate the expression and function of microRNA by recruiting the polycomb repressive complex 2 (PRC2) and competitive adsorption, thus promoting the occurrence and development of HCC. In this review, we discussed the two mechanisms of HOTAIR regulating miRNA through direct binding miRNA and indirect regulation, and emphasized the role of HOTAIR in HCC through miRNA, explained the regulatory pathway of HOTAIR-miRNA-mRNA and introduced the role of this pathway in HCC proliferation, drug resistance, invasion and metastasis.
Collapse
Affiliation(s)
- Bing-Rong Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130012, People's Republic of China
- The Basic Medical College, Jilin Medical University, Jilin, 132013, China
| | - Dong-Xia Chu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130012, People's Republic of China
- The Basic Medical College, Jilin Medical University, Jilin, 132013, China
| | - Mei-Yu Cheng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130012, People's Republic of China
- The Basic Medical College, Jilin Medical University, Jilin, 132013, China
| | - Yu Jin
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130012, People's Republic of China
- The Basic Medical College, Jilin Medical University, Jilin, 132013, China
| | - Hao-Ge Luo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130012, People's Republic of China
- The Basic Medical College, Jilin Medical University, Jilin, 132013, China
| | - Na Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130012, People's Republic of China.
- The Basic Medical College, Jilin Medical University, Jilin, 132013, China.
| |
Collapse
|
83
|
Granja SC, Longatto-Filho A, de Campos PB, Oliveira CP, Stefano JT, Martins-Filho SN, Chagas AL, Herman P, D'Albuquerque LC, Reis Alvares-da-Silva M, Carrilho FJ, Baltazar F, Alves VAF. Non-Alcoholic Fatty Liver Disease-Related Hepatocellular Carcinoma: Immunohistochemical Assessment of Markers of Cancer Cell Metabolism. Pathobiology 2022; 89:157-165. [PMID: 35042213 DOI: 10.1159/000521034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) has been associated to non-alcoholic fatty liver disease (NAFLD). We sought to investigate the immunoexpression of several glycolytic metabolism-associated markers in patients with HCC associated to NAFLD and associate these factors to their clinical-pathological characteristics. METHODS We evaluated 35 HCC specimens from 21 patients diagnosed with non-alcoholic steatohepatitis (NASH) undergoing liver resection (12 patients), liver transplantation (8 patients), or both (1 patient). Histological features, clinical aspects, demographic and biochemical data, as well as the immunohistochemical reactivity for monocarboxylate transporters 1, 2, and 4; their chaperone CD147; carbonic anhydrase IX; and glucose transporter-1 (GLUT1) were assessed. RESULTS Metabolic-associated cirrhosis was present in 12 of the 21 patients (8 child A and 4 child B scores). From 9 patients without cirrhosis, 3 presented NASH F3 and 6 NASH F2. Sixteen (76%) had diabetes mellitus, 17 (81%) arterial hypertension, and 19 (90%) body mass index above 25 kg/m2; 8 (38%) had dyslipidemia. From 35 nodules, steatosis was found in 26, ballooning in 31 nodules, 25 of them diagnosed as steatohepatitic subtype of HCC. MCT4 immunoexpression was associated with extensive intratumoral fibrosis, advanced clinical stages, and shorter overall survival. GLUT1 was noticeable in nodules with extensive intratumoral steatosis, higher intratumoral fibrosis, and advanced clinical stages. Immunohistochemical expression of the metabolic biomarkers MCT4 and GLUT1 was higher in patients with Barcelona-clinic liver cancer B or C. GLUT1 correlated with higher degree of steatosis, marked ballooning, intratumoral fibrosis, and higher parenchymal necroinflammatory activity. CONCLUSION Our data indicate that the expression of the glycolytic phenotype of metabolic markers, especially GLUT1 and MCT4, correlates with a more severe course of HCC occurring in NASH patients.
Collapse
Affiliation(s)
- Sara Costa Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Research Centre in Health and Environment (CISA), School of Health (ESS), Polytechnic Institute of Porto (P.PORTO), Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pathology (LIM-14), University of São Paulo School of Medicine, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Priscila B de Campos
- Department of Gastroenterology (LIM-07/ 37), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Claudia P Oliveira
- Department of Gastroenterology (LIM-07/ 37), University of São Paulo School of Medicine, São Paulo, Brazil
| | - José T Stefano
- Department of Gastroenterology (LIM-07/ 37), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Aline L Chagas
- Department of Gastroenterology (LIM-07/ 37), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Paulo Herman
- Department of Gastroenterology (LIM-07/ 37), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz C D'Albuquerque
- Department of Gastroenterology (LIM-07/ 37), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mário Reis Alvares-da-Silva
- Division of Gastroenterology, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flair José Carrilho
- Department of Gastroenterology (LIM-07/ 37), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Venâncio A F Alves
- Department of Pathology (LIM-14), University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
84
|
Wen K, Yan Y, Shi J, Hu L, Wang W, Liao H, Li H, Zhu Y, Mao K, Xiao Z. Construction and Validation of a Combined Ferroptosis and Hypoxia Prognostic Signature for Hepatocellular Carcinoma. Front Mol Biosci 2022; 8:809672. [PMID: 34977159 PMCID: PMC8719198 DOI: 10.3389/fmolb.2021.809672] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Ferroptosis, as a unique programmed cell death modality, has been found to be closely related to the occurrence and development of hepatocellular carcinoma (HCC). Hypoxia signaling pathway has been found to be extensively involved in the transformation and growth of HCC and to inhibit anti-tumor therapy through various approaches. However, there is no high-throughput study to explore the potential link between ferroptosis and hypoxia, as well as their combined effect on the prognosis of HCC. Methods: We included 370 patients in The Cancer Genome Atlas (TCGA) database and 231 patients in the International Cancer Genome Consortium (ICGC) database. Univariate COX regression and Least Absolute Shrinkage and Selection Operator approach were used to construct ferroptosis-related genes (FRGs) and hypoxia-related genes (HRGs) prognostic signature (FHPS). Kaplan–Meier method and Receiver Operating Characteristic curves were analyzed to evaluate the predictive capability of FHPS. CIBERSOR and single-sample Gene Set Enrichment Analysis were used to explore the connection between FHPS and tumor immune microenvironment. Immunohistochemical staining was used to compare the protein expression of prognostic FRGs and HRGs between normal liver tissue and HCC tissue. In addition, the nomogram was established to facilitate the clinical application of FHPS. Results: Ten FRGs and HRGs were used to establish the FHPS. We found consistent results in the TCGA training cohort, as well as in the independent ICGC validation cohort, that patients in the high-FHPS subgroup had advanced tumor staging, shorter survival time, and higher mortality. Moreover, patients in the high-FHPS subgroup showed ferroptosis suppressive, high hypoxia, and immunosuppression status. Finally, the nomogram showed a strong prognostic capability to predict overall survival (OS) for HCC patients. Conclusion: We developed a novel prognostic signature combining ferroptosis and hypoxia to predict OS, ferroptosis, hypoxia, and immune status, which provides a new idea for individualized treatment of HCC patients.
Collapse
Affiliation(s)
- Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Hu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhu
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
85
|
Gouda G, Gupta MK, Donde R, Behera L, Vadde R. Metabolic pathway-based target therapy to hepatocellular carcinoma: a computational approach. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA, VOLUME 2 2022:83-103. [DOI: 10.1016/b978-0-323-98807-0.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
86
|
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, Zhong J, Guo Z. Lactate: The Mediator of Metabolism and Immunosuppression. Front Endocrinol (Lausanne) 2022; 13:901495. [PMID: 35757394 PMCID: PMC9218951 DOI: 10.3389/fendo.2022.901495] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
The Warburg effect, one of the hallmarks of tumors, produces large amounts of lactate and generates an acidic tumor microenvironment via using glucose for glycolysis. As a metabolite, lactate not only serves as a substrate to provide energy for supporting cell growth and development but also acts as an important signal molecule to affect the biochemical functions of intracellular proteins and regulate the biological functions of different kinds of cells. Notably, histone lysine lactylation (Kla) is identified as a novel post-modification and carcinogenic signal, which provides the promising and potential therapeutic targets for tumors. Therefore, the metabolism and functional mechanism of lactate are becoming one of the hot fields in tumor research. Here, we review the production of lactate and its regulation on immunosuppressive cells, as well as the important role of Kla in hepatocellular carcinoma. Lactate and Kla supplement the knowledge gap in oncology and pave the way for exploring the mechanism of oncogenesis and therapeutic targets. Research is still needed in this field.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhao Zhai
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Duan
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Longqiu Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - An Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Miao Cao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanyang Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huaqiu Shi
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Zhenli Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| |
Collapse
|
87
|
Qin S, Xu Y, Li H, Chen H, Yuan Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater Sci 2021; 10:51-84. [PMID: 34882762 DOI: 10.1039/d1bm00317h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is a leading cause of death worldwide, accounting for an estimated 10 million deaths by 2020. Over the decades, various strategies for tumor therapy have been developed and evaluated. Photodynamic therapy (PDT) has attracted increasing attention due to its unique characteristics, including low systemic toxicity and minimally invasive nature. Despite the excellent clinical promise of PDT, hypoxia is still the Achilles' heel associated with its oxygen-dependent nature related to increased tumor proliferation, angiogenesis, and distant metastases. Moreover, PDT-mediated oxygen consumption further exacerbates the hypoxia condition, which will eventually lead to the poor effect of drug treatment and resistance and irreversible tumor metastasis, even limiting its effective application in the treatment of hypoxic tumors. Hypoxia, with increased oxygen consumption, may occur in acute and chronic hypoxia conditions in developing tumors. Tumor cells farther away from the capillaries have much lower oxygen levels than cells in adjacent areas. However, it is difficult to change the tumor's deep hypoxia state through different ways to reduce the tumor tissue's oxygen consumption. Therefore, it will become more difficult to cure malignant tumors completely. In recent years, numerous investigations have focused on improving PDT therapy's efficacy by providing molecular oxygen directly or indirectly to tumor tissues. In this review, different molecular oxygen supplementation methods are summarized to alleviate tumor hypoxia from the innovative perspective of using supplemental oxygen. Besides, the existing problems, future prospects and potential challenges of this strategy are also discussed.
Collapse
Affiliation(s)
- Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| |
Collapse
|
88
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
89
|
Zhao G, Li H, Gao J, Cai M, Xu H, Shi Y, Wang H, Wang H. Insight into the Different Channel Proteins of Human Red Blood Cell Membranes Revealed by Combined dSTORM and AFM Techniques. Anal Chem 2021; 93:14113-14120. [PMID: 34657412 DOI: 10.1021/acs.analchem.1c02382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane proteins tend to interact with each other in the cell membranes to form protein clusters and perform the corresponding physiological functions. However, because channel proteins are involved in many biological functions, their distribution and nano-organization in these protein clusters are unclear. To study the distribution patterns and relationships between the different channel proteins, we identified the locations of glucose transporter 1 (Glut1) and Band3 (anion transporter 1) precisely in the topography of the cytoplasmic side of the human red blood cell (hRBC) membranes using combined atomic force microscopy (AFM) and single-molecule localization microscopy (SMLM). The AFM results revealed that membrane proteins interacted with each other and aggregated into protein islands. The SMLM results showed that Glut1 and Band3 tended to form protein clusters in the hRBC membranes, and there was a strong colocalization between the two proteins. The results of the combined AFM and SMLM method indicated that the protein clusters of Glut1 and Band3 were mainly located in the protein islands of topography, and the protein islands in topography also interacted with each other to assemble into larger protein clusters or functional microdomains.
Collapse
Affiliation(s)
- Guanfang Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
90
|
Guo XH, Jiang SS, Zhang LL, Hu J, Edelbek D, Feng YQ, Yang ZX, Hu PC, Zhong H, Yang GH, Yang F. Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway. Oncol Rep 2021; 46:253. [PMID: 34643248 PMCID: PMC8548812 DOI: 10.3892/or.2021.8204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit-8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription-quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co-immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα-interacting protein-interacting protein at the C-terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shui-Shan Jiang
- Medical Security Office, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Li Zhang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dilda Edelbek
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qi Feng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Xian Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Zhong
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
91
|
DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun 2021; 12:5872. [PMID: 34620861 PMCID: PMC8497546 DOI: 10.1038/s41467-021-26180-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Glucose transporter GLUT1 is a transmembrane protein responsible for the uptake of glucose into the cells of many tissues through facilitative diffusion. Plasma membrane (PM) localization is essential for glucose uptake by GLUT1. However, the mechanism underlying GLUT1 PM localization remains enigmatic. We find that GLUT1 is palmitoylated at Cys207, and S-palmitoylation is required for maintaining GLUT1 PM localization. Furthermore, we identify DHHC9 as the palmitoyl transferase responsible for this critical posttranslational modification. Knockout of DHHC9 or mutation of GLUT1 Cys207 to serine abrogates palmitoylation and PM distribution of GLUT1, and impairs glycolysis, cell proliferation, and glioblastoma (GBM) tumorigenesis. In addition, DHHC9 expression positively correlates with GLUT1 PM localization in GBM specimens and indicates a poor prognosis in GBM patients. These findings underscore that DHHC9-mediated GLUT1 S-palmitoylation is critical for glucose supply during GBM tumorigenesis. The glucose transporter GLUT1 is upregulated in multiple cancers and may contribute to tumour progression, but the underlying mechanisms are poorly understood. Here, the authors show that DHHC9-mediated GLUT1 palmitoylation at Cys207 is crucial for plasma membrane localisation of GLUT1 and for tumourigenesis in glioblastoma cells.
Collapse
|
92
|
He M, Hu C, Deng J, Ji H, Tian W. Identification of a novel glycolysis-related signature to predict the prognosis of patients with breast cancer. World J Surg Oncol 2021; 19:294. [PMID: 34600547 PMCID: PMC8487479 DOI: 10.1186/s12957-021-02409-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer (BC) has a high incidence and mortality rate in females. Its conventional clinical characteristics are far from accurate for the prediction of individual outcomes. Therefore, we aimed to develop a novel signature to predict the survival of patients with BC. Methods We analyzed the data of a training cohort from the Cancer Genome Atlas (TCGA) database and a validation cohort from the Gene Expression Omnibus (GEO) database. After the applications of Gene Set Enrichment Analysis (GSEA) and Cox regression analyses, a glycolysis-related signature for predicting the survival of patients with BC was developed; the signature contained AK3, CACNA1H, IL13RA1, NUP43, PGK1, and SDC1. Furthermore, on the basis of expression levels of the six-gene signature, we constructed a risk score formula to classify the patients into high- and low-risk groups. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to assess the predicted capacity of the model. Later, a nomogram was developed to predict the outcomes of patients with risk score and clinical features over a period of 1, 3, and 5 years. We further used Human Protein Atlas (HPA) database to validate the expressions of the six biomarkers in tumor and sample tissues, which were taken as control. Results We constructed a six-gene signature to predict the outcomes of patients with BC. The patients in the high-risk group showed poor prognosis than those in the low-risk group. The area under the curve (AUC) values were 0.719 and 0.702, showing that the prediction performance of the signature is acceptable. Additionally, Cox regression analysis revealed that these biomarkers could independently predict the prognosis of BC patients with BC without being affected by clinical factors. The expression levels of all six biomarkers in BC tissues were higher than that in normal tissues; however, AK3 was an exception. Conclusion We developed a six-gene signature to predict the prognosis of patients with BC. Our signature has been proved to have the ability to make an accurate prediction and might be useful in expanding the hypothesis in clinical research.
Collapse
Affiliation(s)
- Menglin He
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Jian Deng
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Hui Ji
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
93
|
Schobert IT, Savic LJ. Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers (Basel) 2021; 13:3645. [PMID: 34359547 PMCID: PMC8344973 DOI: 10.3390/cancers13153645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.
Collapse
Affiliation(s)
- Isabel Theresa Schobert
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| | - Lynn Jeanette Savic
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
94
|
Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021; 10:cells10071715. [PMID: 34359884 PMCID: PMC8304710 DOI: 10.3390/cells10071715] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Hypoxia, low oxygen (O2) level, is a hallmark of solid cancers, especially hepatocellular carcinoma (HCC), one of the most common and fatal cancers worldwide. Hypoxia contributes to drug resistance in cancer through various molecular mechanisms. In this review, we particularly focus on the roles of hypoxia-inducible factor (HIF)-mediated metabolic reprogramming in drug resistance in HCC. Combination therapies targeting hypoxia-induced metabolic enzymes to overcome drug resistance will also be summarized. Acquisition of drug resistance is the major cause of unsatisfactory clinical outcomes of existing HCC treatments. Extra efforts to identify novel mechanisms to combat refractory hypoxic HCC are warranted for the development of more effective treatment regimens for HCC patients.
Collapse
|
95
|
Thamrongwaranggoon U, Sangkhamanon S, Seubwai W, Saranaruk P, Cha'on U, Wongkham S. Aberrant GLUT1 Expression Is Associated With Carcinogenesis and Progression of Liver Fluke-associated Cholangiocarcinoma. In Vivo 2021; 35:267-274. [PMID: 33402473 DOI: 10.21873/invivo.12255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Glucose transporter 1 (GLUT1) has been demonstrated to be overexpressed in various cancer tissues and play a significant role on growth, metastasis, and apoptosis in cancer cells. This study aimed to reveal the clinical relevance of glucose transporter 1 (GLUT1) in carcinogenesis and progression on liver fluke-associated cholangiocarcinoma (CCA). MATERIALS AND METHODS Expression of GLUT1 in CCA tissues from patients, as well as from a liver fluke-induced CCA hamster model, was determined using immunohistochemistry. CCA cell lines were transfected with GLUT1 siRNA and the roles of GLUT1 on cell growth as well as migration and invasion were investigated by using a clonogenic assay and Boyden chamber assays, respectively. RESULTS GLUT1 was aberrantly expressed in hyperplastic/dysplastic bile ducts and CCA, but not in the normal bile ducts. High GLUT1 expression was significantly associated with non-papillary type, large tumor size, and short survival of patients. GLUT1 was expressed during cholangio-carcinogenesis and gradually increased with progression of histopathologic bile ducts. Silencing of GLUT1 expression significantly suppressed growth, migration, and invasion of CCA cell lines. CONCLUSION GLUT1 plays important roles in carcinogenesis and progression of liver fluke-associated CCA. Targeting GLUT1 may be a strategy for treatment of metastasis in liver fluke-associated CCA.
Collapse
Affiliation(s)
- Ubonrat Thamrongwaranggoon
- Department of Biochemistry, and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Departmemt of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Forensic Medicine, Faculty of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paksiree Saranaruk
- Department of Biochemistry, and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha'on
- Department of Biochemistry, and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
96
|
Niu Y, Liu F, Wang X, Chang Y, Song Y, Chu H, Bao S, Chen C. miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis. Onco Targets Ther 2021; 14:3649-3658. [PMID: 34113130 PMCID: PMC8187087 DOI: 10.2147/ott.s304117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/24/2021] [Indexed: 01/15/2023] Open
Abstract
Background The mortality and morbidity of hepatocellular carcinoma (HCC) are still unacceptably high, despite decades of extensive studies. Aerobic glycolysis is a hallmark of cancer metabolism, closely relating to invasion and metastasis of HCC. MicroRNAs (miRNAs) are involved in the regulation of aerobic glycolysis. miR-183-5p, an oncogenic miRNA, is highly expressed in HCC, but the regulatory mechanism of miR-183-5p in migration, invasion and aerobic glycolysis in HCC remains unclear. Purpose To elucidate whether miR-183-5p affects aerobic glycolysis to regulate the migration and invasion of HCC, and to explore its regulatory mechanism. Methods We attempted to observe the effects of miR-183-5p on the migration and invasion of HepG2 cells by a wound-healing assay and Transwell assays. The effect of miR-183-5p on glycolysis was determined by glucose uptake and lactate generation. Western blot and qPCR were used to detect the relevant proteins and miRNA expression. Results Our results show that miR-183-5p promoted migration and invasion, enhanced glycolysis via increasing glucose uptake and lactate generation, and up-regulated glycolysis-related gene (PKM2, HK2, LDHA, GLUT1) expression in HepG2 cells. Further experiments indicated that miR-183-5p could decrease PTEN expression, but increased Akt, p-Akt and mTOR expression in HepG2 cells. Conclusion These findings suggest that miR-183-5p may promote HCC migration and invasion via increasing aerobic glycolysis through targeting PTEN and then activating Akt/mTOR signaling.
Collapse
Affiliation(s)
- Yaqian Niu
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Fang Liu
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Xiuyue Wang
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yuling Chang
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yanmei Song
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Huiyuan Chu
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Che Chen
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
97
|
Asperti M, Bellini S, Grillo E, Gryzik M, Cantamessa L, Ronca R, Maccarinelli F, Salvi A, De Petro G, Arosio P, Mitola S, Poli M. H-ferritin suppression and pronounced mitochondrial respiration make Hepatocellular Carcinoma cells sensitive to RSL3-induced ferroptosis. Free Radic Biol Med 2021; 169:294-303. [PMID: 33892112 DOI: 10.1016/j.freeradbiomed.2021.04.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a form of regulated cell death dependent on iron, reactive oxygen species and characterized by the accumulation of lipid peroxides. It can be experimentally initiated by chemicals, such as erastin and RSL3, that modulate GPX4 activity, the cellular antioxidant machinery that avert lipid peroxidation. The study aimed to investigate mitochondrial respiration and ferritin function as biomarkers of ferroptosis sensitivity of HepG2 and HA22T/VGH, two Hepatocellular Carcinoma (HCC) cell line models. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, labile iron levels were determined using Calcein-AM fluorescence microscopy, ferritin, glutathione and lipid peroxidation were assayed with commercially available kits. The Seahorse assay was used to investigate mitochondrial function in the cells. The study shows that highly differentiated HepG2 cells were more sensitive to RSL3-induced ferroptosis than the poorly differentiated HA22T/VGH (HCC) cell line (RSL3 IC50 0.07 μM in HepG2 vs 0.3 μM in HA22T/VGH). Interestingly, HepG2 exhibited higher mitochondrial respiration and lower glycolytic activity than HA22T/VGH and were more sensitive to RSL3-induced ferroptosis, indicating a mitochondrial-specific mechanism of action of RSL3. Interestingly, iron metabolism seems to be involved in this different sensitivity, specifically, the downregulation of H-ferritin (but not of L-subunit), makes HA22T/VGH more sensitive toward both RSL3-and iron-induced ferroptosis. Hence only the H-ferritin seems involved in the protection from this cell death process.
Collapse
Affiliation(s)
- Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sonia Bellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Cantamessa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
98
|
Topel H, Bağırsakçı E, Yılmaz Y, Güneş A, Bağcı G, Çömez D, Kahraman E, Korhan P, Atabey N. High glucose induced c-Met activation promotes aggressive phenotype and regulates expression of glucose metabolism genes in HCC cells. Sci Rep 2021; 11:11376. [PMID: 34059694 PMCID: PMC8166976 DOI: 10.1038/s41598-021-89765-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is strongly associated with metabolic dysregulations/deregulations and hyperglycemia is a common metabolic disturbance in metabolic diseases. Hyperglycemia is defined to promote epithelial to mesenchymal transition (EMT) of cancer cells in various cancers but its molecular contribution to HCC progression and aggressiveness is relatively unclear. In this study, we analyzed the molecular mechanisms behind the hyperglycemia-induced EMT in HCC cell lines. Here, we report that high glucose promotes EMT through activating c-Met receptor tyrosine kinase via promoting its ligand-independent homodimerization. c-Met activation is critical for high glucose induced acquisition of mesenchymal phenotype, survival under high glucose stress and reprogramming of cellular metabolism by modulating glucose metabolism gene expression to promote aggressiveness in HCC cells. The crucial role of c-Met in high glucose induced EMT and aggressiveness may be the potential link between metabolic syndrome-related hepatocarcinogenesis and/or HCC progression. Considering c-Met inhibition in hyperglycemic patients would be an important complementary strategy for therapy that favors sensitization of HCC cells to therapeutics.
Collapse
Affiliation(s)
- Hande Topel
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Ezgi Bağırsakçı
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Yeliz Yılmaz
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Ayşim Güneş
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey
| | - Gülsün Bağcı
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Dehan Çömez
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Erkan Kahraman
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340, Izmir, Turkey
| | - Peyda Korhan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey
| | - Neşe Atabey
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
99
|
Abstract
The GLUT is a key regulator of glucose metabolism and is widely expressed on the surface of most cells of the body. GLUT provides a variety of nutrients for the growth, proliferation and differentiation of cells. In recent years, the development of drugs affecting the energy intake of tumor cells has become a research hotspot. GLUT inhibitors are gaining increased attention because they can block the energy supply of malignant tumors. Herein, we elaborate on the structure and function of GLUT1, the structural and functional differences among GLUT1-4 transporters and the relationship between GLUT1 and tumor development, as well as GLUT1 transporter inhibitors, to provide a reference for the development of new GLUT1 inhibitors.
Collapse
|
100
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|